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The multimarginal MK problem

We generalize the classical Monge-Kantorovich problem to the case of N probability
measures µk ∈ P(Xk) and a cost function c : X1 × · · · × XN → R.

Problem
(Primal problem) Find a transport plan π taken from the space of measures
Π(µ1, . . . , µN) with fixed marginals that minimizes the functional∫

X1×···×XN

c(x1, . . . , xN)π(dx1, . . . , dxN)→ inf .

(Dual problem) Find the supremum of the functional

N∑
k=1

∫
Xk

ϕk(xk)µk(dxk)→ sup

over all functions (ϕk)Nk=1 satisfying the inequality
∑N

k=1 ϕk(xk) ≤ c(x1, . . . , xN).
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The multimarginal Wasserstein Barycenter

Problem (Wasserstein barycenter)

Given N marginals µk ∈ P(Rd), having finite second moment, and N real weights
λi with λ1 + · · ·+ λN = 1. Solve

inf

{
N∑
i=1

λiW
2
2 (µk , ν) : ν ∈ P(Rd)

}
, (CB)

where the measure ν is the barycenter and W2 is the 2-Wasserstein distance,
namely the optimal transport problem with the quadratic cost.

If x1, . . . , xN ∈ Rd , then the barycenter B(x) = λ1x1 + · · ·+ λNxN minimizes the
functional

x →
N∑
i=1

λi |xi − x |2.
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Example of OT barycenters

Figure: Example of OT barycenters with entropic regularization. This example was taken
from the work of Luca Nenna [Nen16]
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Multimarginal formulation of the Barycenter problem

For every x := (x1, . . . , xN) ∈ (Rd)N define its Euclidean barycenter

B(x) := λ1x1 + · · ·+ λNxN .

Let us now introduce the multimarginal optimal transportation problem

inf

{∫ ( N∑
i=1

λi |xi − B(x)|2
)
γ(dx1, . . . , dxN) : γ ∈ Π(µ1, . . . , µN)

}
. (MB)

Theorem (Agueh & Carlier, [AC11])
Assume that µi vanishes on small sets for i = 1, . . . ,N. Then optimal values in
classical (CB) and multimarginal (MB) barycenter problems are the same and the
solution of (CB) is given by ν = B#(γ), where γ is the solution of (MB) and
B(x) = λ1x1 + · · ·+ λNxN .
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The repulsive harmonic cost

For the case of equal λi the cost function
∑N

i=1 λi |xi −B(x)|2 is equivalent to the
so-called Gangbo-Świȩch cost function

∑
i<j |xi − xj |2, after the seminal work of

Gangbo and Świȩch [GS98].

Problem (Multimarginal OT with the repulsive harmonic cost)

The repulsive harmonic cost function is a function having the form c(x1, . . . , xN) =
−
∑N

i ,j=1 |xi − xj |2. In the multimarginal OT with the repulsive harmonic cost we
need to optimize

∫ ∑N
i ,j=1−|xi − xj |2 dγ → inf, γ ∈ Π(µ1, . . . , µN).

Since the cost function is “repulsive”, if Monge-type solutions exist, they should
follow the rule "the further, the better!", which means that we want to move the
mass as much as we can. In other words, in the present case, optimal transport
plans tend to be as spread as possible.
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The 2-marginals case

Consider the case of 2 marginals with d = 1. Then the cost function has the form
−(x−y)2, which is equivalent to the cost function (x +y)2 up to one-dimensional
functions. The following lemma shows that in this case the solution to the problem
is a Monge-type solution and concentrated on the graph of non-increasing function.

Lemma
Let µ and ν be probability measures on the real line, and let c(x , y) = h(x + y),
where h : R→ [0,+∞) is a convex function. Assume that µ has no atoms. Then
there exists a non-increasing function T : R→ R such that T#(µ) = ν and∫

h(x + T (x))µ(dx) = min

{∫
h(x + y) γ(dx , dy) : γ ∈ Π(µ, ν)

}
.

This case is similar to the case of the classical square-distance cost function.
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Flat tuple of measures

The cost function −
∑N

i ,j=1 |xi − xj |2 is trivially equivalent to the cost function
|x1 + · · · + xN |2. Since |x1 + · · · + xN |2 ≥ 0 and the equality is attained on the
hyperplane x1 + · · ·+xN = 0, every transport plan concentrated on this hyperplane
is optimal. In [MGN17] authors prove the following generalization of this trivial
observation:

Theorem (Di Marino & Gerolin & Nenna)

Let {µk}Nk=1 be probability measures on Rd and h : Rd → R be a strictly
convex function and suppose c : (Rd)N → R be a cost function of the form
c(x1, . . . , xN) = h(x1 + · · · + xN). Then if there exists a plan γ ∈ Π(x1, . . . , xN)
concentrated on the hyperplane of the form x1 + · · ·+xN = C , this plan is optimal
for the multimarginal problem with cost c .

Definition
In this case we will say that γ is a flat optimal plan and {µk}Nk=1 is a flat N-tuple
of measures.
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Economical applications

It would be useful to formulate the previous problem in economical terms. Assume
that X1, . . . ,XN are random variables, corresponding to the random losses for given
business lines or risk types, over a fixed time period. An aggregate loss variable S
has the form

S =
N∑
i=1

Xi .

In practice, there exist efficient and accurate statistical techniques to estimate
the respective marginal distributions of X1, . . . ,XN . On the other hand, the joint
dependence structure of X = (X1, . . . ,XN) is often much more difficult to capture.
At the same time, regulators and companies are usually more concerned about
a risk measure ρ(S) instead of the exact dependence structure of X itself. This
scenario is referred to as risk aggregation with dependence uncertainty, and
has been extensively studied in quantitative risk management.
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Economical applications. Value-at-Risk (VaR)

One of the most famous risk aggregation measures is the Value-at-Risk (VaR).
VaR of the aggregate risk S , calculated at a probability level α ∈ (0, 1), is the
α-quantile of its distribution, defined as

VaRα(S) = F−1
S (α) = inf{x : P(S ≤ x) ≥ α}.

Value-at-Risk is a key metric used as a risk management constraint within portfolio
optimization. For α typically close to 1, VaRα(S) is a measure of extreme loss,
i.e. P(S > VaRα(S)) ≤ 1− α is typically small.
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Economical applications. Value-at-Risk (VaR)

Since banks often have more precise information about the marginal distributions
Xi , but less about the aggregate risk S , we are interested in estimation of lower
and upper bound for VaRα(S) over all admissible risk S .
For given marginals µ1, . . . , µN , define

VaRα(S) = sup{VaRα(X1 + · · ·+ XN) : Xi ∼ µi},
VaRα(S) = inf{VaRα(X1 + · · ·+ XN) : Xi ∼ µi},

The bounds VaRα(S) and VaRα(S) are the worst-possible and, respectively, the
best-possible VaR for the aggregate risk S at the probability level α. Of course,
the choice of words best versus worst is arbitrarily and depends on the specific
application.
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Economical applications. Value-at-Risk (VaR)

Theorem (Bernard & Jiang & Wang, [BJW14])
Assume that every marginal distribution µk has positive density on its support.
For 1 ≤ k ≤ N, denote by µk,α the restriction of the marginal µk to the interval[
F−1
µk

(α),+∞
)
(upper tail), and by µαk the restriction of the marginal µk to the

interval
(
−∞,F−1

µk
(α)
]
(lower tail).

1. Assume that there is a flat transport plan γα concentrated on the hyperplane
{x1 + · · ·+ xN = Cα} with the marginals (µ1,α, . . . , µN,α). Then

VaRα(S) = Cα.

2. Assume that there is a flat transport plan γα concentrated on the hyperplane
{x1 + · · ·+ xN = Cα} with the marginals (µα1 , . . . , µ

α
N). Then

VaRα(S) = Cα.
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Normal distributions case

Example (Wang & Wang, [WW16])
Suppose that σ1, σ2, σ3 > 0 satisfy the inequality

2 max
1≤i≤3

σi ≤ σ1 + σ2 + σ3. (1)

Consider the random variable (X1,X2,X3) ∼ N (0,Σ), where

Σ =

 σ2
1

1
2(σ2

3 − σ2
1 − σ2

2) 1
2(σ2

2 − σ2
1 − σ2

3)
1
2(σ2

3 − σ2
1 − σ2

2) σ2
2

1
2(σ2

1 − σ2
2 − σ2

3)
1
2(σ2

2 − σ2
1 − σ2

3) 1
2(σ2

1 − σ2
2 − σ2

3) σ2
3

 .

One can easily verify that Σ is positive semi-definite and that E[(X1 +X2 +X3)2] =
0. Thus, the triplet of normal distributions (N (0, σ2

1),N (0, σ2
2),N (0, σ2

3)) is a flat
tuple under the condition (1).
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Uniform distributions

Theorem (Di Marino & Gerolin & Nenna, [MGN17])
Let µi = µ = Ld |[0,1]d be the uniform measure on the d-dimensional cube [0, 1]d ⊂
Rd and suppose that c is a cost function of the form c(x1, . . . , xN) = h(x1 + · · ·+
xN) for some strictly convex function h : Rd → R. Then there is a function
T : [0, 1]d → [0, 1]d such that TN(x) = x , T#µ = µ, and

min
γ∈Π(µi )

∫
c dγ =

∫
[0,1]d

c(x ,T (x),T 2(x), . . . ,TN−1(x)) dx .

Moreover, T is not differentiable at any point and it is a fractal map.
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Uniform distributions, construction

We express every z ∈ [0, 1] by its base-N system, z =
∑+∞

k=1
ak
Nk with ak ∈

{0, . . . ,N − 1}. Consider the map given by

S(z) =
+∞∑
k=1

S(ak)

Nk
,

where S is the permutation of N symbols such that S(i) = i +1 for 0 ≤ i ≤ N−2
and S(N − 1) = 0. The uniform measure on the interval (0, 1) is invariant under
this mapping. In addition,

S0(z) + · · ·+ SN−1(z) =
+∞∑
k=1

S0(ak) + · · ·+ SN−1(ak)

Nk
=

+∞∑
k=1

N(N − 1)

2Nk
=

N

2
.
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Uniform distributions, construction

Figure: The graph of the mapping
x → (x ,T (x),T 2(x)) for the case
N = 3, d = 1.

Let T : [0, 1]d → [0, 1]d be the map defined by

T (x) = T (z1, . . . , zd) = (S(z1), . . . ,S(zd)).

Since S maps the uniform distribution to itself,
the measure Ld |[0,1]d is also invariant under the
mapping T . Finally,

x + T (x) + · · ·+ TN−1(x) =

(
N

2
, . . . ,

N

2

)
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Necessary condition for flatness

Consider the case d = 1, and assume that the marginal µi is supported on an inter-
val (li , ri ) for i = 1, . . . ,N. Denote by E(µi ) the first moment of the distribution
µi : E(µi ) =

∫ ri
li
x µi (dx).

Proposition

Assume that the tuple (µ1, . . . , µN) is flat and that γ is a flat optimal plan con-
centrated on the hyperplane {x1 + · · ·+xN = C}. Then C = E(µ1) + · · ·+E(µN)
and the inequality

l1 + · · ·+ lN + (rk − lk) ≤ E(µ1) + · · ·+ E(µN) ≤ r1 + · · ·+ rN − (rk − lk)

holds for every k = 1, . . . ,N.
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Necessary condition for flatness

Let’s check the equation C = E(µ1) + · · ·+ E(µN):

E(µ1) + . . .E(µN) =

∫ r1

l1

x1 µ1(dx1) + · · ·+
∫ rN

lN

xN µN(dxN)

=

∫
RN

(x1 + · · ·+ xN) γ(dx1, . . . , dxN) = C .

For γ-a.a. points (x1, . . . , xN) we have lk ≤ xk ≤ rk and x1 + . . . xN = C =
E(µ1) + · · ·+E(µN). Hence, xk = E(µ1) + · · ·+E(µN)−

∑
i 6=k xi , and therefore

E(µ1) + · · ·+ E(µN)−
∑
i 6=k

ri ≤ xk ≤ E(µ1) + · · ·+ E(µN)−
∑
i 6=k

li

for µk -a.a. points xk . In particular,

E(µ1) + · · ·+ E(µN)−
∑
i 6=k

ri ≤ lk and rk ≤ E(µ1) + · · ·+ E(µN)−
∑
i 6=k

li .

18 / 38



Multimarginal
OT

Alexander Zimin

Hidden
multimarginal
optimal transport
problem

Multimarginal
transport with
repulsive cost
function

Economical
applications

Examples of flat
tuples of
measures

Necessary and
sufficient
conditions

Product cost

Multistochastic
problem

Flatness for the case of marginals with non-increasing densities

Assume that the density function dµk/dx is non-increasing on the supporting
interval (lk , rk). Then the necessary condition becomes a sufficient one.

Theorem (Wang & Wang, [WW16])
Assume that µk is concentrated on the interval (lk , rk) and that the density func-
tion dµk/dx is non-increasing on that interval. Then the tuple of marginals
(µ1, . . . , µN) is flat if and only if the inequality

rk − lk ≤ E(µ1) + · · ·+ E(µN)− (l1 + · · ·+ lN)

is satisfied for all k = 1, . . . ,N.

I proved this theorem in the preprint [Zim20], but recently I discovered that this
theorem was already proven 5 years ago.
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More examples

I Assume that µ1 = · · · = µN = µ, where µ is concentrated on the interval
(l , r) and dµ/dx is non-increasing on (l , r). Then (µ1, . . . , µN) is flat if and
only if E(µ) ≥ (1− 1

N )l + 1
N r .

I If µk ∼ U[lk , rk ], then the tuple of measures (µ1, . . . , µN) is flat if and only
if the inequality

2(rk − lk) ≤ (r1 − l1) + · · ·+ (rN − lN)

holds for all k , i.e. the numbers rk − lk are the lengths of the sides of some
polygon with N vertices.
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Applications to the product cost problem

Problem (Product cost problem)

Let µ1, . . . , µN be probability measures on the real line.
(Primal problem) Find a transport plan γ ∈ Π(µ1, . . . , µN) minimizing the func-
tional ∫

RN

x1x2 . . . xN γ(dx1, . . . , dxN)→ min .

(Discrete "Monge" version) Given samples xi ,k ∼ µi , 1 ≤ k ≤ M. We need to
find the permutations σi ∈ SM minimizing the total sum

1
M

(
M∑
k=1

x1,σ1(k)x2,σ2(k) . . . xN,σN(k)

)
→ min .

Next, we will consider the case N = 3 and µ1 = µ2 = µ3 = L|[0,1] (see [GZ20]).
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C-monotonicity

Consider the discrete "Monge" version of the product cost problem. Let
(p1, p2, . . . , pN) and (q1, q2, . . . , qN) be the elements of the optimal matching.
If the replace these triples with (q1, p2, p3, . . . , pN) and (p1, q2, q3, . . . , qN) (we
swap the first elements of tuples), we will also produce a matching. The total
output will be changed by

∆ =
1
M

(−p1p2 . . . pN − q1q2 . . . qN + q1p2p3 . . . pN + p1q2q3 . . . qN)

= − 1
M

(p1 − q1)(p2p3 . . . pN − q2q3 . . . qN)

Since the initial matching was with the minimal total output, we conclude that
∆ ≥ 0. This means that if p1 < q1, then p2p3 . . . pN ≥ q2q3 . . . qN and vice versa.
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Rearrangement algorithm

Using C-monotonicity, one can construct the following algorithm for construction
the (sub)optimal solution. For simplicity, we consider only the case N = 3 and
µ1 = µ2 = µ3 = L|[0,1].

Algorithm (Rearrangement algorithm [GZ20, EPR13])

1. Consider the matrix X (0) of the size M × 3: X (0)
ij = i

M .

2. (optional) Permute randomly the elements in each column of X (0).
3. Iteratively rearrange the jth column of the matrix X (k) so that it becomes

oppositely ordered to the product of the other columns, for 1 ≤ j ≤ 3. The
matrix X (k+1) is found.

4. Repeat Step 3 until
∣∣∣∑M

i=1 X
(k)
i1 X

(k)
i2 X

(k)
i3 −

∑M
i=1 X

(k+1)
i1 X

(k+1)
i2 X

(k+1)
i3

∣∣∣ < ε.

5. The sum of Dirac measures 1
M

∑M
i=1 δ(Xi1,Xi2,Xi3) approximates the optimal

transport plan.
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The support of the solution to the primal problem

Figure: The support of the solution to
the product cost problem for the case
of uniform marginals

Let t be the solution of the transcendental
equation

ln(1− 2t)− ln(t) = 3− 9t.

The support of the solution consists of 4
parts:
I 3 segments: the first connects the points

(1, 0, 0) and (t, 1−2t, 1−2t), the second
connects (0, 1, 0) and (1− 2t, t, 1− 2t),
and the third connects (0, 0, 1) and (1−
2t, 1− 2t, t);

I the surface x1x2x3 = t(1 − 2t)2, where
t ≤ xi ≤ (1− 2t).
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Connection with the repulsive harmonic cost

Let’s make a change of variables xi = exp(−yi ). Then

x1x2x3 = exp(−y1 − y2 − y3) = h(y1 + y2 + y3),

where h(x) = exp(−x) is a strictly convex function. Also,

d µ̂i = exp(−yi ) · Ind(yi ≥ 0) dyi ,

so the density function is decreasing on [0,+∞). Unfortunately, the required
inequality E(µ̂) ≥ 2

3 l + 1
3 r does not hold.
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Connection with the repulsive harmonic cost

Remark
Assume that µi ∼ U[a, b]. Then

d µ̂i =
exp(−yi ) · Ind[− ln(b) ≤ yi ≤ − ln(a)]

b − a
dyi .

In addition, E(µ̂) = a ln(a)−b ln(b)
b−a + 1. So, if the boundaries (a, b) satisfy the

inequality

a ln(a)− b ln(b)

b − a
+ 1 ≥ −2

3
ln(b)− 1

3
ln(a)⇔ 3(b− a) ≥ (2a + b)(ln(b)− ln(a)),

then there is a measure π with the uniform projection supported on the surface
x1x2x3 = C , and this measure is optimal for any cost function h(− ln(x1)−ln(x2)−
ln(x3)), where h is convex.
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Idea of the construction

Idea of the construction for µ = L|[0,1].
1. The measure µ ∼ U[0, 1] is splitted onto 2

components (tails and a center part):

µ = (L|[0,l ] + L|[r ,1]) + L|[l ,r ].

2. Next, we find a measure µ concentrated on
the surface x1x2x3 = C such that pri (π) =
L|[l ,r ]. The existence of such measure is
guaranteed by the inequality 3(r − l) ≥
(2l + r)(ln(r)− ln(l)).

3. Find a measure π1 on a first segment such
that pr1(π1) = L|[0,l ] and pr2,3(π1) =
L|[r ,1]. The measures π2 and π3 are symmet-
ric. Then 2µ([0, l ]) = µ([r , 1]), or r = 1−2l .
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Independence on the function h

Theorem ([GZ20])

Assume that µ1, µ2, µ3 = L|[0,1] and c(x1, x2, x3) = h(− ln(x1)−ln(x2)−ln(x3)) for
some strictly convex function h. Then the measure π ∈ Π(µ1, µ2, µ3) constructed
above minimizes the functional∫

[0,1]3
c(x1, x2, x3)π(dx1, dx2, dx3)→ min .

In particular, this measure is independent on h.
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Closed form solution to the dual problem

One can prove the optimality of the constructed measure with the help of the dual
problem.

Theorem ([GZ20])

Consider the cost function c(x1, x2, x3) = x1x2x3. Then the triple of functions

ϕk(x) =


c ln(l)− 1

3(c ln(c)− c) + 1
6((2x − 1)3 − (2l − 1)3), if 0 ≤ x ≤ l ,

c ln(x)− 1
3(c ln(c)− c), if l ≤ x ≤ r ,

c ln(r)− 1
3(c ln(c)− c) + 1

4(x2 − r2)− 1
6(x3 − r3), if r ≤ x ≤ 1

is a solution to the dual problem, where l is the solution of the equation

3(1− 3l) = ln(1− 2l)− ln(l),

r = 1− 2l , and c = lr2.
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The multistochastic case

Problem (The particular case of the multistochastic MK problem)

Let X1 = X2 = X3 = [0, 1], and let µij be the restriction of the Lebesgue measure
to the unit square [0, 1]2. We need to maximize∫

[0,1]3
x1x2x3 π(dx1, dx2, dx3)

over all probability measures π on X1×X2×X3 with the property that its projection
on Xi × Xj is µij for all 1 ≤ i < j ≤ 3.

Unlike the multimarginal product cost problem, we fix not only marginals of the
transport plan, but also the projections on 2-dimensional faces. In the general case
of a multistochastic problem, we fix the projections on all k-dimensional faces.
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Fractal example for the multistochastic case

Given a couple of numbers x , y ∈ [0, 1], we consider their binary representations

x = 0, x1x2 . . ., y = 0, y1y2 . . ., where xi , yi ∈ {0, 1}.

Then the xor operation is defined as follows:

x ⊕ y = 0, x1 ⊕ y1 x2 ⊕ y2 . . .,

where 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

Theorem ([GKZ19])
Denote by π the image of the Lebesgue measure L2|[0,1]2 under the mapping
(x1, x2) 7→ (x1, x2, x1 ⊕ x2). Then prijπ = µij for all 1 ≤ i < j ≤ 3, and π is the
solution to the problem considered above.
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The Sierpinski tetrahedron

−→

Figure: The support of the optimal measure π. The measure π is concentrated on the set
{(x1, x2, x3) : x1 ⊕ x2 ⊕ x3 = 0}, which is called the Sierpinski tetrahedron. One can find
the support by the following process. Start with the unit cube [0, 1]3. On each step, split
every cube on 8 equal subcubes, paint all of them in a checkerboard pattern, and remove
all the subcubes colored in the second color.
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Dual to the multistochastic MK problem

Problem (Dual to the multistochastic MK problem)

Find a triple of functions (ϕ12(x1, x2), ϕ13(x1, x3), ϕ23(x2, x3)) satisfying the in-
equality

ϕ12(x1, x2) + ϕ13(x1, x3) + ϕ23(x2, x3) ≥ x1x2x3

for all 0 ≤ x1, x2, x3 ≤ 1 and minimizing the sum∫ 1

0

∫ 1

0
ϕ12(x1, x2) dx1dx2+

∫ 1

0

∫ 1

0
ϕ13(x1, x3) dx1dx3+

∫ 1

0

∫ 1

0
ϕ23(x2, x3) dx2dx3

Theorem (Kantorovich duality)

The supremum in the primal problem and the infimum in the dual problem are the
same. Moreover, both of them are achieved.
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Closed form solution to the dual problem

Consider the function

I (a, b) =

∫ a

0

∫ b

0
x ⊕ y dxdy .

Theorem (Solution to the dual problem)

The triple of functions

ϕ12(a, b) = ϕ13(a, b) = ϕ23(a, b) = I (a, b)− 1
4
I (a, a)− 1

4
I (b, b)

solves the dual problem.
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Thank you for your attention!
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