(3, 2)-Monge-Kantorovich problem

Alexander Zimin
HSE, Moscow
alekszm@gmail.com

Primal and Dual (n, k)-problem

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are topological spaces with σ-algebras $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$, \mathcal{B}_{n} respectively.
Let $\operatorname{Pr}_{X_{i_{1}} \times \cdots \times X_{i_{k}}}$, $\operatorname{Pr}_{\text {l }}$ be the projection operator from $X=X_{1} \times \cdots \times X_{n}$ to the coordinate k-dimensional subspace $X_{i_{1}} \times \cdots \times X_{i_{k}}$.

$$
\mathcal{I}_{k}=\left\{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n\right\} .
$$

For any multi-index $I=\left(i_{1}, \ldots i_{k}\right) \in \mathcal{I}_{k}$ there is given a measure μ_{I} on the space $X_{i_{1}} \times \ldots \times X_{i_{k}}$.

$$
\mathcal{P}_{\mu}=\left\{\mu \mid \operatorname{Pr}_{I} \mu=\mu_{I} \text { for any } I \in \mathcal{I}_{k}\right\}
$$

Also, assume $c: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a cost function.

Primal and Dual (n, k)-problem

Definition

Primal (n, k)-problem is a problem of minimization of the functional

$$
P(\pi)=\int_{X} c\left(x_{1}, \ldots, x_{n}\right) d \pi
$$

over $\pi \in \mathcal{P}_{\mu}$.

Definition

Dual (n, k)-problem is a problem of maximization of the functional

$$
D\left(\left\{f_{l}\right\}\right)=\sum_{l \in \mathcal{I}_{k}} \int f_{l}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) d \mu_{l}
$$

over (integrable) functions $\left\{f_{l}\right\}$ such that $\sum_{l} f_{l}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \leq c\left(x_{1}, \ldots, x_{n}\right)$.

Duality

Theorem (Duality)

Suppose X_{i} are compact metric spaces, $c \geq 0$ is a continuous cost function. Then the following equality holds:

$$
\min _{\mu \in \mathcal{P}_{\mu}} I[\mu]=\sup _{f_{l} \in L^{1}\left(\mu_{l}\right)} \sum_{l \in \mathcal{I}_{k}} \int f_{l}\left(x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{k}}\right) d \mu
$$

Here one takes supremum over functions f_{l} such that

$$
\sum_{l} f_{l}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right) \leq c\left(x_{1}, \ldots, x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in X$.

Proof of duality

Duality theorem is proved in [G, Z, Kolesnikov, 2018] using the technique from [Villani, 2003]. The proof uses the following theorem:

Theorem (Fenchel-Rockafellar duality)

Let E be a normed vector space and E^{*} be the corresponding topologically dual space. Consider convex functionals Φ, Ψ on E with values in $\mathbb{R} \cup\{+\infty\}$. Let Φ^{*}, Ψ^{*} be their Legendre transforms. Assume that there exists a point $z \in E$ satisfying $\Phi(z)<+\infty, \Psi(z)<+\infty$ and Φ is continuous at z. Then

$$
\inf (\Phi+\Psi)=\max \left(-\Phi^{*}\left(-z^{*}\right)-\Psi^{*}\left(z^{*}\right)\right)
$$

Prove of duality

Assume E is a space of continuous functions on X. By the Riesz-MarkovKakutani representation theorem E^{*} is the space of finite signed measures on X.

$$
\begin{gathered}
\Phi(u)=\left\{\begin{array}{ll}
0 \text { if } u \geq-c, \\
+\infty \text { else. }
\end{array} \quad \Psi(u)= \begin{cases}\sum_{l \in \mathcal{I}_{k}} \int f_{l} d \mu_{l} & \text { if } u=\sum_{l} f_{l}, \\
+\infty & \text { else. }\end{cases} \right. \\
\inf (\Phi(u)+\Psi(u))=-\sup _{\sum_{l} f_{l} \leq c} \sum_{l} \int f_{l} d \mu_{l}
\end{gathered}
$$

After Legendre transformation one obtains:

$$
\Phi^{*}(-\pi)=\left\{\begin{array}{l}
\int c d \pi, \text { if } \pi \geq 0, \\
+\infty, \text { else }
\end{array} \quad \Psi^{*}(\pi)=\left\{\begin{array}{l}
0, \text { if } \pi \in \mathcal{P}_{\mu} \\
+\infty, \text { else }
\end{array}\right.\right.
$$

Therefore $\max \left(-\Phi^{*}\left(-z^{*}\right)-\Psi^{*}\left(z^{*}\right)\right)=-\min _{\pi \in \mathcal{P}_{\mu}} \int c d \pi$.

The following plan

- Under which assumptions there exists at least one measure with given projections?
- Under which assumptions there exist dual solutions?
- Is dual solution bounded? Is it continuous?

Existence of a uniting measure

Definition

Uniting measures - measures in \mathcal{P}_{μ}.

Unlike classical Monge-Kantorovich problem the set of measures with needed projections can be empty.

Proposition (Weak sufficient condition)

The set \mathcal{P}_{μ} is non-empty (there exist uniting measures) if $\mu_{I}=\mu_{i_{1}} \times \cdots \times$ $\mu_{i_{k}}, I=\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}$ for some probability measures $\mu_{1}, \ldots \mu_{n}$ on respective spaces X_{1}, \ldots, X_{n}.

Proposition (Weak necessary condition)

Suppose \mathcal{P}_{μ} is non-empty; then for any $I, J \in \mathcal{I}_{k}$ there holds

$$
\operatorname{Pr}_{I \cap J} \mu_{I}=\operatorname{Pr}_{I \cap J} \mu_{J}
$$

Existence of a uniting measure

Weak necessary condition is not sufficient. Suppose $X=Y=Z=\{0,1\}$. Define measures on $X \times Y, X \times Z$ and $Y \times Z$

$\mu_{x y}$

$\mu_{x z}$

$\mu_{y z}$

There is no uniting measure for $\mu_{x y}, \mu_{x z}$ and $\mu_{y z}$ but there exists uniting signed measure.

Notation for (3, 2)-problem

Suppose X, Y, Z are some measurable spaces; assume $\mu_{x y}, \mu_{x z}, \mu_{y z}$ are finite measures on $X \times Y, Y \times Z, X \times Z$. For the existence of a measure μ on $X \times Y \times Z$ with projections $\mu_{x y}, \mu_{x z}, \mu_{y z}$ the following equalities must hold:

$$
\begin{aligned}
& \operatorname{Pr} r_{x} \mu_{x y}=\operatorname{Pr} r_{x} \mu_{x z}=\mu_{x}, \\
& \operatorname{Pr} r_{y} \mu_{x y}=\operatorname{Pr} r_{y} \mu_{y z}=\mu_{y}, \\
& \operatorname{Pr} r_{z} \mu_{x z}=\operatorname{Pr} \operatorname{rr}_{y} \mu_{y z}=\mu_{z} .
\end{aligned}
$$

Also let $\nu_{x}, \nu_{y}, \nu_{z}$ be arbitrary finite measures on X, Y, Z.

Existence of a uniting measure in $(3,2)$

We recall the existence of the uniting measure in case $\mu_{x y}=\mu_{x} \times \mu_{y}, \mu_{x z}=$ $\mu_{x} \times \mu_{z}, \mu_{y z}=\mu_{y} \times \mu_{z}$. For example, there fits the measure $\mu_{x} \times \mu_{y} \times \mu_{z}$. The following theorem gives a generalization of this construction:

Theorem (Density condition)

Suppose X, Y, Z are spaces equipped with finite measures $\nu_{x}, \nu_{y}, \nu_{z}$. Suppose that $\mu_{x y}, \mu_{x z}, \mu_{y z}$ are absolutely continuous with respect to $\nu_{x} \times \nu_{y}, \nu_{x} \times$ $\nu_{z}, \nu_{y} \times \nu_{z}$ respectively. Assume $p_{x y}, p_{x z}, p_{y z}$ are the respective densities. If for $\lambda \leq \frac{3}{2}$ there holds

$$
1 \leq p_{x y}, p_{x z}, p_{y z} \leq \lambda,
$$

then there exists a uniting measure for $\mu_{x y}, \mu_{x z}$ and $\mu_{y z}$.

Existence of a uniting measure in $(3,2)$

It's sufficient to prove the density condition theorem only for $\lambda=\frac{3}{2}$. Without loss of generality $\nu_{x}, \nu_{y}, \nu_{z}$ are probability measures.

$$
M=\mu_{x y}(X \times Y)=\mu_{x z}(X \times Z)=\mu_{y z}(Y \times Z)
$$

Assume p_{x}, p_{y}, p_{z} are the densities of $\mu_{x}, \mu_{y}, \mu_{z}$ with respect to $\nu_{x}, \nu_{y}, \nu_{z}$. There holds $1 \leq p_{x}, p_{y}, p_{z}, M \leq \lambda$.
For example, if $M=\lambda$, the following equalities hold: $\mu_{x y}=\lambda\left(\nu_{x} \times \nu_{y}\right), \mu_{x z}=$ $\lambda\left(\nu_{x} \times \nu_{z}\right), \mu_{y z}=\lambda\left(\nu_{y} \times \nu_{z}\right)$. The measure $\mu=\lambda\left(\nu_{x} \times \nu_{y} \times \nu_{z}\right)$ has projections $\mu_{x y}, \mu_{x z}$ and $\mu_{y z}$. The same argument works for $M=1$.

Existence of a uniting measure in $(3,2)$

The following signed measure is uniting

$$
\begin{aligned}
& \mu=\frac{4}{M^{2}} \mu_{x} \times \mu_{y} \times \mu_{z}- \\
& \left.\quad \begin{array}{rl}
-\frac{2}{M}\left(\nu_{x} \times \mu_{y} \times \mu_{z}+\mu_{x} \times \nu_{y} \times \mu_{z}+\mu_{x} \times \mu_{y} \times \nu_{z}\right)+ \\
& +2\left(\mu_{x y} \times \nu_{z}\right.
\end{array} \quad+\mu_{x z} \times \nu_{y}+\mu_{y z} \times \nu_{x}\right)- \\
& \quad-\frac{1}{M}\left(\mu_{x y} \times \mu_{z}+\mu_{x z} \times \mu_{y}+\mu_{y z} \times \mu_{x}\right)
\end{aligned}
$$

since

$$
\begin{aligned}
\operatorname{Pr}_{X Y} \mu=\frac{4}{M} \mu_{x} \times & \mu_{y}-2 \nu_{x} \times \mu_{y}-2 \mu_{x} \times \nu_{y}-\frac{2}{M} \mu_{x} \times \mu_{y}+ \\
& +2 \mu_{x y}+2 \mu_{x} \nu_{y}+2 \nu_{x} \mu_{y}-\mu_{x y}-\frac{2}{M} \mu_{x} \times \mu_{y}=\mu_{x y}
\end{aligned}
$$

Existence of a uniting measure in $(3,2)$

Check the non-negativity of this measure. To this end, check

$$
\begin{aligned}
\frac{4}{M^{2}} a_{1} b_{1} c_{1}-\frac{2}{M}\left(a_{1} b_{1}+a_{1} c_{1}+b_{1} c_{1}\right)+ & 2\left(a_{2}+b_{2}+c_{2}\right)- \\
& -\frac{1}{M}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right) \geq 0
\end{aligned}
$$

for $1 \leq a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, M \leq \frac{3}{2}$. This expression is greater than $\varepsilon(M)>$ 0 for all $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$, and $M \in\left(1, \frac{3}{2}\right)$.

Proposition

In the assumptions of the density condition there exists a uniting measure μ absolutely continuous with respect to $\nu_{x} \times \nu_{y} \times \nu_{z}$; the density of this measure is bounded and separated from zero.

Existence of a uniting measure

Theorem

For $\lambda \leq 2$ there exists a (not necessary absolutely continuous) uniting measure μ.

For $\lambda>2$ this theorem fails.
Most of the results can be generalized to (n, k)-problem.

Theorem

Suppose $\left\{\mu_{I} \mid I \in \mathcal{I}_{k}\right\}$ satisfy the weak necessary conditions. Then there exists a signed measure μ such that

$$
\operatorname{Pr}_{I} \mu=\mu_{I}, I \in \mathcal{I}_{k} .
$$

There exists an analogue of density condition in (n, k)-problem for some $\lambda_{n, k}$.

$(3,2)$-function

Definition

A function $F: X \times Y \times Z \rightarrow \mathbb{R}$ is called a (3,2)-function if there exist functions $f_{x y}, f_{x z}, f_{y z}$ such that

$$
F(x, y, z)=f_{x y}(x, y)+f_{x z}(x, z)+f_{y z}(y, z)
$$

for any $(x, y, z) \in X \times Y \times Z$.

Proposition

F is a (3,2)-function iff for any $x_{0}, x_{1} \in X, y_{0}, y_{1} \in Y, z_{0}, z_{1} \in Z$ there holds

$$
\begin{aligned}
& F\left(x_{0}, y_{0}, z_{0}\right)+F\left(x_{1}, y_{1}, z_{0}\right)+F\left(x_{1}, y_{0}, z_{1}\right)+F\left(x_{0}, y_{1}, z_{1}\right)= \\
& \quad=F\left(x_{1}, y_{1}, z_{1}\right)+F\left(x_{1}, y_{0}, z_{0}\right)+F\left(x_{0}, y_{1}, z_{0}\right)+F\left(x_{0}, y_{0}, z_{1}\right)
\end{aligned}
$$

(3, 2)-function

For any (3,2)-function F the sum of the values in the red points equals the sum of the values in the blue points.

$(3,2)$-function

One can construct $f_{x y}, f_{x z}, f_{y z}$ using $(3,2)$-function F.

Proposition

Suppose F is a (3,2)-function, $\left(x_{0}, y_{0}, z_{0}\right)$ is an arbitrary point of $X \times Y \times Z$.

$$
\begin{aligned}
f_{x y}(x, y) & =F\left(x, y, z_{0}\right)-\frac{1}{2} F\left(x, y_{0}, z_{0}\right)-\frac{1}{2} F\left(x_{0}, y, z_{0}\right)+\frac{1}{3} F\left(x_{0}, y_{0}, z_{0}\right), \\
f_{x z}(x, z) & =F\left(x, y_{0}, z\right)-\frac{1}{2} F\left(x, y_{0}, z_{0}\right)-\frac{1}{2} F\left(x_{0}, y_{0}, z\right)+\frac{1}{3} F\left(x_{0}, y_{0}, z_{0}\right), \\
f_{y z}(y, z) & =F\left(x_{0}, y, z\right)-\frac{1}{2} F\left(x_{0}, y_{0}, z\right)-\frac{1}{2} F\left(x_{0}, y, z_{0}\right)+\frac{1}{3} F\left(x_{0}, y_{0}, z_{0}\right) .
\end{aligned}
$$

Then $F(x, y, z)=f_{x y}(x, y)+f_{x z}(x, z)+f_{y z}(y, z)$.

Definition

The functions $f_{x y}, f_{x z}, f_{y z}$ from the proposition above are called frame functions of $(3,2)$-function F at the point $\left(x_{0}, y_{0}, z_{0}\right)$.

$(3,2)$-function

Remark

Suppose $F=f_{x y}+f_{x z}+f_{y z}$ and $f_{x y} \in L^{1}\left(\mu_{x y}\right), f_{x z} \in L^{1}\left(\mu_{x z}\right), f_{y z} \in L_{1}\left(\mu_{y z}\right)$. Then $F \in L^{1}(\mu)$ for any uniting measure μ.
But it's not true, that if F is a $(3,2)-$ function and $F \in L^{1}(\mu)$ for a uniting measure μ, then there exist $f_{x y} \in L^{1}\left(\mu_{x y}\right), f_{x z} \in L^{1}\left(\mu_{x z}\right), f_{y z} \in L_{1}\left(\mu_{y z}\right)$ such that $F=f_{x y}+f_{x z}+f_{y z}$.

Definition

Measures μ and ν are called uniformly equivalent if $L^{1}(\mu)=L^{1}(\nu) \Leftrightarrow$ $d \mu=r d \nu$ for some bounded and separated from zero density function r. A measure μ on the space $X \times Y \times Z$ is called almost product if there exist measures $\nu_{x}, \nu_{y}, \nu_{z}$ such that μ is uniformly equivalent to $\nu_{x} \times \nu_{y} \times \nu_{z}$. It's easy to prove that it's sufficient to take $\operatorname{Pr}_{X} \mu, \operatorname{Pr}_{Y} \mu, \operatorname{Pr}_{Z} \mu$ as $\nu_{x}, \nu_{y}, \nu_{z}$.

$(3,2)$-function

Theorem

Denote by F a (3,2)-function on the space $X \times Y \times Z, \mu$ is a finite uniting measure on $X \times Y \times Z$; suppose that μ is almost product. Suppose $F \in L^{1}(\mu)$; then for almost all $\left(x_{0}, y_{0}, z_{0}\right) \in X \times Y \times Z$ the frame functions $f_{x y}, f_{x z}, f_{y z}$ are integrable with respect to $\mu_{x y}, \mu_{x z}, \mu_{y z}$.

Corollary

Assume μ and ν are measures on the space $X \times Y \times Z$ such that there holds

$$
\operatorname{Pr}_{X Y} \mu=\operatorname{Pr}_{X Y} \nu, \operatorname{Pr}_{X Z} \mu=\operatorname{Pr}_{X Z} \nu, \operatorname{Pr}_{Y Z} \mu=\operatorname{Pr}_{Y Z} \nu
$$

Suppose μ is almost product; $F \in L^{1}(\mu)$ is a $(3,2)$-function. Then $F \in$ $L^{1}(\nu)$ and

$$
\int F d \mu=\int F d \nu
$$

Existence of a solution of the dual $(3,2)$-problem

Definition (Dual $(3,2)$-problem)

Suppose $\mu_{x y}, \mu_{x z}, \mu_{y z}$ are the measures on $X \times Y, X \times Z, Y \times Z$; c is a cost function on $X \times Y \times Z$. Dual (3,2)-problem is a problem of maximization

$$
\int f_{x y} d \mu_{x y}+\int f_{x z} d \mu_{x z}+\int f_{y z} d \mu_{y z}
$$

over (integrable) functions $f_{x y}, f_{x z}, f_{y z}$ such that $f_{x y}(x, y)+f_{x z}(x, z)+$ $f_{y z}(y, z) \leq c(x, y, z)$.

Definition (Dual (3, 2)-problem)

Suppose μ is a measure on $X \times Y \times Z$ with the projections $\mu_{x y}, \mu_{x z}, \mu_{y z} ; c$ is a cost function. Dual (3,2)-problem is a problem of maximization $\int F d \mu$ over (integrable) $(3,2)$-functions F such that $F \leq c$.

This definitions are equivalent if μ is almost product.

Existence of a solution of the dual $(3,2)$ - problem

Theorem

Assume μ is a probability measure on $X \times Y \times Z$ and c is a cost function such that $c(x, y, z) \leq c_{x y}(x, y)+c_{x z}(x, z)+c_{y z}(y, z)$ for some (integrable) $c_{x y}, c_{x z}, c_{y z}<+\infty$. Suppose μ is almost product. Assume that c is greater than some $(3,2)-$ function. Then there exist integrable with respect to $\mu_{x y}$, $\mu_{x z}$ and $\mu_{y z}$ functions $-\infty \leq f_{x y}, f_{x z}, f_{y z}<+\infty$ such that $F_{0}=f_{x y}+f_{x z}+$ $f_{y z} \leq c$, and $\sup _{F \leq c} \int F d \mu=\int F_{0} d \mu$.

Remark

The same conditions for ($n, 1$)-problem were used in [Kellerer 1984]

Existence of a solution of the dual $(3,2)$-problem

Without loss of generality we can assume that $c \leq 0$.

Theorem (Komlosh)

Let (X, \mathcal{A}, μ) be a finite measure space. Suppose $\left\{f_{n}\right\} \subset L^{1}(\mu)$ and $\sup _{n}\left\|f_{n}\right\|_{L^{1}(\mu)}<\infty$. Then there exists a subsequence $\left\{g_{n}\right\} \subset\left\{f_{n}\right\}$ and a function $g \in L^{1}(\mu)$ such that for any subsequence $\left\{h_{n}\right\} \subset\left\{g_{n}\right\}$ arithmetic means of the first n partial sums $\left(h_{1}+\cdots+h_{n}\right) / n$ tend to g almost everywhere.

By this theorem, there exists a sequence of (3,2)-functions $\left\{F_{n}\right\} \subset L^{1}(\mu)$ and $F \in L^{1}(\mu)$ such that $F_{n} \leq c, \lim _{n \rightarrow \infty} \int F_{n} d \mu=\sup _{F \leq c} \int F d \mu$ and F_{n} tend to F almost everywhere.

Existence of a solution of the dual $(3,2)$-problem

All the functions F_{n} are bounded from above. Therefore, it follows from reverse Fatou's lemma, that $\int F d \mu \geq \lim _{n \rightarrow \infty} \int F_{n} d \mu=\sup _{F \leq c} \int F d \mu$.

Definition

A point $(x, y, z) \in X \times Y \times Z$ is called regular if $\lim _{n \rightarrow+\infty} F_{n}(x, y, z)=$ $F(x, y, z) \neq \infty$.

For F and $\left(x_{0}, y_{0}, z_{0}\right) \in X \times Y \times Z$ we define $f_{x y}, f_{x z}, f_{y z}$ as follows:

$$
f_{x y}(x, y)=\left\{\begin{array}{l}
F\left(x, y, z_{0}\right)-\frac{1}{2} F\left(x, y_{0}, z_{0}\right)-\frac{1}{2} F\left(x_{0}, y, z_{0}\right)+\frac{1}{3} F\left(x_{0}, y_{0}, z_{0}\right) \\
\text { if }\left(x, y, z_{0}\right),\left(x, y_{0}, z_{0}\right),\left(x_{0}, y, z_{0}\right),\left(x_{0}, y_{0}, z_{0}\right) \text { are regular } \\
-\infty \text { otherwise }
\end{array}\right.
$$

$f_{y z}, f_{x z}$ are constructed in the same way.

Existence of a solution of the dual $(3,2)$-problem

Lemma

For almost all points $\left(x_{0}, y_{0}, z_{0}\right) \in X \times Y \times Z$ the functions $f_{x y}, f_{x z}, f_{y z}$ from the previous slide are so that

- $f_{x y}, f_{x z}, f_{y z}$ are integrable with respect to $\mu_{x y}, \mu_{x z}, \mu_{y z}$,
- $f_{x y}+f_{x z}+f_{y z} \leq F$,
- $f_{x y}+f_{x z}+f_{y z}=F$ almost everywhere.

This lemma is proved by Fubini's theorem.
Then the functions $f_{x y}, f_{x z}, f_{y z}$ are the solution of the dual problem. Q.E.D.

Remark

The same technique works for (n, k).

Nonexistence of a dual solution

Aim: construct a measure μ and a bounded cost function c such that there exists no «maximal» (3, 2)-function for the related dual problem. So, measure μ will not be almost product.
Suppose $X=Y=Z=\mathbb{N}$ are discrete measurable spaces. Assume $p_{n}=\frac{1}{n^{2}}$. Denote by A_{n} the set $\{(n+1, n, n),(n, n+1, n),(n, n, n+$ $1),(n, n+1, n+1),(n+1, n, n+1),(n+1, n+1, n)\}$ for any $n \in \mathbb{N}$. Denote by μ the following measure on $X \times Y \times Z$:

$$
\mu(x, y, z)= \begin{cases}p_{n} & \text { if }(x, y, z) \in A_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Denote by $\mu_{x y}, \mu_{x z}, \mu_{y z}$ the projections of μ. Suppose

$$
c(x, y, z)= \begin{cases}1 & \text { if }(x, y, z) \in\{(n+1, n, n),(n, n+1, n),(n, n, n+1)\} \\ 0 & \text { otherwise }\end{cases}
$$

is a cost function.

Nonexistence of a dual solution

Support of μ is the set of colored points. The cost function equals 1 on the blue points and 0 elsewhere.

Nonexistence of a dual solution

Lemma

There exists a unique uniting measure μ for $\mu_{x y}, \mu_{x z}, \mu_{y z}$.
Let ν be a measure with projections $\mu_{x y}, \mu_{x z}, \mu_{y z}$. Then ν is supported on $\{(x, y, z) \mid \max (|x-y|,|x-z|,|y-z|) \leq 1\}$. Assume $a_{n}=\nu(n, n, n)$. It's easy to prove that

$$
\begin{aligned}
& \nu(n+1, n, n)=\nu(n, n+1, n)=\nu(n, n, n+1)=p_{n}-\sum_{i=1}^{n} a_{n} \\
& \nu(n, n+1, n+1)=\nu(n+1, n, n+1)=\nu(n+1, n+1, n)=p_{n}+\sum_{i=1}^{n} a_{n}
\end{aligned}
$$

p_{n} tend to 0 . Therefore, if $a_{k}>0$ for some k, then there exists $n \in \mathbb{N}$ such that

$$
\nu(n+1, n, n)<0 .
$$

Nonexistence of a dual solution

In particular μ is the primal solution of the related (3,2)-problem. Suppose F is the dual problem solution. It follows from the complementary slackness conditions that:

$$
\begin{aligned}
& F(n+1, n, n)=F(n, n+1, n)=F(n, n, n+1)=1 \\
& F(n, n+1, n+1)=F(n+1, n, n+1)=F(n+1, n+1, n)=0
\end{aligned}
$$

It follows from the property of $(3,2)$-function that $F(n+1, n+1, n+1)$ $F(n, n, n)=-3$. Since $F(1,1,1) \leq 0$, we obtain $F(n, n, n) \leq 3-3 n$. If $F=f_{x y}+f_{x z}+f_{y z}$ then there folds

$$
\int\left|f_{x y}\right| d \mu_{x y}+\int\left|f_{x z}\right| d \mu_{x z}+\int\left|f_{y z}\right| d \mu_{y z} \geq \sum_{n=1}^{+\infty}(3 n-3) p_{n}=+\infty
$$

Boundedness of a dual solution

Remark

In the classical Monge-Kantorovich problem if the cost function is bounded then there exists a bounded dual solution.

Theorem

Assume $X=Y=Z=\mathbb{N} ; \mu_{x}, \mu_{y}, \mu_{z}$ are probability measures on X, Y, Z. Suppose $\mu_{x y}=\mu_{x} \times \mu_{y}, \mu_{x z}=\mu_{x} \times \mu_{z}, \mu_{y z}=\mu_{y} \times \mu_{z} ; c$ is a cost function such that $0 \leq c \leq 1$. Denote by F a dual solution of $(3,2)-$ problem with projections $\mu_{x y}, \mu_{x z}, \mu_{y z}$ and the cost function c. Then $-12 \leq F$ almost everywhere.

Remark

In the (3,2)-problem for compact metric spaces X, Y, Z, bounded c and almost product μ primal solution is bounded.

Boundedness of a dual solution

Assume $\mu=\mu_{x} \times \mu_{y} \times \mu_{z}$ and opt is the primal solution.
Complementary slackness:

$$
\operatorname{opt}(x, y, z)=0 \text { или } F(x, y, z)=c(x, y, z)
$$

Proposition

For arbitrary probability measure ν there holds $\int F d \nu \leq 1$. If the support of ν is a subset of the support of opt then $\int F d \nu=\int c d \nu \geq 0$.

Lemma

For every z_{0} such that $\mu_{z}\left(z_{0}\right)>0$ there holds

$$
\int_{z=z_{0}} F\left(x, y, z_{0}\right) d \mu_{x} \times \mu_{y} \geq-1+\int_{X \times Y \times Z} F d \mu
$$

Boundedness of a dual solution

Consider signed μ_{0} :
$\mu_{0}(x, y, z)=$
$=$

Boundedness of a dual solution

Consider signed μ_{0} :

$$
\begin{aligned}
& \mu_{0}(x, y, z)= \\
& =\frac{1}{\mu_{z}\left(z_{0}\right)} \operatorname{opt}(x, y, z) \delta_{z_{0}}(z)
\end{aligned}
$$

Boundedness of a dual solution

Consider signed μ_{0} :

$$
\begin{aligned}
& \mu_{0}(x, y, z)= \\
& =\frac{1}{\mu_{z}\left(z_{0}\right)} \operatorname{opt}(x, y, z) \delta_{z_{0}}(z) \\
& -\frac{1}{\mu_{z}\left(z_{0}\right)} \operatorname{opt}\left(x, y, z_{0}\right) \mu_{z}(z)
\end{aligned}
$$

Boundedness of a dual solution

Consider signed μ_{0} :

$$
\begin{aligned}
& \mu_{0}(x, y, z)= \\
& =\frac{1}{\mu_{z}\left(z_{0}\right)} \operatorname{opt}(x, y, z) \delta_{z_{0}}(z) \\
& -\frac{1}{\mu_{z}\left(z_{0}\right)} \operatorname{opt}\left(x, y, z_{0}\right) \mu_{z}(z) \\
& +\mu(x, y, z)
\end{aligned}
$$

Boundedness of a dual solution

Easy to check that

$$
\begin{aligned}
& \operatorname{Pr}_{X \times Y} \mu_{0}=\mu_{x} \times \mu_{y}, \\
& \operatorname{Pr} r_{\times \times Z} \mu_{0}=\mu_{X} \times \delta_{z_{0}}, \\
& \operatorname{Pr}_{Y \times z}, \mu_{0}=\mu_{y} \times \delta_{z_{0}},
\end{aligned}
$$

So projections of μ_{0} coincide with those of $\mu_{x} \times \mu_{y} \times \delta_{z_{0}}$.
Then

$$
\int F\left(x, y, z_{0}\right) d \mu_{x} \times \mu_{y}=\int F(x, y, z) d \mu_{0} \geq 0-1+\int F d \mu
$$

Boundedness of a dual solution

Let $\mu\left(x_{0}, y_{0}, z_{0}\right)>0$. Then there exist x_{1}, y_{1}, z_{1} such that

$$
\operatorname{opt}\left(x_{1}, y_{0}, z_{0}\right)>0, \operatorname{opt}\left(x_{0}, y_{1}, z_{0}\right)>0, \operatorname{opt}\left(x_{0}, y_{0}, z_{1}\right)>0 .
$$

Consider

$$
\begin{aligned}
\mu_{1}= & \delta_{x_{1}} \times \delta_{y_{0}} \times \delta_{z_{0}}+\delta_{x_{0}} \times \delta_{y_{1}} \times \delta_{z_{0}}+\delta_{x_{0}} \times \delta_{y_{0}} \times \delta_{z_{1}}- \\
& -\left(\delta_{y_{0}} \times \delta_{z_{1}}+\delta_{y_{1}} \times \delta_{z_{0}}\right) \times \mu_{x}-\left(\delta_{x_{0}} \times \delta_{z_{1}}+\delta_{x_{1}} \times \delta_{z_{0}}\right) \times \mu_{y}- \\
& -\left(\delta_{x_{0}} \times \delta_{y_{1}}+\delta_{x_{1}} \times \delta_{y_{0}}\right) \times \mu_{z}+\left(\delta_{x_{0}}+\delta_{x_{1}}\right) \times \mu_{y} \times \mu_{z}+ \\
& +\left(\delta_{y_{0}}+\delta_{y_{1}}\right) \times \mu_{x} \times \mu_{z}+\left(\delta_{z_{0}}+\delta_{z_{1}}\right) \times \mu_{x} \times \mu_{y}-2 \mu_{x} \times \mu_{y} \times \mu_{z}
\end{aligned}
$$

Projections of μ_{1} coincide with those of $\delta_{x_{0}} \times \delta_{y_{0}} \times \delta_{z_{0}}$. That means

$$
F\left(x_{0}, y_{0}, z_{0}\right)=\int F d \mu_{1} \geq-12+4 \int F d \mu .
$$

Corollary

There exists a bounded dual solution.

Discontinuous dual solution

Theorem

Assume $X=Y=Z=[0,1] ; \mu_{x y}, \mu_{x z}, \mu_{y z}$ are Lebesgue measures on $[0,1]^{2}$. Suppose $c=\max (0, x+y+3 z-3)$ is a cost function. Then any dual solution of the related dual problem equals

$$
F(x, y, z)= \begin{cases}0 & \text { if } z \leq \frac{2}{3} \\ x+y+3 z-3 & \text { if } z>\frac{2}{3}\end{cases}
$$

almost everywhere. In particular, there is no continuous solution for this problem.

Discontinuous dual solution

Figure: An optimal measure for the cost function $\max (0, x+y+3 z-3)$

