(3,2)-Monge-Kantorovich problem

Alexander Zimin

HSE, Moscow

alekszm@gmail.com

э

< 行い

> < 3 > < 3 >

Suppose $X_1, X_2, ..., X_n$ are topological spaces with σ -algebras $\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_n$ respectively. Let $Pr_{X_{i_1} \times \cdots \times X_{i_k}}, Pr_l$ be the projection operator from $X = X_1 \times \cdots \times X_n$ to the coordinate k-dimensional subspace $X_{i_1} \times \cdots \times X_{i_k}$.

$$\mathcal{I}_k = \{(i_1, i_2, \dots, i_k) \mid 1 \le i_1 < i_2 \dots < i_k \le n\}.$$

For any multi-index $I = (i_1, \ldots i_k) \in \mathcal{I}_k$ there is given a measure μ_I on the space $X_{i_1} \times \ldots \times X_{i_k}$.

$$\mathcal{P}_{\mu} = \{\mu \mid Pr_{I}\mu = \mu_{I} \text{ for any } I \in \mathcal{I}_{k}\}$$

Also, assume $c: X \to \mathbb{R} \cup \{+\infty\}$ is a cost function.

Primal and Dual (n, k)-problem

Definition

Primal (n, k)-problem is a problem of minimization of the functional

$$P(\pi) = \int_X c(x_1,\ldots,x_n) \ d\pi$$

over $\pi \in \mathcal{P}_{\mu}$.

Definition

Dual (n, k)-problem is a problem of maximization of the functional

$$D(\lbrace f_l\rbrace) = \sum_{l\in\mathcal{I}_k} \int f_l(x_{i_1},\ldots,x_{i_k}) \ d\mu_l$$

over (integrable) functions $\{f_l\}$ such that $\sum_l f_l(x_{i_1}, \ldots, x_{i_k}) \leq c(x_1, \ldots, x_n)$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Theorem (Duality)

Suppose X_i are compact metric spaces, $c \ge 0$ is a continuous cost function. Then the following equality holds:

$$\min_{\mu\in\mathcal{P}_{\mu}}I[\mu] = \sup_{f_{l}\in L^{1}(\mu_{l})}\sum_{I\in\mathcal{I}_{k}}\int f_{I}(x_{i_{1}}, x_{i_{2}}, \dots, x_{i_{k}}) \ d\mu_{I}.$$

Here one takes supremum over functions f_I such that

$$\sum_{I} f_I(x_{i_1}, x_{i_2}, \ldots, x_{i_k}) \leq c(x_1, \ldots, x_n)$$

for all $(x_1, \ldots, x_n) \in X$.

Duality theorem is proved in [G, Z, Kolesnikov, 2018] using the technique from [Villani, 2003]. The proof uses the following theorem:

Theorem (Fenchel-Rockafellar duality)

Let E be a normed vector space and E^{*} be the corresponding topologically dual space. Consider convex functionals Φ , Ψ on E with values in $\mathbb{R} \cup \{+\infty\}$. Let Φ^* , Ψ^* be their Legendre transforms. Assume that there exists a point $z \in E$ satisfying $\Phi(z) < +\infty$, $\Psi(z) < +\infty$ and Φ is continuous at z. Then

$$\inf(\Phi+\Psi) = \max(-\Phi^*(-z^*) - \Psi^*(z^*))$$

Prove of duality

Assume E is a space of continuous functions on X. By the Riesz-Markov-Kakutani representation theorem E^* is the space of finite signed measures on X.

$$\Phi(u) = \begin{cases} 0 \text{ if } u \ge -c, \\ +\infty \text{ else.} \end{cases} \quad \Psi(u) = \begin{cases} \sum_{I \in \mathcal{I}_k} \int f_I \ d\mu_I & \text{ if } u = \sum_I f_I, \\ +\infty & \text{ else.} \end{cases}$$

$$\inf(\Phi(u) + \Psi(u)) = -\sup_{\sum_I f_I \leq c} \sum_I \int f_I \ d\mu_I$$

After Legendre transformation one obtains:

$$\Phi^*(-\pi) = egin{cases} \int c \ d\pi, \ ext{if} \ \pi \geq 0, \ +\infty, \ ext{else.} \ \Psi^*(\pi) = egin{cases} 0, \ ext{if} \ \pi \in \mathcal{P}_\mu, \ +\infty, \ ext{else.} \ \end{pmatrix}$$

Therefore $\max(-\Phi^*(-z^*) - \Psi^*(z^*)) = -\min_{\pi \in \mathcal{P}_{\mu}} \int c \ d\pi$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Under which assumptions there exists at least one measure with given projections?
- Under which assumptions there exist dual solutions?
- Is dual solution bounded? Is it continuous?

Definition

Uniting measures – measures in \mathcal{P}_{μ} .

Unlike classical Monge-Kantorovich problem the set of measures with needed projections can be empty.

Proposition (Weak sufficient condition)

The set \mathcal{P}_{μ} is non-empty (there exist uniting measures) if $\mu_{I} = \mu_{i_{1}} \times \cdots \times \mu_{i_{k}}$, $I = (i_{1}, \ldots, i_{k}) \in \mathcal{I}_{k}$ for some probability measures μ_{1}, \ldots, μ_{n} on respective spaces X_{1}, \ldots, X_{n} .

Proposition (Weak necessary condition)

Suppose \mathcal{P}_{μ} is non-empty; then for any $I, J \in \mathcal{I}_k$ there holds

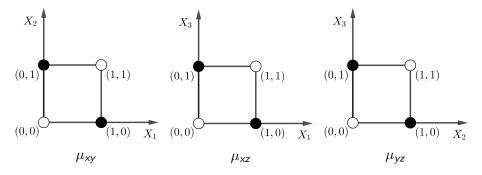
$$Pr_{I\cap J} \mu_I = Pr_{I\cap J} \mu_J$$

Alexander Zimin (HSE)

< 17 ▶

Existence of a uniting measure

Weak necessary condition is not sufficient. Suppose $X = Y = Z = \{0, 1\}$. Define measures on $X \times Y$, $X \times Z$ and $Y \times Z$



There is no uniting measure for μ_{xy} , μ_{xz} and μ_{yz} but there exists uniting signed measure.

Suppose X, Y, Z are some measurable spaces; assume $\mu_{xy}, \mu_{xz}, \mu_{yz}$ are finite measures on $X \times Y$, $Y \times Z$, $X \times Z$. For the existence of a measure μ on $X \times Y \times Z$ with projections $\mu_{xy}, \mu_{xz}, \mu_{yz}$ the following equalities must hold:

$$Pr_X \mu_{xy} = Pr_X \mu_{xz} = \mu_x,$$

$$Pr_Y \mu_{xy} = Pr_Y \mu_{yz} = \mu_y,$$

$$Pr_Z \mu_{xz} = Pr_Z \mu_{yz} = \mu_z.$$

Also let ν_x , ν_y , ν_z be arbitrary finite measures on X, Y, Z.

We recall the existence of the uniting measure in case $\mu_{xy} = \mu_x \times \mu_y$, $\mu_{xz} = \mu_x \times \mu_z$, $\mu_{yz} = \mu_y \times \mu_z$. For example, there fits the measure $\mu_x \times \mu_y \times \mu_z$. The following theorem gives a generalization of this construction:

Theorem (Density condition)

Suppose X, Y, Z are spaces equipped with finite measures ν_x , ν_y , ν_z . Suppose that $\mu_{xy}, \mu_{xz}, \mu_{yz}$ are absolutely continuous with respect to $\nu_x \times \nu_y, \nu_x \times \nu_z, \nu_y \times \nu_z$ respectively. Assume p_{xy}, p_{xz}, p_{yz} are the respective densities. If for $\lambda \leq \frac{3}{2}$ there holds

$$1 \leq p_{xy}, p_{xz}, p_{yz} \leq \lambda,$$

then there exists a uniting measure for μ_{xy}, μ_{xz} and μ_{yz} .

It's sufficient to prove the density condition theorem only for $\lambda = \frac{3}{2}$. Without loss of generality ν_x , ν_y , ν_z are probability measures.

$$M = \mu_{xy}(X \times Y) = \mu_{xz}(X \times Z) = \mu_{yz}(Y \times Z),$$

Assume p_x, p_y, p_z are the densities of μ_x, μ_y, μ_z with respect to ν_x, ν_y, ν_z . There holds $1 \le p_x, p_y, p_z, M \le \lambda$. For example, if $M = \lambda$, the following equalities hold: $\mu_{xy} = \lambda(\nu_x \times \nu_y), \mu_{xz} = \lambda(\nu_x \times \nu_z), \mu_{yz} = \lambda(\nu_y \times \nu_z)$. The measure $\mu = \lambda(\nu_x \times \nu_y \times \nu_z)$ has projections μ_{xy}, μ_{xz} and μ_{yz} . The same argument works for M = 1.

Existence of a uniting measure in (3, 2)

The following signed measure is uniting

$$\mu = \frac{4}{M^2} \mu_x \times \mu_y \times \mu_z - - \frac{2}{M} \left(\nu_x \times \mu_y \times \mu_z + \mu_x \times \nu_y \times \mu_z + \mu_x \times \mu_y \times \nu_z \right) + + 2 \left(\mu_{xy} \times \nu_z + \mu_{xz} \times \nu_y + \mu_{yz} \times \nu_x \right) - - \frac{1}{M} \left(\mu_{xy} \times \mu_z + \mu_{xz} \times \mu_y + \mu_{yz} \times \mu_x \right)$$

since

$$\begin{aligned} \Pr_{XY}\mu &= \frac{4}{M}\mu_{x} \times \mu_{y} - 2\nu_{x} \times \mu_{y} - 2\mu_{x} \times \nu_{y} - \frac{2}{M}\mu_{x} \times \mu_{y} + \\ &+ 2\mu_{xy} + 2\mu_{x}\nu_{y} + 2\nu_{x}\mu_{y} - \mu_{xy} - \frac{2}{M}\mu_{x} \times \mu_{y} = \mu_{xy}. \end{aligned}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Check the non-negativity of this measure. To this end, check

$$\frac{4}{M^2}a_1b_1c_1 - \frac{2}{M}(a_1b_1 + a_1c_1 + b_1c_1) + 2(a_2 + b_2 + c_2) - \\ - \frac{1}{M}(a_1a_2 + b_1b_2 + c_1c_2) \ge 0$$

for $1 \leq a_1, b_1, c_1, a_2, b_2, c_2, M \leq \frac{3}{2}$. This expression is greater than $\varepsilon(M) > 0$ for all $a_1, b_1, c_1, a_2, b_2, c_2$, and $M \in (1, \frac{3}{2})$.

Proposition

In the assumptions of the density condition there exists a uniting measure μ absolutely continuous with respect to $\nu_x \times \nu_y \times \nu_z$; the density of this measure is bounded and separated from zero.

Theorem

For $\lambda \leq 2$ there exists a (not necessary absolutely continuous) uniting measure μ .

For $\lambda > 2$ this theorem fails. Most of the results can be generalized to (n, k)-problem.

Theorem

Suppose $\{\mu_{I} \mid I \in \mathcal{I}_{k}\}$ satisfy the weak necessary conditions. Then there exists a signed measure μ such that

$$\Pr_{I}\mu = \mu_{I}, I \in \mathcal{I}_{k}.$$

There exists an analogue of density condition in (n, k)-problem for some $\lambda_{n,k}$.

- 4 同 6 4 日 6 4 日 6

Definition

A function $F: X \times Y \times Z \to \mathbb{R}$ is called a (3,2)-function if there exist functions f_{xy}, f_{xz}, f_{yz} such that

$$F(x, y, z) = f_{xy}(x, y) + f_{xz}(x, z) + f_{yz}(y, z)$$

for any $(x, y, z) \in X \times Y \times Z$.

Proposition

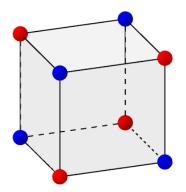
F is a (3,2)–function iff for any $x_0,x_1\in X,\ y_0,y_1\in Y,\ z_0,z_1\in Z$ there holds

$$F(x_0, y_0, z_0) + F(x_1, y_1, z_0) + F(x_1, y_0, z_1) + F(x_0, y_1, z_1) =$$

= $F(x_1, y_1, z_1) + F(x_1, y_0, z_0) + F(x_0, y_1, z_0) + F(x_0, y_0, z_1)$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



For any (3,2)-function F the sum of the values in the red points equals the sum of the values in the blue points.

(3,2)-function

One can construct f_{xy}, f_{xz}, f_{yz} using (3,2)-function F.

Proposition

Suppose F is a (3,2)-function, (x_0, y_0, z_0) is an arbitrary point of $X \times Y \times Z$.

$$f_{xy}(x,y) = F(x,y,z_0) - \frac{1}{2}F(x,y_0,z_0) - \frac{1}{2}F(x_0,y,z_0) + \frac{1}{3}F(x_0,y_0,z_0),$$

$$f_{xz}(x,z) = F(x,y_0,z) - \frac{1}{2}F(x,y_0,z_0) - \frac{1}{2}F(x_0,y_0,z) + \frac{1}{3}F(x_0,y_0,z_0),$$

$$f_{yz}(y,z) = F(x_0,y,z) - \frac{1}{2}F(x_0,y_0,z) - \frac{1}{2}F(x_0,y,z_0) + \frac{1}{3}F(x_0,y_0,z_0).$$

Then $F(x, y, z) = f_{xy}(x, y) + f_{xz}(x, z) + f_{yz}(y, z)$.

Definition

The functions f_{xy} , f_{xz} , f_{yz} from the proposition above are called **frame func**tions of (3, 2)-function *F* at the point (x_0, y_0, z_0) .

Alexander Zimin (HSE)

Remark

Suppose $F = f_{xy} + f_{xz} + f_{yz}$ and $f_{xy} \in L^1(\mu_{xy})$, $f_{xz} \in L^1(\mu_{xz})$, $f_{yz} \in L_1(\mu_{yz})$. Then $F \in L^1(\mu)$ for any uniting measure μ . But it's not true, that if F is a (3,2)-function and $F \in L^1(\mu)$ for a uniting measure μ , then there exist $f_{xy} \in L^1(\mu_{xy})$, $f_{xz} \in L^1(\mu_{xz})$, $f_{yz} \in L_1(\mu_{yz})$ such that $F = f_{xy} + f_{xz} + f_{yz}$.

Definition

Measures μ and ν are called **uniformly equivalent** if $L^{1}(\mu) = L^{1}(\nu) \Leftrightarrow d\mu = r \ d\nu$ for some bounded and separated from zero density function r. A measure μ on the space $X \times Y \times Z$ is called **almost product** if there exist measures $\nu_{x}, \nu_{y}, \nu_{z}$ such that μ is uniformly equivalent to $\nu_{x} \times \nu_{y} \times \nu_{z}$. It's easy to prove that it's sufficient to take $Pr_{X}\mu, Pr_{Y}\mu, Pr_{Z}\mu$ as $\nu_{x}, \nu_{y}, \nu_{z}$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Theorem

Denote by F a (3,2)-function on the space $X \times Y \times Z$, μ is a finite uniting measure on $X \times Y \times Z$; suppose that μ is almost product. Suppose $F \in L^1(\mu)$; then for almost all $(x_0, y_0, z_0) \in X \times Y \times Z$ the frame functions f_{xy}, f_{xz}, f_{yz} are integrable with respect to $\mu_{xy}, \mu_{xz}, \mu_{yz}$.

Corollary

Assume μ and ν are measures on the space $X \times Y \times Z$ such that there holds

$$\Pr_{XY}\mu = \Pr_{XY}\nu, \ \Pr_{XZ}\mu = \Pr_{XZ}\nu, \ \Pr_{YZ}\mu = \Pr_{YZ}\nu.$$

Suppose μ is almost product; $F \in L^1(\mu)$ is a (3,2)-function. Then $F \in L^1(\nu)$ and

$$\int F \ d\mu = \int F \ d
u$$

Definition (Dual (3,2)-problem)

Suppose $\mu_{xy}, \mu_{xz}, \mu_{yz}$ are the measures on $X \times Y$, $X \times Z$, $Y \times Z$; *c* is a cost function on $X \times Y \times Z$. Dual (3,2)-problem is a problem of maximization

$$\int f_{xy} \ d\mu_{xy} + \int f_{xz} \ d\mu_{xz} + \int f_{yz} \ d\mu_{yz}$$

over (integrable) functions f_{xy} , f_{xz} , f_{yz} such that $f_{xy}(x, y) + f_{xz}(x, z) + f_{yz}(y, z) \le c(x, y, z)$.

Definition (Dual (3, 2)-problem)

Suppose μ is a measure on $X \times Y \times Z$ with the projections $\mu_{xy}, \mu_{xz}, \mu_{yz}$; c is a cost function. Dual (3,2)-problem is a problem of maximization $\int F d\mu$ over (integrable) (3,2)-functions F such that $F \leq c$.

This definitions are equivalent if μ is almost product.

Alexander Zimin (HSE)

Theorem

Assume μ is a probability measure on $X \times Y \times Z$ and c is a cost function such that $c(x, y, z) \leq c_{xy}(x, y) + c_{xz}(x, z) + c_{yz}(y, z)$ for some (integrable) $c_{xy}, c_{xz}, c_{yz} < +\infty$. Suppose μ is almost product. Assume that c is greater than some (3,2)-function. Then there exist integrable with respect to μ_{xy} , μ_{xz} and μ_{yz} functions $-\infty \leq f_{xy}, f_{xz}, f_{yz} < +\infty$ such that $F_0 = f_{xy} + f_{xz} + f_{yz} \leq c$, and $\sup_{F \leq c} \int F d\mu = \int F_0 d\mu$.

Remark

The same conditions for (n, 1)-problem were used in [Kellerer 1984]

・何ト ・ヨト ・ヨト

Without loss of generality we can assume that $c \leq 0$.

Theorem (Komlosh)

Let (X, \mathcal{A}, μ) be a finite measure space. Suppose $\{f_n\} \subset L^1(\mu)$ and $\sup_n ||f_n||_{L^1(\mu)} < \infty$. Then there exists a subsequence $\{g_n\} \subset \{f_n\}$ and a function $g \in L^1(\mu)$ such that for any subsequence $\{h_n\} \subset \{g_n\}$ arithmetic means of the first n partial sums $(h_1 + \cdots + h_n)/n$ tend to g almost everywhere.

By this theorem, there exists a sequence of (3,2)-functions $\{F_n\} \subset L^1(\mu)$ and $F \in L^1(\mu)$ such that $F_n \leq c$, $\lim_{n\to\infty} \int F_n d\mu = \sup_{F\leq c} \int F d\mu$ and F_n tend to F almost everywhere.

・ロト ・聞ト ・ヨト ・ヨト

Existence of a solution of the dual (3,2)-problem

All the functions F_n are bounded from above. Therefore, it follows from reverse Fatou's lemma, that $\int F \ d\mu \ge \lim_{n\to\infty} \int F_n \ d\mu = \sup_{F\leq c} \int F \ d\mu$.

Definition

A point $(x, y, z) \in X \times Y \times Z$ is called **regular** if $\lim_{n \to +\infty} F_n(x, y, z) = F(x, y, z) \neq \infty$.

For F and $(x_0, y_0, z_0) \in X \times Y \times Z$ we define f_{xy}, f_{xz}, f_{yz} as follows:

$$f_{xy}(x,y) = \begin{cases} F(x,y,z_0) - \frac{1}{2}F(x,y_0,z_0) - \frac{1}{2}F(x_0,y,z_0) + \frac{1}{3}F(x_0,y_0,z_0) \\ \text{if } (x,y,z_0), (x,y_0,z_0), (x_0,y,z_0), (x_0,y_0,z_0) \text{ are regular,} \\ -\infty \text{ otherwise.} \end{cases}$$

 f_{yz}, f_{xz} are constructed in the same way.

Lemma

For almost all points $(x_0, y_0, z_0) \in X \times Y \times Z$ the functions f_{xy}, f_{xz}, f_{yz} from the previous slide are so that

• f_{xy}, f_{xz}, f_{yz} are integrable with respect to $\mu_{xy}, \mu_{xz}, \mu_{yz}$,

•
$$f_{xy} + f_{xz} + f_{yz} \leq F$$
,

•
$$f_{xy} + f_{xz} + f_{yz} = F$$
 almost everywhere.

This lemma is proved by Fubini's theorem.

Then the functions f_{xy} , f_{xz} , f_{yz} are the solution of the dual problem. Q.E.D.

Remark

The same technique works for (n, k).

Nonexistence of a dual solution

Aim: construct a measure μ and a bounded cost function c such that there exists no «maximal» (3,2)-function for the related dual problem. So, measure μ will not be almost product.

Suppose $X = Y = Z = \mathbb{N}$ are discrete measurable spaces. Assume $p_n = \frac{1}{n^2}$. Denote by A_n the set $\{(n + 1, n, n), (n, n + 1, n), (n, n, n + 1), (n, n + 1, n, n + 1), (n + 1, n + 1, n)\}$ for any $n \in \mathbb{N}$. Denote by μ the following measure on $X \times Y \times Z$:

$$\mu(x,y,z) = egin{cases} p_n & ext{if } (x,y,z) \in A_n, \ 0 & ext{otherwise.} \end{cases}$$

Denote by $\mu_{xy}, \mu_{xz}, \mu_{yz}$ the projections of μ . Suppose

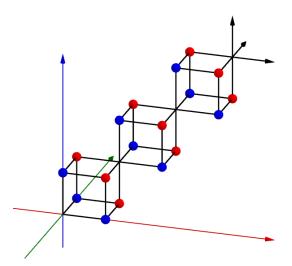
$$c(x, y, z) = \begin{cases} 1 & \text{if } (x, y, z) \in \{(n + 1, n, n), (n, n + 1, n), (n, n, n + 1)\}, \\ 0 & \text{otherwise.} \end{cases}$$

is a cost function.

Alexander Zimin (HSE)

・ 伊 ト ・ ヨ ト ・ ヨ ト …

Nonexistence of a dual solution



Support of μ is the set of colored points. The cost function equals 1 on the blue points and 0 elsewhere.

Lemma

There exists a unique uniting measure μ for $\mu_{\rm xy}, \mu_{\rm xz}, \mu_{\rm yz}.$

Let ν be a measure with projections $\mu_{xy}, \mu_{xz}, \mu_{yz}$. Then ν is supported on $\{(x, y, z) \mid \max(|x - y|, |x - z|, |y - z|) \le 1\}$. Assume $a_n = \nu(n, n, n)$. It's easy to prove that

$$\nu(n+1, n, n) = \nu(n, n+1, n) = \nu(n, n, n+1) = p_n - \sum_{i=1}^n a_n$$
$$\nu(n, n+1, n+1) = \nu(n+1, n, n+1) = \nu(n+1, n+1, n) = p_n + \sum_{i=1}^n a_n$$

 p_n tend to 0. Therefore, if $a_k > 0$ for some k, then there exists $n \in \mathbb{N}$ such that

$$\nu(n+1,n,n)<0.$$

In particular μ is the primal solution of the related (3,2)-problem. Suppose *F* is the dual problem solution. It follows from the complementary slackness conditions that:

$$F(n+1, n, n) = F(n, n+1, n) = F(n, n, n+1) = 1,$$

$$F(n, n+1, n+1) = F(n+1, n, n+1) = F(n+1, n+1, n) = 0.$$

It follows from the property of (3,2)-function that F(n+1, n+1, n+1) - F(n, n, n) = -3. Since $F(1,1,1) \le 0$, we obtain $F(n, n, n) \le 3 - 3n$. If $F = f_{xy} + f_{xz} + f_{yz}$ then there folds

$$\int |f_{xy}| \ d\mu_{xy} + \int |f_{xz}| \ d\mu_{xz} + \int |f_{yz}| \ d\mu_{yz} \ge \sum_{n=1}^{+\infty} (3n-3)p_n = +\infty$$

1

Remark

In the classical Monge-Kantorovich problem if the cost function is bounded then there exists a bounded dual solution.

Theorem

Assume $X = Y = Z = \mathbb{N}$; μ_x , μ_y , μ_z are probability measures on X, Y, Z. Suppose $\mu_{xy} = \mu_x \times \mu_y$, $\mu_{xz} = \mu_x \times \mu_z$, $\mu_{yz} = \mu_y \times \mu_z$; c is a cost function such that $0 \le c \le 1$. Denote by F a dual solution of (3, 2)-problem with projections μ_{xy} , μ_{xz} , μ_{yz} and the cost function c. Then $-12 \le F$ almost everywhere.

Remark

In the (3,2)-problem for compact metric spaces X, Y, Z, bounded c and almost product μ primal solution is bounded.

э

(日) (同) (目) (日)

Assume $\mu = \mu_x \times \mu_y \times \mu_z$ and opt is the primal solution. Complementary slackness:

$$opt(x, y, z) = 0$$
 или $F(x, y, z) = c(x, y, z).$

Proposition

For arbitrary probability measure ν there holds $\int F \ d\nu \leq 1$. If the support of ν is a subset of the support of opt then $\int F \ d\nu = \int c \ d\nu \geq 0$.

Lemma

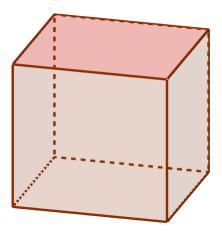
For every z_0 such that $\mu_z(z_0) > 0$ there holds

$$\int_{z=z_0} F(x,y,z_0) \ d\mu_x \times \mu_y \ge -1 + \int_{X \times Y \times Z} F \ d\mu.$$

< ロト < 同ト < 三ト < 三ト

Consider signed μ_0 :

 $\mu_0(x,y,z) =$

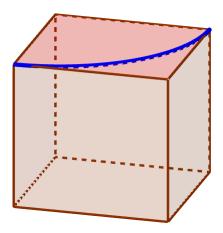


B> B

Consider signed μ_0 :

$$\mu_0(x, y, z) =$$

$$= \frac{1}{\mu_z(z_0)} \operatorname{opt}(x, y, z) \delta_{z_0}(z)$$

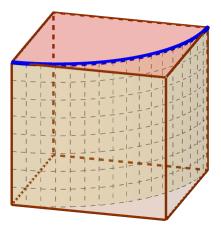


Consider signed
$$\mu_0$$
:

$$\mu_0(x, y, z) =$$

$$= \frac{1}{\mu_z(z_0)} \operatorname{opt}(x, y, z) \delta_{z_0}(z)$$

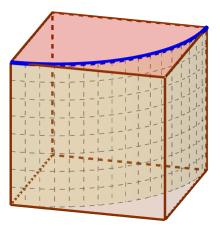
$$- \frac{1}{\mu_z(z_0)} \operatorname{opt}(x, y, z_0) \mu_z(z)$$



æ

Consider signed
$$\mu_0$$
:

$$\begin{split} \mu_0(x, y, z) &= \\ &= \frac{1}{\mu_z(z_0)} \text{opt}(x, y, z) \delta_{z_0}(z) \\ &- \frac{1}{\mu_z(z_0)} \text{opt}(x, y, z_0) \mu_z(z) \\ &+ \mu(x, y, z) \end{split}$$



æ

Easy to check that

$$Pr_{X \times Y} \mu_0 = \mu_x \times \mu_y,$$

$$Pr_{X \times Z} \mu_0 = \mu_x \times \delta_{z_0},$$

$$Pr_{Y \times Z} \mu_0 = \mu_y \times \delta_{z_0},$$

So projections of μ_0 coincide with those of $\mu_x \times \mu_y \times \delta_{z_0}$. Then

$$\int F(x, y, z_0) \ d\mu_x \times \mu_y = \int F(x, y, z) d\mu_0 \ge 0 - 1 + \int F \ d\mu.$$

A B M A B M

Boundedness of a dual solution

Let $\mu(x_0, y_0, z_0) > 0$. Then there exist x_1, y_1, z_1 such that $opt(x_1, y_0, z_0) > 0$, $opt(x_0, y_1, z_0) > 0$, $opt(x_0, y_0, z_1) > 0$. Consider

$$\mu_{1} = \delta_{x_{1}} \times \delta_{y_{0}} \times \delta_{z_{0}} + \delta_{x_{0}} \times \delta_{y_{1}} \times \delta_{z_{0}} + \delta_{x_{0}} \times \delta_{y_{0}} \times \delta_{z_{1}} - - (\delta_{y_{0}} \times \delta_{z_{1}} + \delta_{y_{1}} \times \delta_{z_{0}}) \times \mu_{x} - (\delta_{x_{0}} \times \delta_{z_{1}} + \delta_{x_{1}} \times \delta_{z_{0}}) \times \mu_{y} - - (\delta_{x_{0}} \times \delta_{y_{1}} + \delta_{x_{1}} \times \delta_{y_{0}}) \times \mu_{z} + (\delta_{x_{0}} + \delta_{x_{1}}) \times \mu_{y} \times \mu_{z} + + (\delta_{y_{0}} + \delta_{y_{1}}) \times \mu_{x} \times \mu_{z} + (\delta_{z_{0}} + \delta_{z_{1}}) \times \mu_{x} \times \mu_{y} - 2\mu_{x} \times \mu_{y} \times \mu_{z}$$

Projections of μ_1 coincide with those of $\delta_{x_0} \times \delta_{y_0} \times \delta_{z_0}$. That means

$$F(x_0, y_0, z_0) = \int F \ d\mu_1 \ge -12 + 4 \int F \ d\mu.$$

Corollary

There exists a bounded dual solution.

Alexander Zimin (HSE)

Theorem

Assume X = Y = Z = [0, 1]; μ_{xy} , μ_{xz} , μ_{yz} are Lebesgue measures on $[0, 1]^2$. Suppose $c = \max(0, x+y+3z-3)$ is a cost function. Then any dual solution of the related dual problem equals

$$F(x, y, z) = \begin{cases} 0 & \text{if } z \leq \frac{2}{3}, \\ x + y + 3z - 3 & \text{if } z > \frac{2}{3} \end{cases}$$

almost everywhere. In particular, there is no continuous solution for this problem.

Discontinuous dual solution

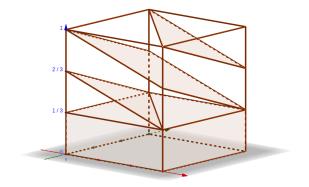


Figure: An optimal measure for the cost function max(0, x + y + 3z - 3)