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Primal and Dual (n, k)−problem

Suppose X1,X2, . . . ,Xn are topological spaces with σ-algebras B1, B2, . . . ,
Bn respectively.
Let PrXi1×···×Xik

,PrI be the projection operator from X = X1 × · · · × Xn to
the coordinate k−dimensional subspace Xi1 × · · · × Xik .

Ik = {(i1, i2, . . . , ik) | 1 ≤ i1 < i2 · · · < ik ≤ n}.

For any multi-index I = (i1, . . . ik) ∈ Ik there is given a measure µI on the
space Xi1 × . . . × Xik .

Pµ = {µ | PrIµ = µI for any I ∈ Ik}

Also, assume c : X → R ∪ {+∞} is a cost function.
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Primal and Dual (n, k)−problem

Definition
Primal (n, k)−problem is a problem of minimization of the functional

P(π) =

∫
X
c(x1, . . . , xn) dπ

over π ∈ Pµ.

Definition
Dual (n, k)−problem is a problem of maximization of the functional

D({fI}) =
∑
I∈Ik

∫
fI (xi1 , . . . , xik ) dµI

over (integrable) functions {fI} such that
∑

I fI (xi1 , . . . , xik ) ≤ c(x1, . . . , xn).
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Duality

Theorem (Duality)
Suppose Xi are compact metric spaces, c ≥ 0 is a continuous cost function.
Then the following equality holds:

min
µ∈Pµ

I [µ] = sup
fI∈L1(µI )

∑
I∈Ik

∫
fI (xi1 , xi2 , . . . xik ) dµI .

Here one takes supremum over functions fI such that∑
I

fI (xi1 , xi2 , . . . , xik ) ≤ c(x1, . . . , xn)

for all (x1, . . . , xn) ∈ X .
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Proof of duality

Duality theorem is proved in [G, Z, Kolesnikov, 2018] using the technique
from [Villani, 2003]. The proof uses the following theorem:

Theorem (Fenchel-Rockafellar duality)
Let E be a normed vector space and E ∗ be the corresponding topologically
dual space. Consider convex functionals Φ, Ψ on E with values in R∪{+∞}.
Let Φ∗ , Ψ∗ be their Legendre transforms. Assume that there exists a point
z ∈ E satisfying Φ(z) < +∞, Ψ(z) < +∞ and Φ is continuous at z . Then

inf(Φ + Ψ) = max(−Φ∗(−z∗)−Ψ∗(z∗))
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Prove of duality

Assume E is a space of continuous functions on X . By the Riesz-Markov-
Kakutani representation theorem E ∗ is the space of finite signed measures
on X .

Φ(u) =

{
0 if u ≥ −c ,
+∞ else.

Ψ(u) =

{∑
I∈Ik

∫
fI dµI if u =

∑
I fI ,

+∞ else.

inf(Φ(u) + Ψ(u)) = − sup∑
I fI≤c

∑
I

∫
fI dµI

After Legendre transformation one obtains:

Φ∗(−π) =

{∫
c dπ, if π ≥ 0,

+∞, else.
Ψ∗(π) =

{
0, if π ∈ Pµ,
+∞, else.

Therefore max(−Φ∗(−z∗)−Ψ∗(z∗)) = −minπ∈Pµ
∫
c dπ.
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The following plan

Under which assumptions there exists at least one measure with given
projections?
Under which assumptions there exist dual solutions?
Is dual solution bounded? Is it continuous?
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Existence of a uniting measure

Definition
Uniting measures – measures in Pµ.

Unlike classical Monge-Kantorovich problem the set of measures with needed
projections can be empty.

Proposition (Weak sufficient condition)
The set Pµ is non-empty (there exist uniting measures) if µI = µi1 × · · · ×
µik , I = (i1, . . . , ik) ∈ Ik for some probability measures µ1, . . . µn on respec-
tive spaces X1, . . . ,Xn.

Proposition (Weak necessary condition)
Suppose Pµ is non-empty; then for any I , J ∈ Ik there holds

PrI∩J µI = PrI∩J µJ
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Existence of a uniting measure

Weak necessary condition is not sufficient. Suppose X = Y = Z = {0, 1}.
Define measures on X × Y , X × Z and Y × Z

µxy µxz µyz

There is no uniting measure for µxy , µxz and µyz but there exists uniting
signed measure.
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Notation for (3, 2)−problem

Suppose X , Y , Z are some measurable spaces; assume µxy , µxz , µyz are
finite measures on X ×Y , Y ×Z , X ×Z . For the existence of a measure µ
on X × Y × Z with projections µxy , µxz , µyz the following equalities must
hold:

PrXµxy = PrXµxz = µx ,

PrYµxy = PrYµyz = µy ,

PrZµxz = PrZµyz = µz .

Also let νx , νy , νz be arbitrary finite measures on X , Y , Z .
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Existence of a uniting measure in (3, 2)

We recall the existence of the uniting measure in case µxy = µx ×µy , µxz =
µx × µz , µyz = µy × µz . For example, there fits the measure µx × µy × µz .
The following theorem gives a generalization of this construction:

Theorem (Density condition)
Suppose X ,Y ,Z are spaces equipped with finite measures νx , νy , νz . Sup-
pose that µxy , µxz , µyz are absolutely continuous with respect to νx×νy , νx×
νz , νy × νz respectively. Assume pxy , pxz , pyz are the respective densities. If
for λ ≤ 3

2 there holds
1 ≤ pxy , pxz , pyz ≤ λ,

then there exists a uniting measure for µxy , µxz and µyz .

Alexander Zimin (HSE) (n, k)−Monge-Kantorovich problem 11 / 36



Existence of a uniting measure in (3, 2)

It’s sufficient to prove the density condition theorem only for λ = 3
2 . Without

loss of generality νx , νy , νz are probability measures.

M = µxy (X × Y ) = µxz(X × Z ) = µyz(Y × Z ),

Assume px , py , pz are the densities of µx , µy , µz with respect to νx , νy , νz .
There holds 1 ≤ px , py , pz ,M ≤ λ.
For example, ifM = λ, the following equalities hold: µxy = λ(νx×νy ), µxz =
λ(νx × νz), µyz = λ(νy × νz). The measure µ = λ(νx × νy × νz) has
projections µxy , µxz and µyz . The same argument works for M = 1.
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Existence of a uniting measure in (3, 2)

The following signed measure is uniting

µ =
4
M2µx × µy × µz−

− 2
M

(νx × µy × µz + µx × νy × µz + µx × µy × νz) +

+ 2 (µxy × νz + µxz × νy + µyz × νx)−

− 1
M

(µxy × µz + µxz × µy + µyz × µx)

since

PrXYµ =
4
M
µx × µy − 2νx × µy − 2µx × νy −

2
M
µx × µy+

+ 2µxy + 2µxνy + 2νxµy − µxy −
2
M
µx × µy = µxy .
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Existence of a uniting measure in (3, 2)

Check the non-negativity of this measure. To this end, check

4
M2 a1b1c1 −

2
M

(a1b1 + a1c1 + b1c1) + 2(a2 + b2 + c2)−

− 1
M

(a1a2 + b1b2 + c1c2) ≥ 0

for 1 ≤ a1, b1, c1, a2, b2, c2,M ≤ 3
2 . This expression is greater than ε(M) >

0 for all a1, b1, c1, a2, b2, c2, and M ∈
(
1, 3

2

)
.

Proposition
In the assumptions of the density condition there exists a uniting measure
µ absolutely continuous with respect to νx × νy × νz ; the density of this
measure is bounded and separated from zero.
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Existence of a uniting measure

Theorem
For λ ≤ 2 there exists a (not necessary absolutely continuous) uniting mea-
sure µ.

For λ > 2 this theorem fails.
Most of the results can be generalized to (n, k)−problem.

Theorem
Suppose {µI | I ∈ Ik} satisfy the weak necessary conditions. Then there
exists a signed measure µ such that

PrIµ = µI , I ∈ Ik .

There exists an analogue of density condition in (n, k)−problem for some
λn,k .

Alexander Zimin (HSE) (n, k)−Monge-Kantorovich problem 15 / 36



(3, 2)−function

Definition
A function F : X × Y × Z → R is called a (3, 2)−function if there exist
functions fxy , fxz , fyz such that

F (x , y , z) = fxy (x , y) + fxz(x , z) + fyz(y , z)

for any (x , y , z) ∈ X × Y × Z .

Proposition
F is a (3, 2)−function iff for any x0, x1 ∈ X , y0, y1 ∈ Y , z0, z1 ∈ Z there
holds

F (x0, y0, z0) + F (x1, y1, z0) + F (x1, y0, z1) + F (x0, y1, z1) =

= F (x1, y1, z1) + F (x1, y0, z0) + F (x0, y1, z0) + F (x0, y0, z1)
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(3, 2)−function

For any (3, 2)−function F the sum of the values in the red points equals the
sum of the values in the blue points.
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(3, 2)−function

One can construct fxy , fxz , fyz using (3, 2)−function F .

Proposition
Suppose F is a (3, 2)−function, (x0, y0, z0) is an arbitrary point of X×Y×Z .

fxy (x , y) = F (x , y , z0)− 1
2
F (x , y0, z0)− 1

2
F (x0, y , z0) +

1
3
F (x0, y0, z0),

fxz(x , z) = F (x , y0, z)− 1
2
F (x , y0, z0)− 1

2
F (x0, y0, z) +

1
3
F (x0, y0, z0),

fyz(y , z) = F (x0, y , z)− 1
2
F (x0, y0, z)− 1

2
F (x0, y , z0) +

1
3
F (x0, y0, z0).

Then F (x , y , z) = fxy (x , y) + fxz(x , z) + fyz(y , z).

Definition
The functions fxy , fxz , fyz from the proposition above are called frame func-
tions of (3, 2)−function F at the point (x0, y0, z0).
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(3, 2)−function

Remark
Suppose F = fxy + fxz + fyz and fxy ∈ L1(µxy ), fxz ∈ L1(µxz), fyz ∈ L1(µyz).
Then F ∈ L1(µ) for any uniting measure µ.
But it’s not true, that if F is a (3, 2)−function and F ∈ L1(µ) for a uniting
measure µ, then there exist fxy ∈ L1(µxy ), fxz ∈ L1(µxz), fyz ∈ L1(µyz) such
that F = fxy + fxz + fyz .

Definition
Measures µ and ν are called uniformly equivalent if L1(µ) = L1(ν) ⇔
dµ = r dν for some bounded and separated from zero density function r .
A measure µ on the space X ×Y ×Z is called almost product if there exist
measures νx , νy , νz such that µ is uniformly equivalent to νx × νy × νz .
It’s easy to prove that it’s sufficient to take PrXµ,PrYµ,PrZµ as νx , νy , νz .
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(3, 2)−function

Theorem
Denote by F a (3, 2)−function on the space X × Y × Z , µ is a finite
uniting measure on X ×Y × Z ; suppose that µ is almost product. Suppose
F ∈ L1(µ); then for almost all (x0, y0, z0) ∈ X ×Y ×Z the frame functions
fxy , fxz , fyz are integrable with respect to µxy , µxz , µyz .

Corollary
Assume µ and ν are measures on the space X ×Y ×Z such that there holds

PrXYµ = PrXY ν, PrXZµ = PrXZν, PrYZµ = PrYZν.

Suppose µ is almost product; F ∈ L1(µ) is a (3, 2)−function. Then F ∈
L1(ν) and ∫

F dµ =

∫
F dν
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Existence of a solution of the dual (3, 2)−problem

Definition (Dual (3, 2)−problem)
Suppose µxy , µxz , µyz are the measures on X ×Y , X ×Z , Y ×Z ; c is a cost
function on X × Y × Z . Dual (3, 2)−problem is a problem of maximization∫

fxy dµxy +

∫
fxz dµxz +

∫
fyz dµyz

over (integrable) functions fxy , fxz , fyz such that fxy (x , y) + fxz(x , z) +
fyz(y , z) ≤ c(x , y , z).

Definition (Dual (3, 2)−problem)
Suppose µ is a measure on X ×Y ×Z with the projections µxy , µxz , µyz ; c is
a cost function. Dual (3, 2)−problem is a problem of maximization

∫
F dµ

over (integrable) (3, 2)−functions F such that F ≤ c .

This definitions are equivalent if µ is almost product.
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Existence of a solution of the dual (3, 2)−problem

Theorem
Assume µ is a probability measure on X × Y × Z and c is a cost function
such that c(x , y , z) ≤ cxy (x , y) + cxz(x , z) + cyz(y , z) for some (integrable)
cxy , cxz , cyz < +∞. Suppose µ is almost product. Assume that c is greater
than some (3, 2)−function. Then there exist integrable with respect to µxy ,
µxz and µyz functions −∞ ≤ fxy , fxz , fyz < +∞ such that F0 = fxy + fxz +
fyz ≤ c , and supF≤c

∫
F dµ =

∫
F0 dµ.

Remark
The same conditions for (n, 1)−problem were used in [Kellerer 1984]
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Existence of a solution of the dual (3, 2)−problem

Without loss of generality we can assume that c ≤ 0.

Theorem (Komlosh)

Let (X ,A, µ) be a finite measure space. Suppose {fn} ⊂ L1(µ) and
supn ||fn||L1(µ) < ∞. Then there exists a subsequence {gn} ⊂ {fn} and
a function g ∈ L1(µ) such that for any subsequence {hn} ⊂ {gn} arith-
metic means of the first n partial sums (h1 + · · ·+ hn)/n tend to g almost
everywhere.

By this theorem, there exists a sequence of (3, 2)−functions {Fn} ⊂ L1(µ)
and F ∈ L1(µ) such that Fn ≤ c , limn→∞

∫
Fn dµ = supF≤c

∫
F dµ and

Fn tend to F almost everywhere.
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Existence of a solution of the dual (3, 2)−problem

All the functions Fn are bounded from above. Therefore, it follows from
reverse Fatou’s lemma, that

∫
F dµ ≥ limn→∞

∫
Fn dµ = supF≤c

∫
F dµ.

Definition
A point (x , y , z) ∈ X × Y × Z is called regular if limn→+∞ Fn(x , y , z) =
F (x , y , z) 6=∞.

For F and (x0, y0, z0) ∈ X × Y × Z we define fxy , fxz , fyz as follows:

fxy (x , y) =


F (x , y , z0)− 1

2F (x , y0, z0)− 1
2F (x0, y , z0) + 1

3F (x0, y0, z0)

if (x , y , z0), (x , y0, z0), (x0, y , z0), (x0, y0, z0) are regular,
−∞ otherwise.

fyz , fxz are constructed in the same way.
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Existence of a solution of the dual (3, 2)−problem

Lemma
For almost all points (x0, y0, z0) ∈ X ×Y ×Z the functions fxy , fxz , fyz from
the previous slide are so that

fxy , fxz , fyz are integrable with respect to µxy , µxz , µyz ,
fxy + fxz + fyz ≤ F ,
fxy + fxz + fyz = F almost everywhere.

This lemma is proved by Fubini’s theorem.
Then the functions fxy , fxz , fyz are the solution of the dual problem. Q.E.D.

Remark
The same technique works for (n, k).

Alexander Zimin (HSE) (n, k)−Monge-Kantorovich problem 25 / 36



Nonexistence of a dual solution

Aim: construct a measure µ and a bounded cost function c such that
there exists no «maximal» (3, 2)−function for the related dual problem. So,
measure µ will not be almost product.
Suppose X = Y = Z = N are discrete measurable spaces. Assume
pn = 1

n2 . Denote by An the set {(n + 1, n, n), (n, n + 1, n), (n, n, n +
1), (n, n+1, n+1), (n+1, n, n+1), (n+1, n+1, n)} for any n ∈ N. Denote
by µ the following measure on X × Y × Z :

µ(x , y , z) =

{
pn if (x , y , z) ∈ An,

0 otherwise.

Denote by µxy , µxz , µyz the projections of µ. Suppose

c(x , y , z) =

{
1 if (x , y , z) ∈ {(n + 1, n, n), (n, n + 1, n), (n, n, n + 1)},
0 otherwise.

is a cost function.
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Nonexistence of a dual solution

Support of µ is the set of col-
ored points. The cost func-
tion equals 1 on the blue
points and 0 elsewhere.
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Nonexistence of a dual solution

Lemma
There exists a unique uniting measure µ for µxy , µxz , µyz .

Let ν be a measure with projections µxy , µxz , µyz . Then ν is supported on
{(x , y , z) | max(|x − y |, |x − z |, |y − z |) ≤ 1}. Assume an = ν(n, n, n). It’s
easy to prove that

ν(n + 1, n, n) = ν(n, n + 1, n) = ν(n, n, n + 1) = pn −
n∑

i=1

an

ν(n, n + 1, n + 1) = ν(n + 1, n, n + 1) = ν(n + 1, n + 1, n) = pn +
n∑

i=1

an

pn tend to 0. Therefore, if ak > 0 for some k , then there exists n ∈ N such
that

ν(n + 1, n, n) < 0.
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Nonexistence of a dual solution

In particular µ is the primal solution of the related (3, 2)−problem. Suppose
F is the dual problem solution. It follows from the complementary slackness
conditions that:

F (n + 1, n, n) = F (n, n + 1, n) = F (n, n, n + 1) = 1,
F (n, n + 1, n + 1) = F (n + 1, n, n + 1) = F (n + 1, n + 1, n) = 0.

It follows from the property of (3, 2)−function that F (n + 1, n + 1, n + 1)−
F (n, n, n) = −3. Since F (1, 1, 1) ≤ 0, we obtain F (n, n, n) ≤ 3− 3n.
If F = fxy + fxz + fyz then there folds∫

|fxy | dµxy +

∫
|fxz | dµxz +

∫
|fyz | dµyz ≥

+∞∑
n=1

(3n − 3)pn = +∞
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Boundedness of a dual solution

Remark
In the classical Monge-Kantorovich problem if the cost function is bounded
then there exists a bounded dual solution.

Theorem
Assume X = Y = Z = N; µx , µy , µz are probability measures on X , Y , Z .
Suppose µxy = µx ×µy , µxz = µx ×µz , µyz = µy ×µz ; c is a cost function
such that 0 ≤ c ≤ 1. Denote by F a dual solution of (3, 2)−problem with
projections µxy , µxz , µyz and the cost function c . Then −12 ≤ F almost
everywhere.

Remark
In the (3, 2)−problem for compact metric spaces X , Y , Z , bounded c and
almost product µ primal solution is bounded.
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Boundedness of a dual solution

Assume µ = µx × µy × µz and opt is the primal solution.
Complementary slackness:

opt(x , y , z) = 0 или F (x , y , z) = c(x , y , z).

Proposition
For arbitrary probability measure ν there holds

∫
F dν ≤ 1. If the support

of ν is a subset of the support of opt then
∫
F dν =

∫
c dν ≥ 0.

Lemma
For every z0 such that µz(z0) > 0 there holds∫

z=z0

F (x , y , z0) dµx × µy ≥ −1 +

∫
X×Y×Z

F dµ.
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Boundedness of a dual solution

Consider signed µ0:

µ0(x , y , z) =

=

1
µz(z0)

opt(x , y , z)δz0(z)

− 1
µz(z0)

opt(x , y , z0)µz(z)

+ µ(x , y , z)
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Boundedness of a dual solution
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1

µz(z0)
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Boundedness of a dual solution
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Boundedness of a dual solution

Easy to check that

PrX×Yµ0 = µx × µy ,
PrX×Zµ0 = µx × δz0 ,
PrY×Zµ0 = µy × δz0 ,

So projections of µ0 coincide with those of µx × µy × δz0 .
Then ∫

F (x , y , z0) dµx × µy =

∫
F (x , y , z)dµ0 ≥ 0− 1 +

∫
F dµ.
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Boundedness of a dual solution

Let µ(x0, y0, z0) > 0. Then there exist x1, y1, z1 such that

opt(x1, y0, z0) > 0, opt(x0, y1, z0) > 0, opt(x0, y0, z1) > 0.

Consider

µ1 = δx1 × δy0 × δz0 + δx0 × δy1 × δz0 + δx0 × δy0 × δz1−
− (δy0 × δz1 + δy1 × δz0)× µx − (δx0 × δz1 + δx1 × δz0)× µy−
− (δx0 × δy1 + δx1 × δy0)× µz + (δx0 + δx1)× µy × µz+

+ (δy0 + δy1)× µx × µz + (δz0 + δz1)× µx × µy − 2µx × µy × µz
Projections of µ1 coincide with those of δx0 × δy0 × δz0 . That means

F (x0, y0, z0) =

∫
F dµ1 ≥ −12 + 4

∫
F dµ.

Corollary
There exists a bounded dual solution.
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Discontinuous dual solution

Theorem
Assume X = Y = Z = [0, 1]; µxy , µxz , µyz are Lebesgue measures on [0, 1]2.
Suppose c = max(0, x+y+3z−3) is a cost function. Then any dual solution
of the related dual problem equals

F (x , y , z) =

{
0 if z ≤ 2

3 ,

x + y + 3z − 3 if z > 2
3

almost everywhere. In particular, there is no continuous solution for this
problem.
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Discontinuous dual solution

Figure: An optimal measure for the cost function max(0, x + y + 3z − 3)
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