
AN EXPLICIT SOLUTION FOR A MULTIMARGINAL MASS
TRANSPORTATION PROBLEM ∗
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Abstract. We construct an explicit solution for the multimarginal transportation problem on
the unit cube [0, 1]3 with the cost function xyz and one-dimensional uniform projections. We show
that the primal problem is concentrated on a set with non-constant local dimension and admits
many solutions, whereas the solution to the corresponding dual problem is unique (up to addition of
constants).

1. Introduction.

1.1. Notation. Assume we are given n polish spaces X1, X2, . . . , Xn, equipped
with probability measures µi on Xi and a cost function c : X1 × · · · ×Xn → R.

In multimarginal Monge-Kantorovich problem (called primal problem throughout
this paper) we seek to minimize∫

X1×···×Xn

c(x1, x2, . . . , xn) dµ(x1, x2, . . . , xn)

over the set Π(µ1, µ2, . . . , µn) of positive joint measures µ on the product space X1×
· · · × Xn whose marginals are the µi. See [19, 2] for an account in the optimal
transportation problem with two marginals and [18].

The dual formulation of the multi-marginal optimal transport problem is defined
by the supremum of

n∑
i=1

∫
Xi

fi(xi) dµi

where supremum is taken over all sets of functions {fi} such that
∑n
i=1 fi(xi) ≤

c(x1, . . . , xn) for any xi ∈ Xi.
It is easy to show that minimum in primal problem is greater or equal to the

supremum in dual problem. Under some conditions it is true that this numbers are
equal [19, 18, 11].

We do not need a full power of duality here. This paper relies on the following
easy fact.

Lemma 1.1 (Complementary Slackness Condition). Let µ ∈ Π(µ1, . . . , µn) be
a joint measure and f1, f2, . . . , fn be a tuple of functions such that

∑n
i=1 fi(xi) ≤

c(x1, . . . , xn). If there is a set M ⊂ X1 × X2 × · · · × Xn such that on M one has∑n
i=1 fi(xi) = c(x1, . . . , xn) with the additional property µ(M) = 1, then µ is a primal

solution and fi is a dual solution.

The aim of this paper is to describe an example of explicit solution to the mass
transportation problem on [0, 1]3 (X1 = X2 = X3 = [0, 1]) with one-dimensional
Lebesgue measure projections and the cost function c(x, y, z) = xyz. In this paper we
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call the measures on [0, 1]3 with Lebesgue projections onto the axes (3, 1)−stochastic
measures.

In fact, we will construct the primal and dual solutions for any cost function
c(x, y, z) = C(xyz) for some continuously differentiable function C : [0, 1] → R such
that the function tC ′(t) strictly increases on the segment [0, 1].

1.2. Motivation. Our problem appears to be the simplest generalization of the
classical Monge–Kantorovich problem with one-dimensional marginals and quadratic
cost function. It seems to be never considered in the literature, though other general-
izations mentioned in subsection 1.4 received some attention. Note that the particular
cost function (x − y)2 (equivalently −xy) is mostly used in the classical Monge–
Kantorovich theory. A natural replacement of −xy for the case of three variables
is −xyz. For the cost function −xyz the solution to the primal problem with the
same marginals admits a simple structure: it is concentrated on the main diagonal
of [0, 1]3 (this can be viewed as a “continuous rearrangement inequality” or “Hardy-
Littlewood inequality”). Unlike this, solutions for xyz are non-trivial, that is why we
are interested in the cost function xyz.

1.3. Main results. In this paper we construct the set M which is c−monotone
for the cost function c(x, y, z) = xyz. The set M is the union of three segments and
one 2-dimensional part as below:

Mx = {(t, 1− 2t, 1− 2t) | 0 ≤ t ≤ l},
My = {(1− 2t, t, 1− 2t) | 0 ≤ t ≤ l},
Mz = {(1− 2t, 1− 2t, t) | 0 ≤ t ≤ l},
M2 = {(x, y, z) | l ≤ x, y, z ≤ r = 1− 2l, xyz = lr2},
M = Mx ∪My ∪Mz ∪M2,

where l ≈ 0.0945, r ≈ 0.8119 are some transcendent constants.

Fig. 1.1. Set M

Initially, we got an explicit construction of this set from heuristic considerations
(see section 2). In section 3 we see that the integral

∫
xyz dµ is the same for any
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(3, 1)−stochastic measure µ such that supp(µ) ⊂M (see Proposition 3.1). After that
we explicitly construct a (3, 1)−stochastic measure π concentrated on the set M (see
the proof of Theorem 3.14). The proof contains nontrivial construction and technical
computations. The constructed measure is the primal solution of the related transport
problem.

To prove that the measure π is the primal solution in section 4 we solve a related
dual problem for a cost function c(x, y, z) = C(xyz). Our proof works for C : [0, 1]→
R such that the function tC ′(t) strictly increases on the segment [0, 1]. Naturally that

means C(xyz) = Ĉ(lnx+ln y+ln z) where Ĉ is a bounded continuously differentiable
convex function on (−∞, 0].

The following theorem gives an explicit construction for the dual solution (see
Theorem 4.6). Thus, together with Theorem 3.14 it gives a characterization of both
primal and dual solution.

Theorem 1.2 (Main result). Suppose that c(x, y, z) = C(xyz) for some contin-
uously differentiable function C : [0, 1]→ R and the function tC ′(t) strictly increases
on the segment [0, 1]. Set:

f̂(s) =

∫ s

0

λ(t)C ′(tλ(t)) dt,

where the function λ is as in Definition 4.1. Then for any constants Cx, Cy, Cz such
that

Cx + Cy + Cz = C(0)− 2

∫ 1

0

λ(t)C ′(tλ(t)) dt

the following inequality holds

(f̂(x) + Cx) + (f̂(y) + Cy) + (f̂(z) + Cz) ≤ c(x, y, z)

with equality on M .
Using the complementary slackness conditions (see Lemma 1.1) we conclude

that for any cost function C(xyz), for which the conditions above are satisfied, any
(3, 1)−stochastic measure π with supp(π) ⊂ M is a primal solution for the multi-

marginal mass transportation problem and the functions f̂ defined in Theorem 1.2 are
a dual solution.

In subsection 4.3 the explicit form of the dual solution for the cost function
c(x, y, z) = xyz is specified. It has the following form (see Proposition 4.7):

f̂(x) =


c ln l − 1

3 (c ln c− c) + 1
6 ((2x− 1)3 − (2l − 1)3), if 0 ≤ x ≤ l,

c lnx− 1
3 (c ln c− c), if l ≤ x ≤ r,

c ln r − 1
3 (c ln c− c) + 1

4 (x2 − r2)− 1
6 (x3 − r3), if r ≤ x ≤ 1,

f(t) = g(t) = h(t) = f̂(t),

for constants l, r, c.
In section 5 we prove that for any cost function c(x, y, z) = C(xyz) dual solution

is unique up to adding constants and measure zero.
Structural results (see [17, 18]) allow us to estimate the local dimension d of M .

We apply this results in section 6 to see that d is bounded above by 2. The dimension
of the support is important for computations and was studied in details in [8]. It is
interesting that the local dimension of M is not constant as M admits one-dimensional
parts and a two-dimensional part.
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This two-dimensional part is a source of non-uniqueness for the primal problem.
After the logarithmic change of coordinates the cost function C(xyz) becomes convex
in sum of coordinates, Lebesgue measure on axis becomes an exponential distribution
and two-dimensional part of M becomes a triangle on a plane x + y + z = const.
This resembles the situation in [7, Lemma 4.3] where the authors consider the multi-
marginal problem with the same cost function and Lebesgue marginals. They prove
that the plan is optimal if and only if it is concentrated on a plane x+ y+ z = const.

The cost function xyz violates the standard uniqueness assumption, the so-called
twist condition (see [12, 16, 18]). The primal problem admits many solutions. In
particular, we show that there exist solutions which are singular with respect to the
Hausdorff measure on M . We also propose the following

Conjecture 1.3. There exists a solution which is concentrated on a set which
has Hausdorff dimension less than 2.

This conjecture is motivated by [7, Theorem 4.6] where the authors construct a
primal solution with a fractal support.

1.4. Related problems. Our example contributes to the list of several known
explicit examples and to the list of cost functions where the structure of solutions is
investigated in details. Here are some other examples.

1. Cost function

−
∑
i 6=j

xixj .

This cost function is related to the geodesic barycenter problem (see [3, 1]).
2. Determinantal cost [4].
3. Coulomb cost [6] (see [5] for generalizations). The motivation for this problem

comes from mathematical physics.
4. min(x1, . . . , xn) (more generally, minimum of affine functions) [13].
5. Convex function of x1 + · · ·+ xn (see [7]).

Some other examples can be found in [18].
Also, our problem is closely related to (3, 2) problem, studied in [9]. In particular,

our example can be considered as a solution to the primal (3, 2)-problem with the same
cost function xyz and the corresponding 2-dimensional projections. In the (3, 2)-
problem we consider a modification of the transportation problem. Namely, we deal
with the space of measures with fixed projections onto

X1 ×X2, X2 ×X3, X1 ×X3.

The main result of [9] describes a solution to the (3, 2)-problem on [0, 1]3 with the
cost function xyz (−xyz) and two-dimensional Lebesgue measure projections. It turns
out that in strong contrast with the classical transportation problem the solution is
supported by the fractal set (Sierpiński tetrahedron)

z = x⊕ y,

where ⊕ is bitwise addition. Let us also mention another related important modifica-
tion: Monge–Kantorovich problem with linear constraints, which has been introduced
and studied in [20].

2. An heuristic description of M . In this subsection we collect some informal
observations related to our main construction. In particular, we briefly analyze the
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cyclical monotonicity property of the support set of our primal solution and describe
how to approach the problem numerically.

Let M be a full measure set for the primal solution. Since all the marginals and
the cost function are symmetric with respect to the coordinate axes interchange, we
may assume without loss of generality that M is also symmetric in this sense.

The set M can be chosen to be c−cyclically monotone. This is well known for
two marginals, for many marginals we refer to the work [10]. In particular that means
that for any (x1, y1, z1), (x2, y2, z2) ∈M one has

c(x1, y1, z1) + c(x2, y2, z2) ≤ c(x2, y1, z1) + c(x1, y2, z2),

c(x1, y1, z1) + c(x2, y2, z2) ≤ c(x1, y2, z1) + c(x2, y1, z2),

c(x1, y1, z1) + c(x2, y2, z2) ≤ c(x1, y1, z2) + c(x2, y2, z1).

(2.1)

The Algorithm 2.1 constructing an approximation to a primal solution is based
on the inequality above.

Algorithm 2.1 Primal solution approximation (general version)

1: Generate three samples: x1, x2, . . . , xn from µ1, y1, y2, . . . , yn from µ2,
z1, z2, . . . , zn from µ3; n is a parameter, µi are the marginals in the primal prob-
lem.

2: Define S := {(xk, yk, zk) for 1 ≤ k ≤ n}.
3: while S doesn’t satisfy (2.1) do
4: Take two points (a1, b1, c1) and (a2, b2, c2) from S.
5: if c(a1, b1, c1) + c(a2, b2, c2) > c(a2, b1, c1) + c(a1, b2, c2) then
6: replace (a1, b1, c1) and (a2, b2, c2) with (a2, b1, c1) and (a1, b2, c2) is S
7: else if c(a1, b1, c1) + c(a2, b2, c2) > c(a1, b2, c1) + c(a2, b1, c2) then
8: replace (a1, b1, c1) and (a2, b2, c2) with (a1, b2, c1) and (a2, b1, c2) is S
9: else if c(a1, b1, c1) + c(a2, b2, c2) > c(a1, b1, c2) + c(a2, b2, c1) then

10: replace (a1, b1, c1) and (a2, b2, c2) with (a1, b1, c2) and (a2, b2, c1) is S
11: end if
12: end while
13: S is an approximation of the primal solution.

In our case c(x, y, z) = xyz, so

x1y1z1 + x2y2z2 ≤ x1y1z2 + x2y2z1,

(x1y1 − x2y2)(z1 − z2) ≤ 0.

It follows that if (x1, y1, z1), (x2, y2, z2) ∈M then

z1 < z2 ⇒ x1y1 ≥ x2y2 and by the symmetry

y1 < y2 ⇒ x1z1 ≥ x2z2,

x1 < x2 ⇒ y1z1 ≥ y2z2.

(2.2)

This allows us to improve the performance of Algorithm 2.1 using sortings. That
leads us to a much faster version, namely Algorithm 2.2. We were able to run an
Algorithm 2.2 for n = 2× 105.

Despite the fact that this algorithm does not necessarily converge to the solution
for all admissible data, our numerical experiments demonstrate that the algorithm
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Algorithm 2.2 Primal solution approximation (faster version)

1: Generate three samples: x1, x2, . . . , xn from µ1, y1, y2, . . . , yn from µ2,
z1, z2, . . . , zn from µ3; n is a parameter, µi are the marginals in the primal prob-
lem.

2: Define S := [(xk, yk, zk) for 1 ≤ k ≤ n].
3: while S doesn’t satisfy (2.2) do
4: Sort S by the first coordinate in the ascending order. Denote by (ak, bk, ck) the

k−th item of S after sorting, 1 ≤ k ≤ n.
5: Update S := [(ak, bσ(k), cσ(k)) for 1 ≤ k ≤ n] where σ ∈ Sn and the sequence

bσ(k)cσ(k) is descending.
6: Repeat Line 4 and Line 5 for the second and third coordinates.
7: end while
8: S is an approximation of the primal solution.

Fig. 2.1. The final set S for n = 200000.

works well in many cases. A proof of convergence for a suitable set of admissible data
must be investigated.

On Figure 2.1 it is shown a scatter plot of S after the completion of the algorithm.
As one can see on this graph, the set M consists of four parts. There exist real values
0 < l < r < 1 such that if l ≤ x, y, z ≤ r and (x, y, z) ∈ M then (x, y, z) lies on
2-dimensional part M2. If 0 ≤ x ≤ l and (x, y, z) ∈ M then (x, y, z) lies on a 1-
dimensional curve Mx = (p(t), py(t), pz(t)), 0 ≤ t ≤ 1. By the virtue of the symmetry
py(t) = pz(t) = q(t). Also q(0) = 1, q(1) = r and q(t) strictly decrease; p(0) = 0,
p(1) = l and p(t) strictly increase.

By the virtue of the symmetry, if (x, y, z) ∈ M and 0 ≤ y ≤ l, then this point
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lies on a curve My = (q(t), p(t), q(t)), and if 0 ≤ z ≤ l then (x, y, z) lies on a curve
Mz = (q(t), q(t), p(t)).

Let ν be a primal solution and νx, νy, νz be the restrictions of ν to Mx,My

and Mz accordingly. Suppose Fx(a) = νx({(p(t), q(t), q(t)) | 0 ≤ t ≤ a}). Define
Fy and Fz in a similar way. By the virtue of the symmetry we can assume that
Fx(a) = Fy(a) = Fz(a) = F (a) for any 0 ≤ a ≤ 1.

For any 0 ≤ a ≤ 1 one has

ν({0 ≤ x ≤ p(a)}) = νx({(p(t), q(t), q(t)) | 0 ≤ t ≤ a}) = Fx(a)

=
1

2
(Fy(a) + Fz(a)) =

1

2
ν({q(a) ≤ x ≤ 1}).

Since all the marginals are Lebesgue measures on the segments [0, 1], one has 2p(a) =
1− q(a) for any 0 ≤ a ≤ 1.

Thus

Mx = (t, 1− 2t, 1− 2t)

My = (1− 2t, t, 1− 2t)

and

Mz = (1− 2t, 1− 2t, t),

0 ≤ t ≤ l; r = 1−2l. That means that 1-dimensional parts of the set M are segments.
The set Mx is c−cyclically monotone. In particular, if 1 − 2t1 < 1 − 2t2, then

t1(1 − 2t1) ≥ t2(1 − 2t2) or, equivalently, the function t(1 − 2t) increases on the set
[0, l]. The derivative of this function is 1− 4t ≥ 0 for any 0 ≤ t ≤ l. That means that
0 < l ≤ 1

4 .
Let us describe the set M2. As we know from the general duality theory, there

exist functions

f, g, h : [l, r]→ R

satisfying f(x) + g(y) + h(z) ≤ xyz and the equality holds provided (x, y, z) ∈ M2.
Again by symmetry we can assume that f(x) = g(x) = h(x) for any l ≤ x ≤ r.

Suppose that f is continuously differentiable. Let (x, y, z) ∈M2 and l ≤ x, y, z ≤
r. Then that point is an inner maximum point of the function

F (x, y, z) = f(x) + f(y) + f(z)− xyz.

That means that

∇F = (f ′(x)− yz, f ′(y)− xz, f ′(z)− xy)T = ~0.

So if (x, y, z) ∈ M2 then xf ′(x) = yf ′(y) = zf ′(z) = xyz. From Figure 2.1 we
see that if we fix x = l, then for any l ≤ y ≤ r there exists l ≤ z ≤ r such that
(x, y, z) ∈ M2. Then the function tf ′(t) is equal to a constant C = lf ′(l) for any
l ≤ t ≤ r. In this case if (x, y, z) ∈ M2 then xyz = xf ′(x) = C. Since (l, r, r) ∈ M2

the constant C is equal to lr2.

3. Solving the primal problem. Summarizing the facts about the set M ,
which supports the primal solutions, we realize that one can try to find M in the
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following form:

Mx = {(t, 1− 2t, 1− 2t) | 0 ≤ t ≤ l},
My = {(1− 2t, t, 1− 2t) | 0 ≤ t ≤ l},
Mz = {(1− 2t, 1− 2t, t) | 0 ≤ t ≤ l},
M2 = {(x, y, z) | l ≤ x, y, z ≤ r = 1− 2l, xyz = lr2},

where l is an unknown parameter; 0 ≤ l < 1
4 .

Proposition 3.1. An integral
∫
xyz dν(x, y, z) is the same for any probability

measure ν such that Prx(ν) = Pry(ν) = Prz(ν) = λ where λ is the Lebesgue measure
on the segment [0, 1] and supp(ν) ⊂M .

Proof. Let νx, νy, νz and ν2 be restrictions of ν to Mx, My, Mz and M2 respec-
tively. Since the projection of νx on the first marginal is a restriction of λ to the
segment [0, l], one has∫

Mx

xyz dνx(x, y, z) =

∫
x(1− 2x)(1− 2x) dνx(x, y, z) =

∫ l

0

x(1− 2x)2 dx

Similarly ∫
My

xyz dνy(x, y, z) =

∫
Mz

xyz dνz(x, y, z) =

∫ l

0

x(1− 2x)2 dx.

Finally, the projection of ν2 on the first marginal is a restriction of λ to the
segment [l, r]. So ∫

M2

xyz dν2 = lr2 · ν2({l ≤ x ≤ r}) = lr2(r − l).

Consequently
∫
xyz dν(x, y, z) = 3

∫ l
0
x(1− 2x)2 dx+ lr2(r − l) and this integral

does not depend on ν.

So we only have to find any measure with desired projections such that its support
is contained in M . In Theorem 4.6 we find an appropriate triple of functions and by
Lemma 1.1 we rigorously prove that any (3, 1)-stochastic measure on M is indeed a
primal solution.

First, we define a measure on the three one-dimensional segments. Let L =√
l2 + 2(1− r)2 be the lengths of these segments. We set on every segment a uniform

measure with density l
L . Clearly, projections of two segments coincide with [r, 1], the

densities are equal to L
1−r ·

l
L = 1

2 . Their sum is the Lebesgue measure on [r, 1]. The

projection of the third interval is a measure on [0, l], its density equals L
l ·

l
L = 1.

After this, it remains to determine the measure on the remaining two-dimensional
set such that its projection on each of the axes is uniform.

Let us make the following change of coordinates:

u :=
lnx− ln l

ln r − ln l
, v :=

ln y − ln l

ln r − ln l
, w :=

ln z − ln l

ln r − ln l
.

Two-dimensional set
xyz = c, l ≤ x, y, z ≤ r
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admits the following parametrization:

u+ v + w = 2, 0 ≤ u, v, w ≤ 1.

One has the following relations:

dx = deu(ln r−ln l)+ln l = l ln
(r
l

)(r
l

)u
du = l ln(α)αudu,

dy = l ln(α)αvdv,

dz = l ln(α)αwdw,

where α = r
l .

Clearly, the problem is reduced to the following problem: find a measure on the
triangle u+ v + w = 2, 0 ≤ u, v, w ≤ 1 with exponential projections onto the axes.

3.1. Necessary conditions for existence of a measure on the triangle
with given projections.

One can put the problem into a more general setting. When there exists a measure
µ on the triangle

∆ = {x+ y + z = 2, 0 ≤ x, y, z ≤ 1}

with given projections µx, µy, µz?
In what follows we are only interested in the case µx = µy = µz = π. A necessary

condition is given in the following lemma.

Lemma 3.2. Let function f : [0, 1]→ R satisfy f(x) + f(y) + f(z) ≤ 0 for x+ y+
z = 2 and there exist a measure µ on ∆, whose projections onto the axes are equal to

π. Then
∫ 1

0
f(x)dπ ≤ 0.

Proof. We compute
∫

∆
(f(x)+f(y)+f(z)) dµ. On the one hand, it is nonpositive,

since at each point f(x) + f(y) + f(z) ≤ 0. On the other hand,∫
∆

(f(x) + f(y) + f(z))dµ = 3

∫ 1

0

f(x)dπ(x) ≤ 0.

In particular, for the function f(x) = x − 2
3 one has f(x) + f(y) + f(z) = 0 for

x+ y + z = 2. So we get

(3.1)

∫ 1

0

(
x− 2

3

)
dπ(x) = 0.

Check this for dπ = αxdx:∫ 1

0

(
x− 2

3

)
dπ =

∫ 1

0

(
x− 2

3

)
αxdx =

α(lnα− 3) + 3 + 2 lnα

3 ln2 α

Thus, α must satisfy

(3.2) α(lnα− 3) + 3 + 2 lnα = 0.

Apply the relation α = 1−2l
l :

α(lnα− 3) + 3 + 2 lnα =
ln(1− 2l)− ln l − 3 + 9l

l
= 0.
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Fig. 3.1. A graph of a function y(x) = 9x + ln(1 − 2x) − lnx− 3

It is seen from Figure 3.1 that the function ln(1 − 2l) − ln l − 3 + 9l has exactly
one root lying in the interval

(
0, 1

4

)
, namely l ≈ 0.0945. So r ≈ 0.8109 and α ≈ 8.577.

Let us prove that there is a unique root of h lying inside
(
0, 1

3

)
. To this end we

find the derivative of h(l) = 9l+ ln(1− 2l)− ln l− 3 and show it is negative for l < 1
6

and positive for 1
6 < l < 1

3 . Indeed,

h′(l) = (9l + ln(1− 2l)− ln l − 3)′ = − (3l − 1)(6l − 1)

l(1− 2l)
,

and it is easy to check the signs.
For l→ +0 one has

h(l)→∞.

For l = 1
6 there holds

h

(
1

6

)
= 2 ln 2− 3

2
< 0,

since ln 2 ≈ 0.69 < 3
4 . For l = 1

3 there holds

h

(
1

3

)
= 3 + ln

(
1− 2

3

)
− ln

(
1

3

)
− 3 = 0.
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It follows that on the interval
(
0, 1

4

)
function h(l) has exactly one root and this

root is less than 1
6 .

Assumption of Lemma 3.2 is satisfied for the following broad class of functions.

Lemma 3.3. Let f(x) : [0, 1]→ R be convex on
[
0, 2

3

]
and f(2x) + 2f(1− x) = 0

for 0 ≤ x ≤ 1
3 . Then f(x) + f(y) + f(z) ≤ 0 for x+ y + z = 2.

Proof. Assume that f(x)+f(y)+f(z) > 0 for some x, y and z satisfying x+y+z =
2. Let among x, y, z be at least two numbers (say, x ≤ y) less than 2

3 . Replace these
numbers by x′, y′ in such a way that x+ y = x′+ y′, [x′, y′] ⊂

[
0, 2

3

]
and either x′ = 0

or y′ = 2
3 . By convexity f(x′) + f(y′) + f(z) ≥ f(x) + f(y) + f(z) > 0. If x′ = 0, then

y′ ≤ 2
3 , and z ≤ 1, thus x′ + y′ + z < 2. Hence y′ = 2

3 .
Thus from the very beginning one can assume that x ≤ 2

3 and y, z ≥ 2
3 . If

x = y = z = 2
3 , then f(x) + f(y) + f(z) = f

(
2 · 1

3

)
+ 2f

(
1− 1

3

)
= 0. Repeating the

same trick and using concavity of f on
[

2
3 , 1
]

one can reduce the problem to the case
y = z. But for any triple x, y = z = 1− x

2 there holds f(x) + f(y) + f(z) = 0, which
contradicts the assumption f(x) + f(y) + f(z) > 0.

3.2. Description of projections of measure classes on the triangle. We
will consider special classes of measures on ∆ and describe their projections onto the
axes.

First, consider the Lebesgue measure on ∆. It can be normalized in such a way
that the measure of the whole triangle is equal to 1

2 . We denote the normalized
measure by λ∆. Projecting it to any hyperplane {x = 0}, {y = 0}, {z = 0}, we get
a triangle with the usual Lebesgue measure. In what follows we shall consider the
densities with respect to this normalized measure.

Definition 3.4. Let µ be a measure on ∆ absolutely continuous with respect to
λ∆. For any point (x, y, z) ∈ ∆ define M(x, y, z) = min(1− x, 1− y, 1− z). We call
a measure µ layered if for any t the density of µ is constant on a set M(x, y, z) = t,
that is density depends only on M(x, y, z).

It is easy to see that M is proportional to the distance from the point to the
nearest side of ∆. Therefore, points with constant M form a triangle homothetic to
the original one, with the same center. It is also easy to see that due to the symmetry
of the layered measure, its projection on all three axes will be the same. Also note
that M takes values only in

[
0, 1

3

]
.

Definition 3.5. We say that a function p :
[
0, 1

3

]
→ R generates a layered

measure µ if dµ
dλ∆

(x, y, z) = p (M(x, y, z)).

Let us find the projections of a layered measure µ generated by p to the coordinate
axes.

Proposition 3.6. Let µ be a layered measure generated by a function p. Let
p∗ : [0, 1]→ R+ be the density of the projection of this measure onto an axis. Then

p∗(x) =

{
2
∫ x

2

0
p(t)dt, if x ≤ 2

3 ,

(3x− 2)p(1− x) + 2
∫ 1−x

0
p(t)dt, if x ≥ 2

3

Proof. Denote the projection of µ onto the hyperplane xy by µxy. It is concen-
trated on the triangle T with vertices (0, 1), (1, 0) and (1, 1). Its density with respect
to the Lebesgue measure on the plane at the point (x, y) lying inside T is

p(M(x, y, 2− x− y)) = p(min(1− x, 1− y, x+ y − 1)).
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Define µx as the projection of µ onto x, or, what is the same, the projection of
the measure µxy onto x. Then the measure of [0, x0] on the one hand is

∫ x0

0
p∗(x)dx,

and on the other hand is equal to the measure of the part of the triangle T where the
x coordinate belongs to [0, x0]. Thus, we have established the equality

∫ x0

0
p∗(x)dx =∫ x0

0

∫ 1

1−x p(M(x, y, 2 − x − y))dxdy. Differentiating both sides of this equality with

respect to x0, we obtain p∗(x) =
∫ 1

1−x p(min(1− x, 1− y, x+ y − 1))dy.

Assume x ≤ 2
3 . Then:

min(1− x, 1− y, x+ y − 1) =

{
x+ y − 1, for y ∈

[
1− x, 1− x

2

]
,

1− y, for y ∈
[
1− x

2 , 1
]
.

From here we get:

p∗(x) =

∫ 1

1−x
p(min(1− x, 1− y, x+ y − 1))dy

=

∫ 1

1− x
2

p(1− y)dy +

∫ 1− x
2

1−x
p(x+ y − 1)dy = 2

∫ x
2

0

p(t) dt.

Analogously for x ≥ 2
3 :

min(1− x, 1− y, x+ y − 1) =


x+ y − 1, for y ∈ [1− x, 2− 2x] ,

1− x, for y ∈ [2− 2x, x] ,

1− y, for y ∈ [x, 1] .

After this we calculate p∗(x):

p∗(x) =

∫ 1

1−x
p(min(1− x, 1− y, x+ y − 1))dy

=

∫ 2−2x

1−x
p(x+ y − 1)dy +

∫ x

2−2x

p(1− x)dy +

∫ 1

x

p(1− y)dy

= 2

∫ 1−x

0

p(t)dt+ (3x− 2)p(1− x).

Next we define median measure.

Definition 3.7. The median subset of ∆ is the set

{(x, y, z) ∈ ∆ | x = y ≥ z} ∪ {(x, y, z) ∈ ∆ | y = z ≥ x} ∪ {(x, y, z) ∈ ∆ | x = z ≥ y}.

From a geometric point of view, this is a union of three segments in ∆ from vertices
to the center of the triangle ∆.

Projections of any segment from the median set are
[
0, 2

3

]
and

[
2
3 , 1
]
. On these

segments one can define a measure proportional to the Lebesgue measure such that
the measure of each segment is 2

3 . In what follows, we shall consider all the densities
on the median set with respect to this measure.

Definition 3.8. Median measure µ, generated by a density function q : [0, 2
3 ]→

R+, is a measure with density on the median set that its density on each of the
segments is equal to q(t) at the points (t, t, 2 − 2t), (t, 2 − 2t, t), (2 − 2t, t, t) with
respect to the reference measure described above.
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It is easy to verify the following assertion:

Proposition 3.9. Let µ be a median measure generated by q. Let q∗(x) be the
density of the projection of this measure onto an arbitrary axis. Then

q∗(x) =

{
q(x), for x < 2

3 ,

4q (2− 2x) , for x > 2
3 .

This implies, in particular, the following identity

(3.3) 4q∗(2x) = q∗(1− x), x <
1

3
.

The converse is also true: if nonnegative q∗ satisfies (3.3), then there is a median
measure which projection onto arbitrary axis coincides with q∗.

3.3. Combining measures. Let π be a measure on the segment [0, 1] with
density f . We are concerned with f(x) = αx, but we will only use the fact that f(x)

is continuously differentiable, increasing, convex and satisfies
∫ 1

0

(
t− 2

3

)
f(t)dt = 0.

The last means that measure with density f satisfies (3.1).
We want to find a measure µ that is the sum of the layered measure µp generated

by a function p and the median measure µq generated by a function q, whose projection
on each of the axes coincides with π.

We subtract µp from µ and look at the projection of µ− µp on the axes with the
density q∗(x). By Proposition 3.6, the projection is equal to

q∗(x) =

{
f(x)− 2

∫ x
2

0
p(t)dt, for x ≤ 2

3 ,

f(x)− (3x− 2)p(1− x)− 2
∫ 1−x

0
p(t)dt, for x ≥ 2

3 .

In order for q∗(x) to be a density of the projection of a median measure, it suffices
that q∗(x) ≥ 0 and 4q∗(2x) = q∗(1− x) for x ≤ 1

3 . Using the identities on q∗(x) given
above, we obtain the equivalent equation:

(3.4) 4

(
f(2x)− 2

∫ x

0

p(t)dt

)
= f(1− x)− (1− 3x)p(x)− 2

∫ x

0

p(t)dt

Assuming P (x) =
∫ x

0
p(t)dt, we get the following equation

4 (f(2x)− 2P (x)) = f(1− x)− (1− 3x)P ′(x)− 2P (x)

This is a differential equation of the first degree, its solutions have the form

P (x) =
c1 +

∫ x
0

(1− 3t)(f(1− t)− 4f(2t))dt

(1− 3x)2
.

Using P (0) = 0 we get c1 = 0,

P (x) =
1

(1− 3x)2

∫ x

0

(1− 3t)(f(1− t)− 4f(2t))dt.
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Now suppose that f is continuously differentiable. We find p(x) using integration
by parts:

p(x) = P ′(x)

=
(f(1− x)− 4f(2x))(1− 3x)2 + 6

∫ x
0

(1− 3t)(f(1− t)− 4f(2t))dt

(1− 3x)3

=
1

(1− 3x)3

(
f(1)− 4f(0)−

∫ x

0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

)
.

To prove that p(x) and corresponding q(x) generate a nonnegative density, we
need to check that p(x) ≥ 0 for x ∈

[
0, 1

3

]
, p
(

1
3

)
is well-defined and f(2x)− 2P (x) =

q∗(2x) = q(2x) ≥ 0 for x ∈
[
0, 1

3

]
, where q(x) generates the median measure.

Lemma 3.10. Suppose that f : [0, 1] → R is a continuously differentiable mono-

tonically increasing function and
∫ 1

0

(
t− 2

3

)
f(t)dt = 0. Then the function

I(x) = f(1)− 4f(0)−
∫ x

0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

is nonnegative on
[
0, 1

3

]
and I

(
1
3

)
= 0.

Proof. Since f is increasing, f ′ ≥ 0 and the integrand (1−3t)2(f ′(1−t)+8f ′(2t))
is nonnegative. So the integral increases and I(x) monotonically decreases to I

(
1
3

)
.

Integrating by parts we get

I

(
1

3

)
= f(1)− 4f(0)−

∫ 1
3

0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

=

∫ 1
3

0

(4f(2t)− f(1− t))d(1− 3t)2

= 6

∫ 1
3

0

(1− 3t)(f(1− t)− 4f(2t))dt

= 18

∫ 1

0

(
t− 2

3

)
f(t)dt

= 0.

Using this lemma one can check that p(x) is nonnegative and well-defined.

Proposition 3.11. Suppose that f(x) satisfies the conditions of Lemma 3.10.
Then the function

p(x) =
1

(1− 3x)3

(
f(1)− 4f(0)−

∫ x

0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

)
is nonnegative and limx→ 1

3
p(x) = f ′

(
2
3

)
.

Proof. Using the function I(x) from Lemma 3.10 we can rewrite the function p(x)
as follows:

p(x) =
I(x)

(1− 3x)3
.

I(x) is nonnegative, so is p(x). Let us check that p
(

1
3

)
is well-defined.



AN EXPLICIT SOLUTION FOR A MULTIMARGINAL PROBLEM 15

Since I
(

1
3

)
= 0 one can apply the L’Hospital rule to p(x):

lim
x→ 1

3

p(x) = lim
x→ 1

3

I(x)

(1− 3x)3
= lim
x→ 1

3

− I ′(x)

9(1− 3x)2

= lim
x→ 1

3

(1− 3x)2(f ′(1− x) + 8f ′(2x))

9(1− 3x)2

=
1

9
lim
x→ 1

3

(f ′(1− x) + 8f ′(2x)) = f ′
(

2

3

)
.

Now we will check that the function q is nonnegative as well, so it generates the
measure with nonnegative density.

Proposition 3.12. Suppose that f(x) satisfies the conditions of Lemma 3.10 and
f(x) is convex on [0, 1]. Then the function

q(2x) = f(2x)− 2P (x) = f(2x)− 2

(1− 3x)2

∫ x

0

(1− 3t)(f(1− t)− 4f(2t))dt

is nonnegative.

Proof. Write the function q in the following form:

q(2x) = f(2x)− 2

(1− 3x)2

∫ x

0

(1− 3t)(f(1− t)− 4f(2t))dt

= f(2x) +
1

3(1− 3x)2

∫ x

0

(f(1− t)− 4f(2t))d(1− 3t)2

= f(2x) +
(1− 3t)2(f(1− t)− 4f(2t))|x0 −

∫ x
0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

3(1− 3x)2

=
(1− 3x)2(f(1− x)− f(2x))− I(x)

3(1− 3x)2
.

To check that q ≥ 0 it suffices to check that the numerator n(x) = (1−3x)2(f(1−
x)− f(2x))− I(x) is nonnegative. From Lemma 3.10 n

(
1
3

)
= 0. So we check that n

is decreasing.

n′(x) = 6(1− 3x)(f ′(2x)(1− 3x)− (f(1− x)− f(2x))),

n′(x) ≤ 0⇔ f ′(2x) ≤ f(1− x)− f(2x)

1− 3x
.

The last equality holds since f is convex.

Summarizing the last two propositions we obtain the following theorem:

Theorem 3.13. For any continuously differentiable, increasing and convex func-

tion f : [0, 1] satisfying
∫ 1

0

(
t− 2

3

)
f(t)dt = 0, there exists a measure on ∆ with

projections onto the axes have densities f(x).

All the assumptions can be applied to f(x) = αx, where α is a solution of (3.2).
Also we find p(x) and q(x) explicitly.
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p(x) = − 1

(1− 3x)3

∫ x

0

(1− 3t)2(f ′(1− t) + 8f ′(2t))dt

=
α1−x − 4α2x

1− 3x
− 6

2α2x + α1−x

(1− 3x)2 lnα
− 6

3α2x + 3α− α lnα− 3− 2 lnα− 3α1−x

(1− 3x)3 ln2 α

=
α1−x − 4α2x

1− 3x
− 6

2α2x + α1−x

(1− 3x)2 lnα
− 18

α2x − α1−x

(1− 3x)3 ln2 α
,

q(2x) = f(2x)− 2P (x) = f(2x)− 2

(1− 3x)2

∫ x

0

(1− 3t)(f(1− t)− 4f(2t))dt

= α2x + 2
2α2x + α1−x

(1− 3x) lnα
+ 2

3α2x + 3α− α lnα− 3− 2 lnα− 3α1−x

(1− 3x)2 ln2 α

= α2x + 2
2α2x + α1−x

(1− 3x) lnα
+ 6

α2x − α1−x

(1− 3x)2 ln2 α
.

The last identities follow from (3.2).
Now we are ready to present the main theorem of this section:

Theorem 3.14. There exists a (3, 1)-stochastic measure concentrated on the set
M .

Proof. Let us collect all the details of the proof together and describe our measure
explicitly. Set M contains segments connecting points (0, 1, 1) and (l, r, r), (1, 0, 1)
and (r, l, r), (1, 1, 0) and (r, r, l). This segments have length L =

√
l2 + 2(1− r)2.

Define measure µlin as a sum of Lebesgue measures on this segments divided by l
L .

The projections of two segments coincide with [r, 1], the densities are equal to
L

1−r ·
l
L = 1

2 . Their sum is the Lebesgue measure on [r, 1]. The projection of the third

interval is a measure on [0, l], its density equals L
l ·

l
L = 1.

The mapping

u =
lnx− ln l

ln r − ln l
, v =

ln y − ln l

ln r − ln l
, w =

ln z − ln l

ln r − ln l

transforms the two-dimensional part of M into triangle ∆. We equip ∆ with the
layered measure µp generated by

p(x) =
α1−x − 4α2x

1− 3x
− 6

2α2x + α1−x

(1− 3x)2 lnα
− 18

α2x − α1−x

(1− 3x)3 ln2 α
,

and the median measure µq generated by

q(2x) = α2x + 2
2α2x + α1−x

(1− 3x) lnα
+ 6

α2x − α1−x

(1− 3x)2 ln2 α
.

Then by Proposition 3.6 the projection of µp coincides with{
2
∫ x

2

0
p(t)dt, for x ≤ 2

3 ,

(3x− 2)p(1− x) + 2
∫ 1−x

0
p(t)dt, for x ≥ 2

3 .
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Since p is a solution of (3.4) for f(x) = αx we can conclude that for

q∗(x) =

{
f(x)− 2

∫ x
2

0
p(t)dt, for x ≤ 2

3 ,

f(x)− (3x− 2)p(1− x)− 2
∫ 1−x

0
p(t)dt, for x ≥ 2

3 .

there holds 4q∗(2x) = q∗(1 − x). Thus by Proposition 3.9 q∗(x) is the projection of

µq generated by q(2x) = f(2x)− 2
∫ x

p

0 (t)dt = α2x + 2 2α2x+α1−x

(1−3x) lnα + 6 α2x−α1−x

(1−3x)2 ln2 α
.

By Proposition 3.11 and Proposition 3.12 this construction is well-defined. Pro-
jections of µp+µq on axes coincide with αx in coordinates u, v, w and with the uniform
measure on [l, r] in initial coordinates.

Thus the projections of µ = µp + µq + µlin coincide with Lebesgue measure on
[0, 1].

4. The dual solution construction. To prove that the measure µ from The-
orem 3.14 is the primal solution it is enough to find a triple of functions f, g, h :
[0, 1] → R such that f(x) + g(y) + h(z) ≤ c(x, y, z) and equality holds on the set M
by Lemma 1.1. In this case the triple (f, g, h) will be a dual solution of the related
problem. In this section we will construct the dual solution for a wide class of cost
functions.

We will construct the dual solution for c(x, y, z) = Ĉ(lnx + ln y + ln z) where

Ĉ is a bounded continuously differentiable strictly convex function on (−∞, 0]. Our

function c(x, y, z) = xyz is a partial case for Ĉ(t) = exp(t). At the same time we will
use the more convenient equivalent description. Namely, c(x, y, z) = C(xyz) for some
continuously differentiable function C : [0, 1] → R and the function tC ′(t) strictly
increases on the segment [0, 1].

4.1. Another description of the support of primal solutions.

Definition 4.1. Set c = lr2. Define a function λ : [0, 1]→ R as follows

λ(x) =


(1− 2x)2 if x ∈ [0, l)
c
x if x ∈ [l, r),
1
2x(1− x) if x ∈ [r, 1].

Lemma 4.2. The function λ defined above is continuous and strictly decreases.

Proof. It suffices to check the continuity at points l and r. For this it suffices to
check that (1− 2l)2 = c

l and c
r = 1

2r(1− r). All these equalities are trivial.
Let us check that the derivative of λ is negative everywhere except of the points

l and r: in these points λ has no derivatives.
If x ∈ (0, l) then λ′(x) = 2(2x − 1) < 0, since x < l < 1

2 . If x ∈ (l, r) then
λ′(x) = − c

x2 < 0 since c > 0. If x ∈ (r, 1) then λ′(x) = 1− 1
2x < 0 since x > r > 1

2 .
It follows from this that λ strictly decreases.

Proposition 4.3. Suppose that M is the (hypothetical) primal solution support
as in the previous sections. Then a point (x, y, z) is contained in M if and only if the
following equalities hold λ(x) = yz, λ(y) = xz, λ(z) = xy.

Proof. ⇐ Suppose that κ(x) = xλ(x). If λ(x) = yz, λ(y) = xz and λ(z) = xy
then κ(x) = κ(y) = κ(z) = xyz.

The function κ(x) is continuous and has a continuous derivative on intervals (0, l),
(l, r) and (r, 1). If x ∈ (0, l) then κ′(x) = (1−2x)2−2x(1−2x) = (1−2x)(1−4x) > 0
since x < l < 1

4 . On the segment [l, r] κ is constant: κ(x) = lr2 = c. If x ∈ (r, 1) then
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κ′(x) = x(1− x)− 1
2x

2 = x
(
1− 3

2x
)
< 0 since x > r > 2

3 . So κ(x) strictly increases
on the segment [0, l], is constant on [l, r], and strictly decreases on [r, 1].

Note in addition that κ(0) = κ(1) = 0. Thus, the equation κ(x) = c0 for 0 ≤ x ≤ 1
1. has no root if c0 < 0 or c0 > c;
2. has exactly two roots if 0 ≤ c0 < c: one of them lies on the interval [0, l) and

another one lies on the interval (r, 1];
3. holds on whole segment [l, r] if c0 = c.

If λ(x) = yz, λ(y) = xz, and λ(z) = xy then κ(x) = κ(y) = κ(z) = xyz and one
of the following cases occurs:

1. x, y, z ∈ [l, r]. In this case c = κ(x) = κ(y) = κ(z) = xyz so (x, y, z) ∈M .
2. x = y = z ∈ [0, l). Then λ(x) = x2. On the other hand if x ∈ [0, l) then
λ(x) = (1− 2x)2. The equation (1− 2x)2 = x2 has two solutions x = 1 and
x = 1

3 . But these values are not feasible because x ∈ [0, l) and l < 1
6 . So, this

case is not possible.
3. x = y = z ∈ (r, 1]. Similarly in this case λ(x) = x2. On the other hand if
x ∈ (r, 1] then λ(x) = 1

2x(1− x). Equation 1
2x(1− x) = x2 has two solutions

x = 0 and x = 1
3 , but they do not belong (r, 1] for any r > 1

2 . So, this case is
not possible.

4. x = y ∈ [0, l), z ∈ (r, 1] and similar cases obtained by permutations of
coordinates. One has x(1 − 2x)2 = κ(x) = κ(z) = 1

2z
2(1 − z). The function

κ(z) strictly decreases on the interval (r, 1], hence for a fixed x there exists
at most one z satisfying this equality. But z = 1 − 2x ∈ (r, 1] and κ(z) =
1
2z

2(1 − z) = 1
2 (1 − 2x)2 · 2x = κ(x). This means that z = 1 − 2x. In this

case x(1 − 2x) = 1
2z(1 − z) = λ(z) = xy = x2. Hence x = 0 or x = 1

3 . But
for x = 0 one has 1 = λ(x) = yz = xz = 0. The value x = 1

3 is not suitable
because x ∈ [0, l) and l < 1

6 . So, this case is not possible.
5. x ∈ [0, l), y = z ∈ (r, 1] and similar cases obtained by permutations of

coordinates. Arguing as above, we get κ(x) = κ(z), x ∈ [0, l), z ∈ (r, 1] so
y = z = 1 − 2x. The points (x, 1 − 2x, 1 − 2x) are contained in M for any
x ∈ [0, l).

So, the only possible cases are cases 1 and 5. In these cases (x, y, z) ∈M .
⇒ The set M consists of four parts: M = Mx ∪My ∪Mz ∪M2. If (x, y, z) ∈Mx,

then y = z = 1− 2x. Hence λ(x) = (1− 2x)2 and yz = (1− 2x)2. λ(y) = λ(1− 2x) =
1
2 (1− 2x) · 2x = x(1− 2x) = xz since r ≤ 1− 2x ≤ 1. Similarly λ(z) = xy.

Hence if (x, y, z) ∈Mx, then λ(x) = yz, λ(y) = xz and λ(z) = xy. By symmetry,
these conditions hold for any (x, y, z) ∈My and for any (x, y, z) ∈Mz.

If (x, y, z) ∈ M2, then l ≤ x, y, z ≤ r and xyz = c. This means that λ(x) = c
x =

yz, λ(y) = c
y = xz, λ(z) = c

z = xy.

4.2. The construction of the dual solution. If M is indeed a support of
the primal solution and f, g, h is a dual solution, then by complementary slackness
f(x) + g(y) + h(z) is equal to c(x, y, z) on almost all points of M . This will help us
to guess the form of f, g, h.

Lemma 4.4. Assume that c(x, y, z) = C(xyz) for some continuously differentiable
function C : [0, 1]→ R and the triple of functions

f, g, h : [0, 1]→ R

satisfies inequality f(x) + g(y) + h(z) ≤ c(x, y, z) and f(x) + g(y) + h(z) = c(x, y, z)
for all (x, y, z) ∈ M . Then the functions f, g, h are continuously differentiable and
f ′(x) = λ(x)C ′(xλ(x)), g′(y) = λ(y)C ′(yλ(y)), h′(z) = λ(z)C ′(zλ(z)).
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Proof. For any x0 there exist y0 and z0 such that (x0, y0, z0) ∈ M . This means
that f(x0) + g(y0) + h(z0) = c(x0, y0, z0) = C(x0λ(x0)). In addition, for any x one
has

f(x) + g(y0) + h(z0) ≤ c(x, y0, z0) = C(xλ(x0)).

Hence for any x0, x ∈ [0, 1] one has f(x)− f(x0) ≤ C(xλ(x0))− C(x0λ(x0)).
Passing to the limit x→ x0 one gets

C(xλ(x0))− C(x0λ(x0)) = (x− x0) · λ(x0)C ′(x0λ(x0)) + o(|x− x0|).

Interchanging x0 and x one gets f(x0) − f(x) ≤ C(x0λ(x)) − C(xλ(x)). By the
mean value theorem, C(x0λ(x)) − C(xλ(x)) = (x0 − x)λ(x)C ′(ξ(x)), where ξ(x) ∈
[x0λ(x), xλ(x)]. If x→ x0, then ξ(x)→ x0λ(x0) and

C(x0λ(x))− C(xλ(x)) = (x0 − x)λ(x)C ′(x0λ(x0)) + o(|(x0 − x)λ(x)|)
= (x0 − x)λ(x)C ′(x0λ(x0)) + o(|x− x0|)
= (x0 − x)λ(x0)C ′(x0λ(x0)) + o(|x− x0|).

This means that

λ(x0)C ′(x0λ(x0)) · (x− x0) + o(|x− x0|)
≤ f(x)− f(x0)

≤ λ(x0)C ′(x0λ(x0)) · (x− x0) + o(|x− x0|).

Hence f(x) has a derivative at the point x = x0 and it is equal to λ(x0)C ′(x0λ(x0)).
This function is continuous since λ and C ′ are continuous.

One can check in the same way the statements of the theorem for the functions
g and h.

Theorem 4.5. Suppose that c(x, y, z) = C(xyz) for some continuously differen-
tiable function C : [0, 1] → R and the function U(t) = tC ′(t) strictly increases on

the segment [0, 1]. Suppose that f̂(s) =
∫ s

0
λ(t)C ′(tλ(t)) dt. Then the arg max of the

function f̂(x) + f̂(y) + f̂(z)− c(x, y, z) contains the set M .

Proof. Assume that T (x, y, z) = f̂(x) + f̂(y) + f̂(z) − c(x, y, z) = f̂(x) + f̂(y) +

f̂(z)− C(xyz). If (x, y, z) ∈M then

∇T (x, y, z) =

λ(x)C ′(xλ(x))− yzC ′(xyz)
λ(y)C ′(yλ(y))− xzC ′(xyz)
λ(z)C ′(zλ(z))− xyC ′(xyz)

 = ~0.

Hence, all values of T on the set M are the same since M is path-connected.
The function T is continuous on the compact set [0, 1]3, so the function T reaches

its maximum at some point (x0, y0, z0). Then either x0 lies on the boundary of the
segment [0, 1] or ∂T

∂x (x0, y0, z0) = 0.
For any x > 0 the following equality holds

∂T

∂x
(x, y0, z0) = λ(x)C ′(xλ(x))− y0z0C

′(xy0z0) =
U(xλ(x))− U(xy0z0)

x
.

Assume that x0 = 0. By the mean value theorem for any x > 0 there exists
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0 < ξ(x) < x such that

T (x, y0, z0)− T (x0, y0, z0) = x
∂T

∂x
(ξ(x), y0, z0)

=
x

ξ(x)
(U [ξ(x)λ(ξ(x))]− U [ξ(x)y0z0]) .

One has T (x, y0, z0) ≤ T (x0, y0, z0) since (x0, y0, z0) is a maximum point of T . Hence,
U [ξ(x)λ(ξ(x))] ≤ U [ξ(x)y0z0] and ξ(x)λ(ξ(x)) ≤ ξ(x)y0z0 since U strictly increases.
This means that λ(ξ(x)) ≤ y0z0 for all x > 0. If x → 0 then λ(ξ(x)) → λ(0) = 1.
Thus y0z0 ≥ 1⇒ λ(x0) = 1 = y0z0.

Suppose that x0 = 1. In this case ∂T
∂x (x0, y0, z0) must be nonnegative. But

∂T
∂x (x0, y0, z0) = U(x0λ(x0))−U(x0y0z0)

x0
= U(0) − U(y0z0). The function U(t) strictly

increases, hence y0z0 = 0. This implies 0 = λ(x0) = y0z0.
Otherwise one has ∂T

∂x (x0, y0, z0) = 1
x0

(U(x0λ(x0)) − U(x0y0z0)) = 0. The func-
tion U(t) strictly increases. Hence x0λ(x0) = x0y0z0 and λ(x0) = y0z0.

Consequently, if the function T has maximum at the point (x0, y0, z0), one gets
λ(x0) = y0z0. Similarly, one can prove that λ(y0) = x0z0 and λ(z0) = x0y0. Hence by
Proposition 4.3 (x0, y0, z0) ∈M . Since T is constant on M , one has M ⊂ arg maxT .

Summarizing the results from the last two sections we get

Theorem 4.6. Suppose that c(x, y, z) = C(xyz) for some continuously differen-
tiable function C : [0, 1]→ R and the function tC ′(t) strictly increases on the segment
[0, 1]. Set:

f̂(s) =

∫ s

0

λ(t)C ′(tλ(t)) dt.

Then for any constants Cx, Cy, Cz such that

Cx + Cy + Cz = C(0)− 2

∫ 1

0

λ(t)C ′(tλ(t)) dt

the following inequality holds

(f̂(x) + Cx) + (f̂(y) + Cy) + (f̂(z) + Cz) ≤ c(x, y, z)

with equality on M .
This means by Lemma 1.1 that the triple (f̂ + Cx, f̂ + Cy, f̂ + Cz) is the

dual solution for the cost function c(x, y, z) and any probability measure µ such that
PrX(µ) = PrY (µ) = PrZ(µ) = λ and supp(µ) ⊂ M is the primal solution to the
related problem.

Moreover such a measure µ exists by Theorem 3.14.

We note that any primal solution is universal in a sense it is the same for the cost
functions of type C(xyz) where tC ′(t) is strictly increasing on [0, 1]. It is important for
the proof that M is path-connected. Numerical experiments for other marginals show
that sometimes the support of a primal solution is not necessarily path-connected.
For example for a measure SF on [0, 5] given by a density

ρSF (t) =

{
1
15 , if t ∈ [0, 1] ∪ [2, 3] ∪ [4, 5],
2
5 , if t ∈ (1, 2) ∪ (3, 4),

primal solution (more precisely the result of Algorithm 2.2) for the cost function
c(x, y, z) = xyz is pictured on Figure 4.1.
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Fig. 4.1. Primal solution for marginals SF

4.3. Construction for the cost function c(x, y, z) = xyz. Suppose that

c(x, y, z) = xyz = C(xyz),

where C(t) = t, 0 ≤ t ≤ 1. The function C(t) is continuously differentiable and
tC ′(t) = t strictly increases. Theorem 4.6 implies that any probability measure µ with
projections PrX(µ) = PrY (µ) = PrZ(µ) = λ and supp(µ) ⊂M is the primal solution
to the related problem; in particular the probability measure from Theorem 3.14 is
the primal solution. Also, we can construct explicitly the dual solution in this case.

Consider the following functions:

f1(x) = c ln l − 1

3
(c ln c− c) +

1

6
((2x− 1)3 − (2l − 1)3),

f2(x) = c lnx− 1

3
(c ln c− c),

f3(x) = c ln r − 1

3
(c ln c− c) +

1

4
(x2 − r2)− 1

6
(x3 − r3).

These functions satisfy the following identities:

f1(l) = f2(l),

f2(r) = f3(r),

f ′1(l) = f ′2(l),

f ′2(r) = f ′3(r).

The first and the second equality are easy to check directly. For the third and the
fourth compute f ′1(x) = (2x− 1)2, f ′2(x) = c

x , f ′3(x) = 1
2 (x− x2). f ′1(l) = (2l − 1)2 =

r2 = c
l = f ′2(l), f ′2(r) = lr = 1

2r(1− r) = f ′3(r).
Define:

f(x) = g(x) = h(x) =


f1(x), if 0 ≤ x ≤ l,
f2(x), if l ≤ x ≤ r,
f3(x), if r ≤ x ≤ 1,
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It follows immediately from the properties checked above of the functions f1, f2, f3

that f is continuous and continuously differentiable on [0, 1] and f ′(x) = λ(x).

Proposition 4.7. The triple of functions (f, g, h) defined above is a dual solution
of related problem for the cost function c(x, y, z) = xyz.

Proof. Since f ′(x) = λ(x) it follows that

f(x) = g(x) = h(x) =

∫ x

0

λ(x) dx+ Cf =

∫ x

0

λ(x)C ′(xλ(x)) dx+ Cf

for some constant Cf . By Theorem 4.6 it is enough to check that f(0)+f(1)+f(1) =
c(0, 1, 1) = 0.

f(0) = f1(0) = c ln l − 1

3
(c ln c− c)− 1

6
(2l − 1)3 − 1

6
,

f(1) = f3(1) = c ln r − 1

3
(c ln c− c)− 1

4
r2 +

1

6
r3 +

1

12
,

f(0) + 2f(1) = c ln(lr2)− (c ln c− c) + 2 · 1

12
− 1

6
− 1

2
r2 +

1

3
r3 − 1

6
(2l − 1)3

= c− 1

2
r2 +

1

2
r3 = c− 1− r

2
r2 = c− lr2 = 0.

So the triple (f, g, h) is the dual solution for the cost function c(x, y, z) = xyz.

5. Uniqueness of the dual solution.

Theorem 5.1. Suppose that c(x, y, z) = C(xyz) for some continuously differen-
tiable function C : [0, 1]→ R and the function tC ′(t) strictly increases on the segment
[0, 1]. Then the triple (f, g, h) is a dual solution if and only if there exist constants
Cf , Cg, Ch such that

Cf + Cg + Ch = C(0)− 2

∫ 1

0

λ(t)C ′(tλ(t)) dt,

and

f(x) ≤
∫ x

0

λ(t)C ′(tλ(t)) dt+ Cf ,

g(y) ≤
∫ y

0

λ(t)C ′(tλ(t)) dt+ Cg,

h(z) ≤
∫ z

0

λ(t)C ′(tλ(t)) dt+ Ch.

where equality is achieved almost everywhere.

Proof. ⇐ Suppose that f̃(x) =
∫ x

0
λ(t)C ′(tλ(t)) dt + Cf , g̃(y) =∫ y

0
λ(t)C ′(tλ(t)) dt+Cg and h̃(z) =

∫ z
0
tλ(t)C ′(tλ(t)) dt+Ch. Then the triple (f̃ , g̃, h̃)

is the dual solution by Theorem 4.6. Also f(x) + g(y) + h(z) ≤ f̃ + g̃ + h̃ ≤ c(x, y, z)
and

∫ 1

0
f(x) + g(x) + h(x) dx =

∫ 1

0
f̃ + g̃ + h̃ dx so the triple (f, g, h) is the dual

solution.
⇒ For any dual solution (f, g, h) there exists a triple (f̃ , g̃, h̃) such that f ≤ f̃ ,

g ≤ g̃, h ≤ h̃ and f̃(x) = infy,z(c(x, y, z) − g̃(y) − h̃(z)), g̃(y) = infx,z(c(x, y, z) −
f̃(x)− h̃(z)), h̃(z) = infx,y(c(x, y, z) − f̃(x)− g̃(y)). One can prove this by applying
the Legendre transformation subsequently to f , g, h.
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For any x, y, z inequality f̃(x) + g̃(y) + h̃(z) ≤ c(x, y, z) holds since f̃(x) =

infy,z(c(x, y, z)− g̃(y)− h̃(z)). Also∫ 1

0

f̃(x) dx+

∫ 1

0

g̃(y) dy +

∫ 1

0

h̃(z) dz ≥
∫ 1

0

f(x) dx+

∫ 1

0

g(y) dy +

∫ 1

0

h(z) dz

since f ≤ f̃ , g ≤ g̃ and h ≤ h̃. This means that the triple (f̃ , g̃, h̃) is a dual solution

and f̃ = f , g̃ = g, h̃ = h almost everywhere.
A function F [y, z] : [0, 1] → R, F [y, z](x) = c(x, y, z)− g̃(y)− h̃(z) is a Lipschitz

continuous function since ∂
∂xc(x, y, z) is a well-defined continuous function on the

cube [0, 1]3. This means that f̃(x) is a Lipschitz continuous function since f̃ is an
infimum of the family of Lipschitz continuous functions F [y, z] with common constant

maxx,y,z
∂
∂xc(x, y, z). In particular this means that f̃ is continuous on the segment

[0, 1]. Similarly, the functions g̃ and h̃ are continuous.

For any primal solution µ equality f̃(x) + g̃(y) + h̃(z) = c(x, y, z) holds µ-almost
everywhere. The set of equality points is closed, because f , g and h are continuous.
This means that f̃(x) + g̃(y) + h̃(z) = c(x, y, z) on the support of µ. For the primal

solution µ from section 3 supp(µ) = M . So the equality f̃(x)+ g̃(y)+ h̃(z) = c(x, y, z)
holds on the set M .

By Lemma 4.4 the functions f̃ , g̃ and h̃ are continuously differentiable and
f̃ ′(x) = λ(x)C ′(xλ(x)), g̃′(y) = λ(y)C ′(yλ(y)), h̃′(z) = λ(z)C ′(zλ(z)). This means

that f̃(x) = f̂(x) + Cf , g̃(y) = f̂(y) + Cg and h̃(z) = f̂(z) + Ch for some con-
stants Cf , Cg and Ch. Since (0, 1, 1) ∈ M the equality holds Cf + Cg + Ch =

c(0, 1, 1)− f̂(0)− f̂(1)− f̂(1) = C(0)− 2
∫ 1

0
λ(t)C ′(tλ(t)) dt.

6. A priori estimates for the dimension. Following [18] let us introduce the
following sets of matrices

g{x} = g{y,z} =

0 z y
z 0 0
y 0 0

 ,

g{y} = g{x,z} =

0 z 0
z 0 x
0 x 0

 ,

g{z} = g{x,y} =

0 0 y
0 0 x
y x 0

 .

Further, G is a linear combination of gp with nonnegative coefficients :

G =


 0 (α+ β)z (α+ γ)y

(α+ β)z 0 (β + γ)x
(α+ γ)y (β + γ)x 0

∣∣∣∣∣∣α, β, γ ≥ 0

 .

By Theorem 2.1.2 from [18] the supports of solutions to the primal problem are
locally contained inside a manifold of dimension

d = 3− positive index of inertia of g

for any g ∈ G. This index is computed below.
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Proposition 6.1. The quadratic form given by

g =

0 a b
a 0 c
b c 0


with non-negative a, b and c has positive index of inertia at most 1.

Proof. Consider two cases. First case. Let a, b, c > 0. Then principal upper left
minors are ∆0 = 1, ∆1 = 0, ∆2 = −a2 < 0 and ∆3 = 2abc > 0. So number of sign
changes in sequence of principal upper left minors is 2 and negative index of inertia is
2. This means that the positive index of inertia is at most 1. Second case. Without
loss of generality c = 0. Then g has the form 2axy+ 2bxz = 1

2 (x+ (ay+ bz))2− 1
2 (x−

(ay + bz))2. Thus the positive index of inertia is at most 1.

We see that the local dimension of our solution is indeed not bigger than 2, but un-
fortunately this bound does not help to determine the local dimension of our solution
without solving problem explicitly.

7. Extreme points. We show in this section that the extreme points of the
primal solutions are singular to the surface (Hausdorff) measure on M . Applying
logarithmic transformation from the proof of Theorem 3.14 and noticing that this is a
(locally) bi-Lipschitz transformation one can easily verify that it is sufficient to prove
the claim for the triangle ∆. Further, projecting ∆ onto the xy-hyperplane we reduce
the proof of the statement to the proof of the following fact:

Theorem 7.1. Let µx, µy, and µx+y be one-dimensional probability measures on
the axes x, y and on the line lx+y = {(x, y) ∈ R2 : x = y} respectively. We assume
that µx, µy and µx+y are compactly supported. Let Π be the set of probability measures
with projections

µx = Prx(π), µy = Pry(π), µx+y = Prx+y(π),

where Prx, Pry are projection onto x, y, and Prx+y is the projection onto lx+y:
Prx+y(x, y) = x+ y.

Assume that Π is nonempty and π ∈ Π is an extreme point. Then there exists a
set S of Lebesgue measure zero such that π(S) = 1.

Proof. Without loss of generality let us assume that π is supported by X = [0, 1]2.
Let us consider the set of tuples of 6 points

N =
{(

(x1, y2), (x1, y3), (x2, y1), (x2, y3), (x3, y2), (x3, y1)
)

: x1 < x2 < x3,

y1 < y2 < y3, x1 + y2 = x2 + y1, x1 + y3 = x3 + y1, x2 + y3 = x3 + y2

}
⊂ X6.

For arbitrary Γ ∈ N let us set

Γ+ = {(x1, y2), (x2, y3), (x3, y1)}, Γ− = {(x1, y3), (x2, y1), (x3, y2)}.

Note that Γ = Γ− t Γ+ and uniform distributions on the sets Γ+ and Γ− have the
same projections onto the both axes and lx+y.

Let us show that there exists a set S ⊂ X with the properties: π(S) = 1, S does
not contain any subset of 6 points in N . According to a Kellerer’s result (see [11])
the following alternative holds:
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• There exists a measure γ on X6 with the property γ(N) > 0, such that
Priγ ≤ π, 1 ≤ i ≤ 6.

• For 1 ≤ i ≤ 6 there exists a set Ni ⊂ [0, 1]2 = X with the property π(Ni) = 0
and

N ⊂ ∪6
i=1X × . . .×Ni × . . . X.

In the second case
S = X \ ∪6

i=1Ni

will be a desired set. We will prove it later.
First we prove that the first case is impossible. We can assume that π(X6\N) = 0

and π is still nonzero.
Suppose that Γ =

(
(x1, y2), (x1, y3), (x2, y1), (x2, y3), (x3, y2), (x3, y1)

)
is an ar-

bitrary point of N and BΓ ⊂ X6 is ball with a center at Γ and a radius of
ε < 1

2 min(x2−x1, x3−x2, y2−y1, y3−y2). Also suppose that γ̃ = γ|BΓ
is a (possibly

zero) measure on X6 and γi = Priγ̃ are measures on X. If γ(BΓ) > 0 then full
measure sets for γi are pairwise disjoint. In this case measures δ− = 1

3 (γ1 + γ4 + γ6)
and δ+ = 1

3 (γ2 + γ3 + γ5) are distinct and have the same projections onto the axes
and diagonal lx+y.

Lemma 7.2. δ− = 1
3 (γ1 + γ4 + γ6) and δ+ = 1

3 (γ2 + γ3 + γ5) have the same
projections onto the axes x, y and the line lx+y.

Proof. The functions Prx ◦Pr1 and Prx ◦Pr2, Prx ◦Pr3 and Prx ◦Pr4, Prx ◦Pr5

and Prx ◦Pr6, coincide on N . So the images of π under this projections coincide.
That means Prx(γ1) = Prx(γ2), Prx(γ3) = Prx(γ4), Prx(γ5) = Prx(γ6).

Analogously Pry(γ1) = Pry(γ5), Pry(γ2) = Pry(γ4), Pry(γ3) = Pry(γ6) and
Prx+y(γ1) = Prx+y(γ3), Prx+y(γ2) = Prx+y(γ6), Prx+y(γ4) = Prx+y(γ5).

Also δ− ≤ π and δ+ ≤ π since γi = Priγ̃ ≤ Priγ ≤ π.
Hence π1 = π+ δ+− δ− and π2 = π− δ+ + δ− are nonnegative measures and have

the same projections as π. So π = 1
2 (π1 + π2) is not an extreme point.

That means that for any Γ ∈ N the measure of BΓ with respect to γ is 0. Hence
γ(N) = 0 which contradicts the assumption.

Thus we get that there exists a set S with π(S) = 1 such that S does not contain
the sets of the type{

(x1, y2), (x1, y3), (x2, y1), (x2, y3), (x3, y2), (x3, y1), x1 < x2 < x3, y1 < y2 < y3,

x1 + y2 = x2 + y1, x1 + y3 = x3 + y1, x2 + y3 = x3 + y2

}
.

Let us show that S has Lebesgue measure zero. Assuming the contrary, let
us apply the Lebesgue’s density theorem. According to this theorem for almost all
(x, y) ∈ S and every ε > 0 there exists a r-neighborhood U of (x, y) such that
λ(U ∩ S) > (1− ε)λ(U).

On the other hand, for all α and β the tuple of points{
(x+ α, y + β), (x+ α, y +

r

10
+ β), (x+

r

10
+ α, y + β), (x+

r

10
+ α, y +

2r

10
+ β),

(x+
2r

10
+ α, y +

r

10
+ β), (x+

2r

10
+ α, y +

2r

10
+ β)

}
belongs to M . Hence at least one of these points does not belong to S. If 0 ≤
α, β ≤ r

10 , all these points belong to the r-neighborhood of (x, y), hence the measure
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of the set U \ S) is at least r2

100 . Choosing ε < 1
100π one gets a contradiction with the

Lebesgue’s density theorem.

Remark 7.3. Conjecture 1.3 says that there exist extreme measures with Haus-
dorff dimension less than 2. Numerical experiments reveal certain empirical evidence
of this. Nevetheless, we were not able to verify this conjecture. In general, it is not
true that sets which do not contain given configurations of points have dimension
strictly less than the ambient space (see [14, 15]). An example of a low-dimensional
solution is given in [7, Theorem 4.6].

Appendix A. Discrete case. Consider the following problem.

Problem A.1. We are given three copies A,B,C of the set {1, . . . , n}. Divide these
3n numbers into n groups of triples (a, b, c), where a ∈ A, b ∈ B, c ∈ C. We want to
minimize the sum

S(n) =
∑

(a,b,c)

abc.

Here the sum is taken over all the triples.

The main result of this chapter is as follows:

Theorem A.2. The minimum FD(n) of S(n) over all partitions satisfies

FD(n) ∼ CPn4,

where CP is the value of the integral in the primal problem.

A.1. Connection with rearrangement inequality. The rearrangement in-
equality can be formulated as follows:

Theorem A.3 (Rearrangement inequality). Assume that

x1 ≤ x2 ≤ · · · ≤ xn,

y1 ≤ y2 ≤ · · · ≤ yn

are two ordered sets of real numbers, σ is a permutation (rearrangement) of
{1, 2, . . . , n}. Then the following inequality holds:

x1y1+x2y2+· · ·+xnyn ≥ x1yσ(1)+x2yσ(2)+· · ·+xnyσ(n) ≥ x1yn+x2yn−1+· · ·+xny1.

In other words, for the expression x1yσ(1) + x2yσ(2) + · · · + xnyσ(n) the maxi-
mum is attained at the identity permutation σ, and the minimum is attained at the

permutation

(
1 2 . . . n
n n− 1 . . . 1

)
.

There exists a generalization of the rearrangement inequality for the case of several
sets of variables:

Theorem A.4. Assume we are given s ordered sequences x
(i)
1 ≤ x

(i)
2 ≤ · · · ≤

x
(i)
n , i = 1, . . . , s. Consider the following functions of permutations

V (σ1, . . . , σs) = x
(1)
σ1(1)x

(2)
σ2(1) . . . x

(n)
σs(1) + · · ·+ x

(1)
σ1(n)x

(2)
σ2(n) . . . x

(n)
σs(n).

Let σ0 be the identity permutation. Then for any permutation set σ1, . . . , σn the
inequality V (σ0, . . . , σ0) ≥ V (σ1, σ2, . . . , σs) holds.
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Unfortunately, we do not know for which set of permutations σ1, . . . , σs the value
of V (σ1, σ2, . . . , σs) is minimal.

The permutations in generalised rearrangement inequality correspond to a
Monge solution for the multimarginal Monge-Kantorovich problem with cost function

x1x2 . . . xs and the marginals equal to counting measures on x
(i)
j . We remark that the

generalized rearrangement inequality for 3 variables corresponds to the maximization
problem

∫
xyzdπ → max.

A.2. Approximation of a partition by measures. Let us introduce some
notations. For every partition

Sp = {(xi, yi, zi) | 1 ≤ i ≤ n}

of

A = B = C = {1, 2, . . . , n}.

into triples define

S0(Sp) =
∑

(xi,yi,zi)∈Sp

xiyizi.

Denote by |Sp| = n the size of partition Sp.
Let us try to reduce our problem to the transportation problem with the cost

function xyz. With this purpose we construct the corresponding measure µ1(Sp)
on [0, 1]3 which is concentrated at points with denominator n, namely every point
(xi

n ,
yi
n ,

zi
n ) carries the mass 1

n . Set S1(Sp) =
∫

[0,1]3
xyz dµ1(Sp). It is easy to check

that

n4S1(Sp) = S0(Sp).

Projections of µ1(Sp) on axes are discrete: measures of points i
n , 1 ≤ i ≤ n

are equal to 1
n . Thus measure µ1(Sp) is not (3, 1)-stochastic in our sense, since its

projections are not Lebesgue measures. This can be easily fixed. To this end, let
us introduce another measure µ2(Sp) on [0, 1]3: for all 1 ≤ k ≤ n there exists the
uniform measure on

Ik =

[
xk − 1

n
,
xk
n

]
×
[
yk − 1

n
,
yk
n

]
×
[
zk − 1

n
,
zk
n

]
with density n2 (it is chosen in such a way that the measure of the whole given little
cube equals 1

n ). This measure is (3, 1)-stochastic.
Set

S2(Sp) =

∫
[0,1]3

xyz dµ2(Sp).

Let us estimate S2(Sp). For this, we set

ε(n) = sup

(
|x1y1z1 − x2y2z2|, subject to max(|x1 − x2|, |y1 − y2|, |z1 − z2|) ≤

1

n

)
.

Function xyz is continuous on [0, 1]3, then it is uniformly continuous on the given
cube. It immediately follows that ε(n) → 0 for n → ∞. Then we can estimate
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|S1(Sp)− S2(Sp)|:

|S1(Sp)− S2(Sp)| =

∣∣∣∣∣∣
∑

(xk,yk,zk)∈Sp

∫
Ik

(xyz − xkykzk) dµ2(Sp)

∣∣∣∣∣∣
≤

∑
(xk,yk,zk)∈Sp

∫
Ik

|xyz − xkykzk| dµ2(Sp)

≤
∑

(xk,yk,zk)∈Sp

∫
Ik

ε(n) dµ2(Sp)

= ε(n) −−−−→
n→∞

0.

Thus, lim
n→∞

1
n4FD(n) exists if and only if there exists lim

n→∞
min
|Sp|=n

S2(Sp) and in

case of existence both limits coincide.

A.3. Convergence. In the previous subsection, we realized that it is sufficient
to consider the problem of finding a partition Sp that minimizes S2(Sp). In this section
we prove that lim

n→∞
min
|Sp|=n

S2(Sp) exists. Later we will see that lim
n→∞

min
|Sp|=n

S2(Sp) =

CP , where CP is the optimal value of the functionals in primal and dual problems.
From definition of CP the following statement immediately follows:

Proposition A.5. For every partition Sp there holds an inequality S2(Sp) ≥ CP .

Indeed, S2(Sp) is the integral of xyz by (3, 1)-stochastic measure, and CP is the
minimum for all (3, 1)-stochastic measures.

Proposition A.6. The sequence sk = min
|Sp|=k

S2(Sp) admits a limit.

Proof. The sequence sk is bounded below by C = CP . First, we check that

sn+k ≤
(

n
n+k

)4

sn + k
n+k . Indeed, let Spn be a partition with S2(Spn) = sn. We

construct a partition Spn+k = Spn∪{(i, i, i) | n+1 ≤ i ≤ n+k} and verify inequality

S2(Spn+k) ≤
(

n
n+k

)4

sn + k
n+k :

S2(Spn+k) =
∑

(xi,yi,zi)∈Spn

∫ zi
n+k

zi−1

n+k

∫ yi
n+k

yi−1

n+k

∫ xi
n+k

xi−1

n+k

(n+ k)2xyz dxdydz

+

n+k∑
i=n+1

∫ i
n+k

i−1
n+k

∫ i
n+k

i−1
n+k

∫ i
n+k

i−1
n+k

(n+ k)2xyz dxdydz

≤
∑

(xi,yi,zi)∈Spn

∫ zi
n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

(n+ k)2

(
n

n+ k

)6

uvw dudvdw +
k

n+ k

=

(
n

n+ k

)4 ∑
(xi,yi,zi)∈Spn

∫ zi
n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

n2uvw dudvdw +
k

n+ k

=

(
n

n+ k

)4

sn +
k

n+ k
,

where u := n+k
n x, v := n+k

n y, w := n+k
n z.
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We also verify that snk ≤ sn + ε(n). As in the proof of the previous statement,
assume that Spn is a partition with S2(Spn) = sn. We construct another partition
Spnk = {(uk(i−1)+j , vk(i−1)+j , wk(i−1)+j)} = {(k(xi−1)+j, k(yi−1)+j, k(zi−1)+j)},
where 1 ≤ i ≤ n, 1 ≤ j ≤ k. It is easy to check that Spnk is a partition.

We estimate S2(Spnk). For indices i and j∫
Ik(i−1)+j

n2k2xyz dxdydz ≤
∫ zi

n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

n2

k
(xyz + ε(n)) dxdydz

≤ n2

k

∫ zi
n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

xyz dxdydz +
1

nk
ε(n).

From this we get:

S2(Spnk) =

n∑
i=1

k∑
j=1

∫
Ik(i−1)+j

n2k2xyz dxdydz

≤
n∑
i=1

k∑
j=1

(
n2

k

∫ zi
n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

xyz dxdydz +
1

nk
ε(n)

)

= ε(n) +

n∑
i=1

∫ zi
n

zi−1

n

∫ yi
n

yi−1

n

∫ xi
n

xi−1

n

n2xyz dxdydz

= sn + ε(n).

From these inequalities we find that for 1 ≤ i ≤ n:

skn+i ≤
(

kn

kn+ i

)4

skn +
i

kn+ i
≤ skn +

1

k + 1
≤ sn + ε(n) +

1

k + 1
.

As 1
k+1 → 0, we get sm ≤ sn + 2ε(n) for all sufficiently large m.
Set C1 = lim inf sn. We prove that lim

n→∞
sn = C1. Indeed, for any ε > 0 there

exists such N , that sN < C1 + ε
2 and 2ε(N) < ε

2 . Then for all sufficiently large m the
inequality sm ≤ sN + 2ε(N) < C1 + ε holds. In addition, for all sufficiently large m,
inequality sm > C1 − ε holds, otherwise there exists a convergent subsequence, with
a limit not greater than C1 − ε. Thus, lim

n→∞
sn = C1, in particular, this sequence is

convergent.

From this statement it follows that it suffices to find partitions Spt of an arbitrary
size for which lim

t→∞
S2(Spt) = CP .

A.4. Discrete measure approximation. Let µ̃ be a measure solving the pri-
mal problem. For a given n we define another measure µ̃n. We require that µ̃n is
uniform on every

Iijk =

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
×
[
k − 1

n
,
k

n

]
,

1 ≤ i, j, k ≤ n and satisfies
∫
Iijk

1 dµ̃ =
∫
Iijk

1 dµ̃n. The latter quantity will be denoted

by ρijk. The resulting measure will be (3, 1)-stochastic.
Set cijk = min(xyz | (x, y, z) ∈ Iijk). Then for all (x, y, z) ∈ Iijk there holds

|cijk − xyz| < ε(n). Hence, it is possible to estimate |
∫

[0,1]3
xyz dµ̃−

∫
[0,1]3

xyz dµ̃n|:
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∣∣∣∣∣
∫

[0,1]3
xyz dµ̃−

∫
[0,1]3

xyz dµ̃n

∣∣∣∣∣ ≤ ∑
1≤i,j,k,≤n

∣∣∣∣∣
∫
Iijk

xyz dµ̃−
∫
Iijk

xyz dµ̃n

∣∣∣∣∣
≤

∑
1≤i,j,k,≤n

∣∣∣∣∣
∫
Iijk

cijk dµ̃−
∫
Iijk

cijk dµ̃n

∣∣∣∣∣+ ε(n)

(∫
Iijk

1 dµ̃+

∫
Iijk

1 dµ̃n

)

= ε(n)

(∫
[0,1]3

1 dµ̃+

∫
[0,1]3

1 dµ̃n

)
= 2ε(n).

For the following discussion we need the following theorem:

Theorem A.7 (Dirichlet’s theorem on the Diophantine approximation). Assume
we are given a set of real numbers (a1, a2, . . . , ad). Then for every ε > 0 there exists a
natural number m and integers b1, b2, . . . bd such that |aim− bi| < ε for all 1 ≤ i ≤ d.

Applying this theorem for the set nρijk, we find that for any ε1 there exists a

natural m, such that ρijk =
tijk+εijk

nm , where |εijk| < ε1 and all tijk are integers. We
construct the measure νn,m as follows : on each cube Iijk we define a uniform measure

in such a way that the measure of the whole cube Iijk is equal to
tijk
nm .

We verify that this measure is (3, 1)-stochastic provided ε1 < 1
n2 . For this it

suffices to verify that the sum of all
tijk
nm with one argument fixed is equal to 1

n .

Without loss of generality, we fix i. Then 1
n =

∑
1≤j,k≤n ρijk =

∑
1≤j,k≤n

tijk
nm +∑

1≤j,k≤n
εijk
nm or m =

∑
1≤j,k≤n tijk +

∑
1≤j,k≤n εijk. All tijk are natural numbers,

and
∣∣∣∑1≤j,k≤n εijk

∣∣∣ ≤ n2ε1 < 1, thus
∑

1≤j,k≤n tijk = m, as required.

Estimate the difference |
∫

[0,1]3
xyz dµ̃n −

∫
[0,1]3

xyz dνn,m|:∣∣∣∣∣
∫

[0,1]3
xyz dµ̃n −

∫
[0,1]3

xyz dνn,m

∣∣∣∣∣ ≤ ∑
1≤i,j,k,≤n

∣∣∣∣∣
∫
Iijk

xyz dµ̃n −
∫
Iijk

xyz dνn,m

∣∣∣∣∣
≤

∑
1≤i,j,k,≤n

∣∣∣∣∣
∫
Iijk

cijk dµ̃n −
∫
Iijk

cijk dνn,m

∣∣∣∣∣+ ε(n)

(∫
Iijk

1 dµ̃n +

∫
Iijk

1 dνn,m

)

=
∑

1≤i,j,k≤n

cijk

∣∣∣∣ρijk − tijk
nm

∣∣∣∣+ ε(n)

(∫
[0,1]3

1 dµ̃n +

∫
[0,1]3

1 dνn,m

)

≤ n3ε1

nm
+ 2ε(n) ≤ n2ε1 + 2ε(n).

Assume we have found a partition Spnm and the corresponding µ2(Spnm) such
that every Iijk contains exactly tijk small cubes with sides 1

nm . Then one can control
the difference |

∫
I
xyz dνn,m −

∫
I
xyz dµ2(Spnm)| in the same way as above. One

can easily check that the upper bound is 2ε(n), hence |
∫
I
xyz dµ2(Spnm) − CP | ≤

6ε(n)+n2ε1. This number can be less than any preassigned ε: first we choose n, such
that 6ε(n) < ε/2, then choose ε1, such that n2ε1 < ε/2.

Thus, to complete the main proof of this section, it is sufficient to show that for
given numbers tijk, 1 ≤ i, j, k ≤ n it is always possible to construct a partition with
the required property. Namely, using the fact that for a fixed i the sum

∑
1≤j,k≤n tijk

is equal to m, we build a partition Spnm = {(xi, yi, zi) | 1 ≤ i ≤ nm} with

{x1, . . . , xnm} = {y1, . . . , ynm} = {z1, . . . , znm} = {1, 2, . . . , nm}
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such that for fixed i, j, k ∈ {1, . . . , n} the number of indices t satisfying

m(i− 1) < xt ≤ mi, m(j − 1) < yt ≤ mj, m(k − 1) < zt ≤ mk

equals tijk.
In order to do this, we construct a correspondence between the numbers 1, . . . ,

nm and the triples (i, j, k), 1 ≤ i, j, k ≤ n, in such a way that to every index it is
assigned exactly one triple, and every triple (i, j, k) corresponds to exactly tijk indices
lying in the half-open interval (m(i− 1),mi]. The construction is accomplished step
by step. The interval (m(i− 1),mi] containing the first ti11 numbers corresponds to
the triple (i, 1, 1), the following ti12 numbers corresponds to the triple (i, 1, 2), and
so on. The last tinn numbers are associated with (i, n, n). This procedure is possible
because

∑
1≤j,k≤n tijk = m.

Similarly, we construct the correspondences in the second and third coordinates.
As a result, every triple (i, j, k) corresponds to a set of numbers a(i,j,k),1, . . . , a(i,j,k),tijk

from (m(i− 1),mi], numbers b(i,j,k),1, . . . , b(i,j,k),tijk from (m(j − 1),mj], and num-
bers c(i,j,k),1, . . . , c(i,j,k),tijk from (m(k − 1),mk]. Then we set:

Spnm = {a(i,j,k),t, b(i,j,k),t, c(i,j,k),t | 1 ≤ i, j, k ≤ n, 1 ≤ t ≤ tijk}.

Clearly, this will be a partition of size nm, since the values of the numbers a(i,j,k),t,
b(i,j,k),t and c(i,j,k),t are exactly the set {1, . . . , nm}.

This completes the proof of Theorem A.2.
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