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ABSTRACT

Visual object recognition relies critically on learning. However, little is known about the 

effect of object learning in human visual cortex, and in particular how the spatial 

distribution of training effects relates to the distribution of object and face selectivity 

across the cortex before training. We scanned human subjects with high-resolution 

functional magnetic resonance imaging (fMRI) while they viewed novel object classes, 

both before and after extensive training to discriminate between exemplars within one of 

these object classes. Training increased the strength of the response in visual cortex to 

trained objects compared with untrained objects. However, training did not simply induce 

a uniform increase in the response to trained objects: The magnitude of this training 

effect varied substantially across sub-regions of extrastriate cortex, with some showing a 

two-fold increase in response to trained objects and others (including the right fusiform 

face area) showing no significant effect of training. Furthermore, the spatial distribution 

of training effects could not be predicted from the spatial distribution of either pre-trained 

responses or face selectivity. Instead, training changed the spatial distribution of activity 

across cortex. These findings support a dynamic view of the ventral visual pathway in 

which the cortical representation of an object category is continuously modulated by 

experience.
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Object recognition and discrimination rely critically on learning (Goldstone, 1998; 

Schyns et al., 1998; Tanaka, 2001; Sheinberg and Logothetis, 2002; Op de Beeck et al., 

2003; Palmeri et al., 2004), yet little is  known about how learning affects object 

representations in the  brain. Here we conduct a broad exploration of the nature and 

spatial distribution of the effects of object discrimination training in the human ventral 

visual pathway.

The brain regions most critical for object recognition are found in the ventral pathway of 

the primate visual system (Logothetis and Sheinberg, 1996; Grill-Spector, 2003; Tanaka, 

2003). However, little is known about the effect of object learning in human visual 

cortex, and in particular how the spatial distribution of training effects relates to the 

distribution of object and face selectivity across the cortex. Neurophysiological 

recordings in monkeys have shown that training on discrimination and recognition of 

objects is associated with changes in the strength and object selectivity of neural 

responses (Miyashita et al., 1993; Ringo, 1996; Booth and Rolls, 1998; Kobatake et al., 

1998; Baker et al., 2002; Sigala and Logothetis, 2002; Rainer et al., 2004; Freedman et 

al., 2006). However, because neurophysiological studies cannot easily sample a wide area 

of cortex, these investigations have not determined whether the changes in neural 

responses with training are widespread across the ventral visual pathway, or whether they 

are restricted to specific regions within this pathway. The few fMRI studies that have 

investigated neural effects of object training in humans (Gauthier et al., 1999; Grill-

Spector et al., 2000; Gauthier and Tarr, 2002; Kourtzi et al., 2005; Sigman et al., 2005)

have focused on Regions Of Interest (ROI) analyses, and they did not addressed the 
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distribution of training effects across extrastriate cortex, in particular how training effects 

relate to the spatial distribution of pre-trained object selectivity and face selectivity. Thus, 

although it has been suggested that changes in object representations due to training 

might be restricted to small sub-regions of the ventral visual pathway (Logothetis et al., 

1995; Gauthier et al., 1999; Henson et al., 2000), little is known about the magnitude, 

sign and spatial distribution of training effects across visual cortex.

We scanned subjects before and after object discrimination training, to ask whether and 

how training changes the spatial distribution of activation across cortex. Our results 

indicate that training produces an overall increase in the response to trained objects, but 

the spatial distribution of this training effect is not homogeneous. Training increases the 

response much more in some regions in visual cortex (e.g., right lateral occipital gyrus) 

than in other regions. Furthermore, the strength of the training effect in a sub-region of 

cortex cannot be predicted simply from the response of that sub-region before training. 

Finally, No significant training effect was found in the fusiform face area. Thus, training 

appears to change the spatial distribution of activity to trained objects in a way that 

cannot be predicted either from the spatial distribution of pre-trained responses or from 

face selectivity. 
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METHODS

SUBJECTS

Nine right-handed participants (three males) participated in this experiment. All were 

college or graduate students in the Boston area. Informed consent was obtained and all 

procedures were approved by the Institutional Review Boards of Massachusetts Institute 

of Technology and Massachusetts General Hospital.

STIMULI

We used custom algorithms written in Matlab to create three new classes of objects: 

smoothies, spikies, and cubies (Fig. 1). These classes were designed to have different 

shape properties and to seem novel (i.e., they did not immediately suggest associations 

with everyday object categories).

Within each object class, we manipulated four shape dimensions (Fig. 1). Most 

dimensions were a composite of several simple shape parameters (e.g., size/thickness of 

several shape protrusions), and different dimensions changed aspects in different 

locations on the stimuli. Thus, objects could not be discriminated by looking at only a 

small part of each object, and more than one location of the object had to be taken into 

account in order to attain good discrimination performance.
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Each dimension was manipulated in six steps (values 0 to 5). Each class contained 1296 

(6^4) exemplars with an integer step on each dimension. From these objects we chose 80 

reference objects distributed across the 4-dimensional object space in each class. For each 

of these objects, we created 8 extra exemplars that differed from that reference object by 

half a step on only one dimension. The distance between objects in a class was expressed 

as the number of integer steps difference on each dimension, summed across dimensions, 

so the maximum distance was (6-1)*4 = 20 (for objects with an extreme value on each 

dimension). The construction of the object space avoids recognition of individual 

exemplars given that each object class consisted of a high number of exemplars that 

covered the space with a density that was much higher than behavioral “just-noticeable 

differences” (even for trained subjects, see Fig. 2).

These object exemplars were shown at about the same size during training and scanning 

with a maximum size of 8 visual degrees. Stimulus presentation and response registration 

was controlled using PsychToolbox (Brainard, 1997; Pelli, 1997).

SHAPE DISCRIMINATION TRAINING

Subjects were trained with one object class (counterbalanced across subjects, three 

subjects per class) during at least 10 training sessions, each lasting about 1 hour. The 

length of this training (in number of hours and number of training days) is longer than 

any of the previous fMRI studies with an object training procedure (Gauthier et al., 1999; 

Kourtzi et al., 2005; Sigman et al., 2005). The training task is illustrated in Figure 1. In 
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each trial, 5 object images were shown one at a time (one reference and four test objects;

stimulus duration 300 ms, inter-stimulus interval 1000 ms), and subjects had to determine 

for each of the test objects whether it matched the reference object (left key press) or not 

(right key press). The reference object was one of the 80 reference objects of a class; the 

test objects could be any object from the same class. The percentage of match stimuli was 

50%. Subjects were told that they could use any stimulus feature for the discrimination, 

except object position (which was randomized for each individual stimulus with 3.5 

visual degrees as the maximum position offset from the fixation point). The first training 

session started with task instructions, followed by at least 10 practice trials (40 responses) 

with everyday objects to assess proper understanding of the instructions and to acquaint 

subjects to the speed of object presentation and responses. 

Each training session consisted of three blocks of 80 trials (with five stimuli per trial, this 

amounts to a total of 1200 stimulus presentations per training session). The first block of 

trials was used to compare performance across sessions (shown in Fig. 2). This block had 

the same uniform distribution of ‘non-match’ images from 4 distance conditions (0.5, 2, 

4, 8, and 12) throughout the whole experiment (‘method of constant stimuli’), and no 

feedback was given to signal the correctness of responses. In the two other blocks, 

difficulty was adapted to each subject’s performance aiming for between 70 % and 75 % 

correct, and color feedback was provided after each response. In these blocks, visual 

feedback was given at the end of the inter-stimulus interval by means of a foveal colored 

square (1.5 x 1.5 deg) indicating the response was correct (green), incorrect (red), or that 

no valid response was registered (white).
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Most subjects seemed to reach a steady performance level before or around the fifth 

training session. Furthermore, their verbal reports indicated that they were consciously 

using most but not all 4 shape dimensions. To make them aware of all dimensions, we 

started the later training sessions of all subjects with a short rapid stimulus presentation 

with object exemplars presented at a rate of 3 per second, without an inter-stimulus 

interval or a position offset, and with successive objects changing on only one dimension. 

With this presentation, even very small object changes are obvious. The further protocol 

and stimuli of each training session (with three blocks of 80 trials) was not changed. 

After all training sessions and the second scan session, we tested performance for all 

three object classes in an extra test session at distances 0.5, 2, 4, 8, 12 and without color 

feedback. After this session, we asked subjects whether some of the object classes 

resembled ‘real-life objects’, and, if so, which objects. 

Behavioral performance as shown in Figure 2 is computed from the first block of trials in 

each session (the block that contained trials with the same stimulus distance across all 

sessions). Performance is expressed in units of sensitivity (d’), which reflects the 

difference between standardized hit rate (hits are the correct responses for stimuli that did 

not match the reference stimulus of that trial) and standardized false alarm rate (false 

alarms are the incorrect responses for stimuli that matched the reference stimulus of that 

trial). 
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Significant sensitivity for individual shape dimensions was assessed in the last three 

training sessions by calculating the 95%-confidence intervals of the difference in 

performance between two sets of trials for each dimension: trials with stimuli with a large 

distance on that dimension and trials with stimuli with a small or zero distance on that 

dimension but with the same overall distance on other dimensions as the first set of trials. 

SCANNING

Subjects were scanned two times, once before and once after the shape discrimination 

training. Scanning was carried out at the Martinos Center for Biomedical Imaging at 

Massachusetts General Hospital in a 3T Siemens Trio magnet with an 8-channel phased-

array head coil (Siemens). Functional images were acquired with an EPI sequence 

including an integrated Parallel Acquisition Technique (105 time points per time series; 

TR = 3 s; TE = 37 ms; 128 x 128 matrix; 1.4 x 1.4 mm in-plane voxel size; 20 slices 

approximately perpendicular to the calcarine sulcus covering the entire occipital and 

occipitotemporal cortex with slice thickness 2 mm and inter-slice gap 0.4 mm). Note that 

dorsal and anterior parts of the cortex (e.g., parietal and frontal areas) were not covered 

by our slices. In each session, we also acquired a T1-weighted anatomical image. We 

made sure that head position in the post-training session was very similar to the position 

in the pre-training session. Furthermore, post-training slices were positioned manually to 

be as close as possible to the slices in the first session by visual comparison of pre- and 

post-training overlays of the slice outlines on the anatomy. 
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Functional runs consisted of object runs (with presentation of smoothies, spikies and 

cubies) and localizer runs (used to identify regions-of-interest) acquired in an interleaved 

fashion in pairs (object1, object2, localizer1, localizer2, object3, object4, localizer3, 

localizer4, object5, object6). 

Object runs. Object runs consisted of 15-second blocks of fixation spot, smoothies, 

spikies, cubies, and Fourier-scrambled images. Stimuli were presented around the foveal 

position (maximum position offset from fixation point was 3.5 visual degrees) for 300 ms 

with 450 ms inter-stimulus interval (20 stimuli per 15-second block). There were four 15-

second blocks for each condition in each run and 80 different stimuli (the reference 

objects from the training task) per condition. We acquired 4 to 6 object runs in each 

session for each subject (at least 320 stimulus presentations per object class per scan 

session).

Localizer runs. Localizer runs consisted of 15-second blocks of fixation spot, human 

faces, objects, outdoor scenes, and Fourier-scrambled images. In each block, stimulus 

position was either in the left visual field or the right visual field (border of the stimulus 

1.3 visual degrees from the foveal position), with a jitter in the vertical stimulus position 

of maximum 2 degrees from the horizontal midline. This lateralized stimulus position 

provided us with a crude localizer of parafoveal retinotopic cortex. The contrast of 

[contralateral > ipsilateral] reveals a continuous activation from the calcarine sulcus up to 

the border between retinotopic and object-selective cortex (Grill-Spector, 2003). We 

acquired 4 localizer runs in each session for each subject.
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FMRI task. Subjects performed a demanding color change detection task during all runs. 

This task required subjects to press a key each time an object had a different color than 

the previous object (3 changes in each block of 20 stimuli). Low-saturated color was 

added to the grey-scale images by increasing the value of one color channel and 

decreasing the value of the other channels by a factor c. This parameter was the same for 

all conditions in a run, but it was adapted between runs to keep the task demanding for 

the subjects. 

The trained shape differences were irrelevant for the color task, and this had several 

advantages. First, subjects received no training in shape discrimination for the two 

untrained object classes. If subjects had performed the training task in the scanner, then 

the pre-training scan session would have provided subjects with training in all object 

classes, not only the to-be-trained object class. Second, the training caused superior 

performance on the trained objects in the training task, and this performance difference in 

the second scan session (and related attention or difficulty confounds) would have made 

the interpretation of the data difficult. Using the color task instead, there was no 

difference in performance between trained and untrained objects during the post-training 

scans, either in the percentage of detected color changes (87 % and 88 %, respectively; 

t(8) = 1.28, p > .20) or reaction time (458 ms and 463 ms, respectively; t(8) = .71, p > 

.40). Thus, differences in color task performance cannot explain differences between 

trained and untrained object classes in BOLD response. Finally, Gauthier et al. (2000) 

showed that effects of expertise in face-selective cortex are correlated with behavioral 
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measures of expertise in an orthogonal task but not in an object discrimination task, 

which is an additional argument to use an orthogonal task.

ANALYSIS OF IMAGING DATA

Data were analyzed with FS-FAST, Freesurfer (http://surfer.nmr.mgh.harvard.edu/) (Dale 

et al., 1999; Fischl et al., 1999), froi (http://froi.sourceforge.net), as well as custom 

Matlab code. Pre-processing involved motion correction, smoothing with a Gaussian 

kernel of 3 mm FWHM, and normalization of the mean signal amplitude in each 

functional run. The predictor for each stimulus condition (zero or one at each timepoint) 

was convolved with a gamma function, and the general linear model was used to compute 

the response of each voxel in each condition. The response for each condition in each 

voxel is expressed in units of percent signal change (PSC), which is the response in each 

condition minus the response in the fixation condition, normalized by the mean signal 

value at each voxel.Significance maps of the brain were computed by performing t-tests 

for pair-wise comparisons of conditions, and thresholded at p = 0.0001 (uncorrected for 

multiple comparisons). We used this same statistical threshold throughout all analyses to 

define regions of interest. The average response across all voxels of an ROI was 

computed for each individual subject, and this response was combined across subjects by 

averaging.

The pre-processing did not involve any spatial normalization of subjects in a common 

reference space (e.g., Talairach transformations). Given the anatomical variability 

Page 12 of 80

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only

http://froi.sourceforge.net/
http://surfer.nmr.mgh.harvard.edu/


13

between subjects, such normalization would obscure finer spatial patterns in activations, 

certainly at the high resolution that we used. We performed a registration of the 

functional images of each subject in each session to that subject’s anatomical image. We 

used the resulting transformation parameters only to map the anatomically defined V1/V2 

ROI to the functional images, and for the illustration of activation loci shown in Figures 4 

and S2. All other results do not involve any registration to individual or group anatomies.

Prior to statistical analyses, data were pre-processed in two ways that differed in the 

reference image used to align all functional volumes (Cox, 1996). In the first pre-

processing stream, data from the two sessions were processed independently and aligned 

to the first image in the first functional time series of each session. This independent pre-

processing of the two sessions was used for all analyses that did not require single-voxel 

alignment (whole-volume analysis and ROI analysis). In the second pre-processing 

stream, the functional data of the two sessions of each subject were co-aligned directly 

(without an intermediate step through anatomical data) by aligning all data to the first 

image of the pre-trained session. This co-aligned data was used in two analyses: 

comparing pre- and post-trained spatial distribution of activity across all visually active 

voxels, and investigating the pre-training response of voxels with a significant post-

trained preference for trained objects (trained voxels).

Comparison of pre- and post-trained distribution of activity. We investigated the relation 

between pre- and post-trained responses across all visually active voxels (e.g., the scatter 

plots shown in Fig. 6). Visually active voxels were defined as all voxels that responded 
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significantly stronger than fixation (p < 0.0001, uncorrected) to at least one of the three 

object classes in at least one of the two sessions. We followed the standard from previous 

studies of distributed response patterns where the response of each voxel in each session 

is normalized to a mean of zero by subtracting the mean response across all object classes 

(Haxby et al., 2001). The relation between pre-trained and post-trained responses was 

investigated with Pearson product moment correlations and orthogonal regression. 

Orthogonal regression (Van Huffel and Vandewalle, 1991) minimizes the perpendicular 

distances from the data points to the regression line, and is preferable over standard linear 

regression in cases where both variables are (noisy) measurements. With orthogonal 

regression, the slope of the fitted line does not equal Pearson’s correlation. For example, 

in the schematic scatter plot of Figure 3a, the slope of the line fitted with orthogonal 

regression reflects the global orientation in the cloud of points (slope of 1), even though 

the correlation between the two coordinates is smaller than 1.

Discrimination index using pre- and post-trained distribution of activity. The percent 

correct discrimination was calculated from pair-wise comparisons of correlation 

coefficients, following previously described methods (Haxby et al., 2001; Spiridon and 

Kanwisher, 2002). A given pair-wise comparison between object classes A and B was 

deemed a correct identification of class A if the correlation coefficient between the pre-

trained and post-trained maps of class A was higher than that between the pre-trained 

map of A and the post-trained map of B. For each subject, we calculated a separate index 

for the two pair-wise comparisons that involve the trained object class as one of the two 

object classes, and for the pair-wise comparison between the two untrained object classes. 
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These two indices are shown for different cortical regions in Figure 6d. As discussed by 

Spiridon and Kanwisher (2002), the percent correct discrimination is influenced strongly 

by voxel set size (lower performance for smaller set sizes). In order to be able to compare 

the performance between regions with a different total size and between subjects, we 

selected as voxel set size the number of voxels in the smallest region found across 

regions and across subjects, N = 21. If a region in a subject was larger, then the correct 

discrimination for that region in that subject is based on the average performance over 

100 different subsets of 21 randomly selected voxels.

Pre-training responses of trained voxels. The second use of the between-session 

alignment is in the investigation of the pre-training responses of voxels with significant 

post-training selectivity for trained versus untrained objects (trained voxels). To select 

these voxels, we used runs (1,2,5,6) of the object runs of the post-training session as 

selection runs. Runs (3,4) were used as test runs to quantify training effects 

independently from the data used to select the voxels. Similar results were obtained with 

other divisions of the data in selection runs and test runs.

Validation of between-session alignment. Control analyses showed that the between-

session alignment worked well. Voxels with a post-training preference for stimulus 

conditions that were not expected to be changed by training (untrained stimuli), showed 

the same preference before training (see Results and corresponding supplemental material 

SM4 and supplemental Figure S3c). Furthermore, we always compare results for the 

trained class with results for the untrained classes, and conclusions are based on a 
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difference between trained and untrained classes. Given that blocks with trained and 

untrained classes were presented intermittently, any problem with co-registration would 

affect both conditions equally. Finally, we confirmed that the quality of the between-

session alignment with this method is at least as good as with a method in which each 

functional session is co-registered with an anatomical reference image (see supplemental 

material SM1).

Magnitude of training effects. The training index, shown for different ROIs in Figure 5, is 

computed as:

[PSC(trained objects post-training) – PSC(untrained objects post-training)]

– [PSC(trained objects pre-training) – PSC(untrained objects pre-training)]

Whenever we compared trained versus untrained, this was a comparison of the data for 

the trained class with the data of the two untrained classes. Strictly speaking, the label 

‘trained’ is not meaningful before training (when all classes are still untrained). We use 

the label “trained before training” to refer to the object class that is trained during the 

training sessions, and “untrained before training” refers to the two object classes not 

shown during training.

RESULTS
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Effect of training on behavioral performance

As shown in Figure 2, discrimination training markedly improved discrimination 

performance (d’) from the first to the last training session (t(8) = 4.84, p < .001, paired t-

test). Exemplars within each object class could be different along up to four shape 

dimensions and in the last three sessions, individual subjects showed a significant 

sensitivity (p < .05) for a median of 3 of these 4 shape dimensions (see Methods). 

Although subjects showed an overall improvement even for untrained objects, much of 

the training effect was specific to the trained class: Discrimination performance after 

training was significantly higher for trained compared to untrained classes (t(8) = 4.07, p 

< .005, paired t-test).

Effect of training on class-specific activations in visual cortex

As mentioned in the Introduction, it is not clear how training effects are distributed across 

visual cortex. Several distinct possibilities can be distinguished. The simplest possibility 

is that training produces an overall change or additive offset in the magnitude of the 

BOLD response that is constant across visual cortex. Importantly, this change could 

either be an overall increase in the response after training, or an overall decrease. In its 

strongest version, an additive offset would result in the same training effect in each 

visually responsive sub-region, such that the spatial distribution of activity across cortex 

will not change. This is illustrated in Figure 3a. In this figure, the blue crosshairs refer to 

the combination of hypothetical pre- and post-training responses expected for objects that 
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are not trained during the training phase. The red arrows refer to the hypothetical additive 

offset due to training expected for objects that are trained during the training phase.

In contrast, the size of the training effect in each sub-region might be proportional to the 

response in that sub-region to the to-be-trained objects before training, a pattern we will 

refer to here as a multiplicative gain (Fig. 3b). For example, if training increases the 

response in visual cortex, then a multiplicative gain would give the largest increase in 

sub-regions with the largest pre-trained response. This kind of training effect would 

amount to a strengthening of the already existing spatial distribution of activity associated 

with an object class, akin to the proposed effects of attention at the single-neuron level 

(McAdams and Maunsell, 1999). As illustrated by the blue and red line in Figure 3b, a 

multiplicative gain would increase the slope obtained by orthogonal regression of the 

post-trained responses to the pre-trained responses (see Methods). 

A rejection of each of these predictions would mean that training changes the spatial 

distribution of activity across cortex in a way that is not determined by the pre-trained 

responsiveness to the trained stimulus. As illustrated in Figure 3c, positive evidence for 

such a change in the spatial distribution of activity would be a lower correlation between 

pre-trained and post-trained responses for trained objects compared to the correlation for 

untrained objects. These possibilities are not mutually exclusive, and hybrids are 

possible. The test of the specific predictions of these few hypotheses will inform us about 

which combination provides the best account of the effect of training.
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One specific proposal of how training might change the spatial distribution of activity, is 

that training will increase the response in face-selective regions, especially the right 

fusiform face area (rFFA), even for objects that did not activate this area strongly before 

training (Diamond and Carey, 1986; Gauthier et al., 1999). Although prior studies have 

argued in favor of this “expertise hypothesis” (Gauthier et al., 1999; Gauthier et al., 

2000; Xu, 2005), the design and analyses in these studies were not suited to differentiate 

the expertise hypothesis from other effects such as an additive offset or a multiplicative 

gain. We will investigate whether the predictions of this hypothesis hold when subjects 

are trained to discriminate objects.

To characterize the effect of training, the fMRI data were analyzed in four different ways, 

which we discuss in turn: 1) Comparison of the number of voxels across visual cortex 

that prefer trained to untrained stimuli (or vice versa) after versus before training; 2) 

Comparisons of the reponse to trained versus untrained stimuli before versus after 

training within functionally-defined ROIs; 3) Voxel-wise analyses of the effect of 

training on the distributed response pattern across visual cortex; and 4) Comparison of 

the reponse to trained versus untrained stimuli before versus after training in voxels with 

maximal post-training preference for trained objects.

1. Does training produce increases or decreases in response?

We performed a whole-volume analysis of the data for each session independently 

(without between-session co-registration). For each subject, we selected all voxels that 
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were significantly activated (p < 0.0001, uncorrected) in the contrast [trained vs. 

untrained]  (Fig. 4). Significantly more voxels preferred trained above untrained objects 

after training compared to before (mean number of voxels +- standard error across 

subjects, 366 +- 124 after training vs. 82 +- 31 before training, t(8) = 2.8, p < .02, paired 

t-test); there was no significant difference in the number of voxels preferring untrained to 

trained objects after and before training (62 voxels after vs. 167 voxels before training, 

t(8) = 1.7, p > 0.1). Figure 4 illustrates this difference between the two sessions in four 

subjects. Each of these subjects showed more voxels activated with the contrast [trained > 

untrained] after training than before training. These activated voxels were not all 

clustered together in a single contiguous region, but instead formed multiple small 

clusters (see section titled How large are the largest training-related response increases). 

Many of these small sub-regions found with the contrast [trained > untrained] were 

intermingled or overlapping with more numerous and larger sub-regions significantly 

activated in the contrast [objects > scrambled], a contrast that is typically used to define 

object-selective cortical regions (see Fig. S2). In summary, training was associated with 

an increased response in multiple sub-regions of extrastriate visual cortex.

2. How do training effects relate to pre-trained responses and object and face selectivity 

?

The previous analysis indicates that training increased the response to trained compared 

to untrained objects in at least some sub-regions in and around object-selective cortex. 

This result does not show how widespread this effect is. All visual regions might show 
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the same effect (additive offset), and we might have simply missed it in many regions 

because the effect is small and we use thresholded maps. In contrast, the location of the 

effects might be related to pre-training response strength (multiplicative gain), it might be 

centered around face-selective regions, or it might change the spatial distribution of 

activity across cortex in some other way. To test these hypotheses, we performed a ROI 

analysis in three ROIs: lateral occipital complex (LOC, from the contrast [objects > 

phase-scrambled objects]), the right fusiform face area (rFFA, from the contrast [faces > 

objects]), and foveal V1/V2 (anatomically defined as the area around the posterior tip of 

the calcarine sulcus). These ROIs were defined separately within each scanning session 

(before and after training). Supplemental Figure S2 illustrates the between-session 

replicability of the functional activations used to define the functional ROIs for the case 

of [objects > scrambled images]. When performed in isolation, ROI analyses can miss 

important information outside these ROIs (Friston et al., 2006; Saxe et al., 2006), but 

they provide critical information about the distribution of effects and their relationship to 

other functional criteria when used in combination with whole-volume analyses (see 

Results Section 1) and distributed pattern analyses (see Results Section 3).

The average response in each of these ROIs before and after training is shown in Figure 

5a. Training effects were revealed by a two-factor repeated-measures ANOVA that found 

a significant interaction between session (before vs. after training) and stimulus condition 

(trained vs. untrained) in LOC (F(1,8) = 50.09, p < .001), but not in rFFA (F(1,8) < 1) or 

foveal V1/V2 (F(1,8) = 3.73, p > .05). Furthermore, the difference between responses to 

trained and untrained stimuli in the post-training scan session was significant in LOC 
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(t(8) = 5.77, p < .001, paired t-test), but not in rFFA (t(8) < 1) or foveal V1/V2 (t(8) = 

1.16, p > .25). In none of these areas did we find a significant (p < .05) main effect of 

session or training. The differences between areas in the interaction between session and 

stimulus condition were consistent across subjects, as indicated by a significant three-way 

interaction between area (LOC, rFFA, and V1/V2), session, and stimulus condition 

(F(2,7) = 13.80, p < .005). 

These data are summarized with a training index that compares the activation difference 

between trained and untrained classes after training while subtracting out pre-trained 

differences (see Methods). The higher this index, the more the BOLD response was 

increased for the trained object class relative to the untrained object classes. As shown in 

Figure 5b, the only region showing a significantly positive training index is LOC. 

Furthermore, a direct between-area comparison revealed that the training index was 

significantly stronger in LOC than in rFFA (t(8) = 2.5, p < .05) or foveal V1/V2 (t(8) = 

4.86, p < .001, paired t-test). Finally, LOC was the only region in which the training 

index was positively correlated across subjects with the behavioral improvement subjects 

showed during training (LOC: r = .65, p = .03; rFFA: r = .19, p >  .20; foveal V1/V2: r = 

-.29, p > .5). The correlation in LOC was significantly stronger than the correlation in 

V1/V2 (p < .05), but not significantly different from the correlation in rFFA (p = .16).

As discussed previously (Grill-Spector, 2003), LOC is a large region of interest that 

extends from lateral occipital gyrus to the ventral surface of the brain (fusiform gyrus). In 

a more detailed analysis (see Figure 5c-d), we chose four smaller ROIs in LOC: object-
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selective voxels in right lateral occipital cortex (right LO), left lateral occipital cortex 

(left LO), right ventral surface (commonly referred to as right posterior fusiform or right 

pFs) and left ventral surface (left pFs). The training index was significantly different from 

zero in all these regions with the exception of left pFs (training index in left pFs: p = 

0.051). The training index was significantly larger in LO than in pFs, t(8) =  4.13, p < 

0.005 (paired t-test). In addition, the training effect in LO but not pFs was significantly 

correlated across subjects with the behavioral improvement subjects showed during 

training (LO: r = .83, p < 0.01; pFs: r = .32, p >  .40; see Fig. S4 for scatter plots of 

behavioral improvement and training index). The correlation in LO was significantly 

stronger than the correlation in FFA (p < .05) and in V1/V2 (p < .01). Furthermore, the 

training index was significantly larger in the two right ROIs than in the two left ROIs, 

t(8) = 2.38, p < 0.05 (paired t-test). Interestingly, there was also a large difference 

between LO and pFs in their overall responsiveness before training (1.45 PSC and 0.81 

PSC, respectively), while right and left ROIs responded similarly to the novel object 

classes before training (1.14 PSC and 1.13 PSC, respectively). 

The differential training effects found in these ROIs (LOC, rFFA, foveal V1/V2, and the 

subdivisions of LOC) falsify several of the hypotheses. The significant differences in 

training effects between the ROIs are not consistent with an additive offset. A 

multiplicative gain might explain some of the differences between regions. It is consistent 

with the strongest training effects in LOC (as we found) because this region responded 

more strongly to the to-be-trained objects before training than did rFFA or foveal V1/V2, 

and it is also consistent with the stronger training effects in LO compared to pFs. If we 
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describe the training effect by a divisive index (e.g., the post-trained response to trained 

objects divided by the post-trained response to untrained objects), then LOC is still the 

only region with a significant training effect (LOC: t(8) = 6.56, p < 0.001; rFFA: t(8) = 

0.06, p > 0.4; V1/V2: t(8) = 1.98, p > 0.05), but a direct between-area comparison 

revealed that the divisive training index was not significantly stronger in LOC than in the 

other two areas (t-test, p > .20). However, a multiplicative gain cannot account for the 

fact that right LOC showed training effects almost twice as large as left LOC (each 

responding similarly to the trained objects before training). This indicates that training 

changes the spatial distribution of activity across cortex, in this case between right and 

left hemisphere. Thus, the ROI results provide only partial support for the multiplicative 

gain hypothesis.

The lack of significant training effects in rFFA is inconsistent with the expertise 

hypothesis. We focused on the right FFA because that was the region and hemisphere 

claimed to show effects of training and experience (Gauthier et al., 1999), but the left 

FFA did not show a positive training index either (t(8) = 0.87, p > 0.4). The verbal 

reports of our subjects after the experiment provide a clue why some prior studies may 

have seen training effects in the rFFA. The subject with the highest rFFA training index 

in our study was the only subject that reported interpreting the training stimuli as being 

face-like (specifically, as “women wearing hats”; for this subject the training stimuli were 

smoothies). This one subject was an outlier in the size of the rFFA training index (0.38 

PSC) compared to the rFFA training index in the other 8 subjects (mean: -0.01 PSC, 

standard deviation: 0.15). None of the other subjects reported interpreting the smoothies 
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as face-like (although FFA responded more strongly to smoothies than spikies or cubies 

across all subjects – see supplementary material SM2). The other two subjects trained 

with smoothies did not show a large training index (-0.04 PSC and -.03 PSC). Thus, the 

training index in rFFA varied substantially across subjects, and the subjective 

interpretation of the objects during training might be one of the factors underlying this 

variability. 

In summary, training increased the response to trained relative to untrained objects in 

object-selective cortex, especially in the right lateral occipital gyrus. No significant effect 

of training was observed in primary visual cortex or face-selective cortex. This spatial 

distribution of training effects is not consistent with an additive offset and the expertise 

hypothesis.

3. What is the effect of training on the distributed response pattern across visual cortex 

(voxel-wise analyses) ?

The ROI analyses suggested that a multiplicative gain might explain part of the results 

(only training effects in LOC, a region that had a large pre-training response), but that in 

addition training changed the spatial distribution of responses across cortex (e.g., the 

much larger training effect in right than in left LOC, while pre-training responses were 

the same in the two hemispheres). We tested the spatial distribution of training effects in 

more detail. An important requirement for a detailed investigation of the relationship 

between pre-trained and post-trained responses across voxels is the ability to compare the 
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responses of individual voxels between the two sessions. In all previous analyses 

described here (and in all previous published training studies), the two sessions were 

processed independently and relatively large regions of interest were defined based on 

identical criteria in each session.  In all the following analyses we analyzed the two 

sessions as one large session, registering all volumes of a subject to the same functional 

reference volume (see Methods). Although this registration across sessions cannot be 

perfect, extensive analyses indicate that it is good (see further Results and supplemental 

material SM1). Further, any registration errors would affect trained and untrained stimuli 

to the same extent and thus cannot bias our conclusions about training effects since these 

conclusions are based on comparisons between trained and untrained stimuli. This 

between-session alignment allowed us to investigate at a more detailed level how pre-

training responses change after training. We investigated the effect of training on the 

distributed pattern of responses across all visually active voxels, an average of 12,122 

voxels per subject (see Methods). 

The variation of responses for each object class across voxels can be summarized for 

each subject as a scatterplot in which each data point represents a voxel with the pre-

trained response on the x-axis and the post-trained response on the y-axis, as shown 

schematically in Figure 3. The scatter plot pooled across all subjects is shown in Figure 

6a-c. As in previous studies (Haxby et al., 2001; Spiridon and Kanwisher, 2002), we used 

the normalized response in each voxel for each object class in the two sessions, so that 

for each voxel the average response across the three object classes was zero in each 

session (see Methods).
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The effect of training on overall responsiveness is captured for each subject by 

calculating the training index (see above) for this entire population of visually active 

voxels. Averaged across subjects, this training index was 0.13 PSC (SEM: .02), 

significantly different from zero (t(8) = 6.12, p < 0.001). This indicates that the response 

of a visually active voxel was on average 0.13 PSC higher for the trained object class 

than for the untrained object classes. Thus, in agreement with the conclusion from 

previous analyses, training is associated with an increase in the average response to the 

trained objects across visual cortex.

A multiplicative gain would induce a difference between the scatterplot for trained 

objects and the scatterplots for untrained objects: the strongest training-related response 

increase should be found in voxels with the strongest pre-trained response. As shown in 

Figure 3b, this would result in an increased regression slope when post-trained responses

are predicted from pre-trained responses with orthogonal regression (see Methods). 

Without training effects, we expect a slope of 1 for all object classes, reflecting the fact 

that voxels with a difference in pre-training response of 1 PSC are expected to have an 

average difference in post-training response of 1 PSC. A multiplicative gain effect would 

increase the regression slope for the trained objects to a level significantly higher than 1. 

This prediction was not confirmed: Although a trend was observed, there was no 

significant difference across subjects (t(8) = 0.97, p > 0.3, paired t-test) in the regression 

coefficient for the trained object class (median: 1.17) compared to the coefficient for the 

untrained classes (median: 1.03). 
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Thus, these results do not support a multiplicative gain (because training effects in each 

voxel could not be predicted from pre-trained responses in that voxel). Alternatively, 

training may change the spatial distribution of activity across cortex: If training alters the 

spatial distribution of the responses to the trained objects, then training will reduce the 

correlation between pre-training and post-training responses for the trained objects 

compared to untrained objects. That is, some voxels with a low pre-training response 

might have a large training-related increase in response, whereas other voxels with a 

higher pre-training response might show less of an increase or even a reduction in 

response. This training-related between-session variability in responsiveness would not 

be as great for the untrained objects, and as a consequence a change in the spatial 

distribution of activity would be manifested by a lower correlation between the pre-

training and post-training response distribution for the trained objects compared to the 

correlation found for untrained objects (Fig. 3c). Consistent with this prediction, we 

found that the correlation between pre- and post-trained responses across voxels was 

significantly lower across subjects (t(8) = 2.41, p < 0.05, paired t-test) for the trained 

object class (r = .26) than for the untrained object classes (r = .34). Nevertheless, this 

between-session correlation remained significant and positive even for the trained object 

class (t(8) = 4.98, p < 0.005), indicating that the change in distribution of activity 

resulting from training only partially altered the pre-training distribution of activity. 

Further analyses indicate that the two reported effects of training, increased 

responsiveness overall and a change in the distribution of activity, were not completely 
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distributed across visual cortex. As described in more detail in supplementary material 

(SM3), we selected two large and mutually exclusive sub-populations from all visually 

active voxels: retinotopic cortex and object-selective cortex. Training effects were much 

stronger in object-selective cortex than in retinotopic cortex. The training index was 

larger in object-selective cortex than in retinotopic cortex (t(8) = 3.26, p < 0.02, paired t-

test), and the change in distribution of activity (measured by the lower between-session 

correlation for trained compared to untrained objects) was more pronounced in object-

selective cortex than in retinotopic cortex (t(8) = 2.47, p < 0.05). 

Within object-selective cortex, the training-related change in distribution of activity 

spanned functionally distinct sub-regions. The lower between-session correlation for 

trained compared to untrained objects was present in several mutually exclusive sub-

populations of object-selective voxels (see supplemental material SM3): voxels with a 

significant preference for the trained objects before and/or after training (t(8) = 3.66, p < 

0.01, paired t-test), voxels with a significant preference for one untrained object class 

above another untrained object class before and/or after training (t(8) = 2.38, p < 0.05), 

and voxels with a significant preference for objects above scrambled images before 

and/or after training but without any specific selectivity for one object class above 

another (t(8) = 3.04, p < 0.02). Thus, changes in the distribution of activity do not only 

occur in sub-regions that show selectivity for the trained class (before or after training), 

but also occur in regions with a preference for an untrained class and in regions with an 

overall preference for objects over scrambled images (without a specific selectivity for 
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smoothies, spikies, or cubies). These analyses indicate that the change in the spatial 

distribution of activity is distributed across several sub-regions in object-selective cortex.

Thus, training changed the spatial distribution of activity across object-selective visual 

cortex in a way that is not consistent with a multiplicative gain.

The correlations that we have calculated here have been used before to calculate a pair-

wise discrimination index (Haxby et al., 2001; Spiridon and Kanwisher, 2002). This 

discrimination index captures how well object classes can be distinguished based on the 

spatial distribution of responses, and above-chance performance (> 50%) shows that 

activation maps in one subset of the data can be quite accurately categorized based on 

activation maps from another subset. In our study, the two subsets of data are the pre-

trained and the post-trained scan session. We expect above-chance performance in a 

discrimination between two untrained object classes. However, given that the spatial 

distribution of responses is changed due to training, we expect lower performance in a 

discrimination between the trained object class and an untrained class. Figure 6d shows 

the results for the same sub-regions that were described above. We found similar 

discrimination performance for trained and untrained objects in retinotopic cortex (t(8) = 

1.30, p = 0.23, paired t-test). In contrast, lower discrimination performance for trained 

than for untrained objects was seen in voxels with a significant preference for the trained 

objects before and/or after training (t(8) = 3.55, p < 0.01), in voxels with a significant 

preference for one untrained object class above another untrained object class before 

and/or after training (t(8) = 2.28, p = 0.052), and in voxels with a significant preference 
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for objects above scrambled images before and/or after training but without a preference 

for one object class above another (t(8) = 2.48, p < 0.05). These results using the 

discrimination index confirm the correlation analyses, showing that patterns of response 

for trained objects have changed more during the training interval than patterns of 

response for untrained objects.  

4. How large are the largest training-related response increases? 

The fact that training changed the spatial distribution of activity across object-selective 

cortex means that the effect of training on responses in some voxels was different than 

the effect of training in other voxels. As a consequence, we would expect to find some 

focal sub-regions in which training effects are much larger than the average training-

related response increase in object-selective cortex. The obvious candidates for voxels 

with maximal training-induced selectivity are the aforementioned voxels with a post-

training preference for trained compared to untrained object classes (illustrated in Fig. 3). 

To quantify the size of training effects in these voxels we cannot use the same data as the 

data used for identifying the voxels. This would lead to an over-estimation of the size of 

training effects in these voxels in comparison to the effects computed in the previously 

mentioned and independently localized ROIs. To avoid this problem, we divided the 

post-training runs into “selection runs” and “test runs” (see Methods), and we used the 

selection runs to independently identify voxels activated significantly (p < 0.0001, 

uncorrected) in the contrast [trained > untrained] (here referred to as trained voxels), 

excluding from this set any voxels with a significant preference for contralateral stimuli. 
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We then used the test runs to quantify the training effects in these trained voxels

identified from the selection runs. 

As shown in Figure 7, the preference for trained objects in these selected trained voxels

(91 voxels on average per subject) was also found in the post-training test runs (t(8) = 

7.81, p < 0.001, paired t-test), indicating that it is a reliable preference. Strikingly, these 

voxels responded about twice as strongly to exemplars from the trained class (0.88 PSC) 

as to exemplars from the untrained class (0.44 PSC) after training. Importantly, no 

significant preference for the to-be-trained objects was found in these voxels before 

training (t(8) = 1.18, p > 0.2, paired t-test). The training index in these voxels was 0.37 

PSC (computed using only the test runs of the post-training session). A control analysis 

presented in supplementary material (SM4 and supplemental Fig. S3c) shows that 

preferences for untrained object classes transfer across sessions, so this lack of transfer of 

preferences across sessions in trained voxels is due to training and not due to problems 

with across-session co-registration. 

Thus, these trained voxels show a strong training-related increase in responsiveness 

without a clear pre-training preference for the trained objects. In addition, as shown in 

supplemental material (SM4), the large training effect in these trained voxels is not due to 

particularly strong object selectivity or face selectivity, nor is it due to a strong pre-

training response to trained objects. In sum, the results of the analyses of these trained 

voxels are not consistent with a multiplicative gain or the expertise hypothesis, and they 
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strongly support the idea that training changes the spatial distribution of activity across 

cortex in a way that is not related to pre-training responses or face selectivity.

The focus in this section on the relatively small number of voxels with significant post-

training selectivity might suggest that training effects are localized to one or a few small 

sub-regions around object-selective cortex. However, this is not supported by our data. 

As shown in detail in supplemental material SM5, the trained voxels consisted of a 

relatively high number of local clusters of voxels. This local clustering of object 

selectivity and preferences for trained objects is illustrated visually in Figure 8, where we 

use a multidimensional color scale to represent the selectivity of all visually responsive 

voxels in two subsets of post-training runs for three subjects. Some of the object 

selectivity was clearly replicable across these datasets, despite the relatively low number 

of runs (each of the 9 subjects showed a positive correlation of selectivity across voxels 

between these two sets of runs, with an average correlation of 0.34, SEM = 0.04). In 

addition, the color maps show the overall effect that trained objects elicited stronger 

responses than untrained objects. Finally, these high-resolution selectivity maps clearly 

illustrate the existence of multiple sub-regions with a preference for trained above 

untrained objects. 

To summarize, we analyzed several regions of interest, the distributed response pattern 

across all visually active voxels, and the voxels with the most significant post-training 

preference for trained objects. These analyses converge on the conclusion that training 

increases responsiveness to trained objects in visual cortex, and that it changes the spatial 
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distribution of activity across visual cortex in a way that is not consistent with a 

multiplicative gain or the expertise hypothesis. This training-related response increase 

and change in distribution of activity were relatively distributed across small sub-regions 

in and around object-selective cortex.

Page 34 of 80

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only



35

DISCUSSION

Our study provides a new characterization of the effect of object discrimination training 

across the ventral visual pathway. First, training produces increased responses to trained 

compared to untrained objects; training-related decreases in response were not found. 

Second, training effects are not uniformly distributed across the ventral visual pathway: 

Whereas some sub-regions of extrastriate cortex responded twice as strongly to trained 

compared to untrained objects after training (and not differently to these stimuli before 

training), other cortical regions (such as rFFA and foveal V1/V2) showed no significant 

effect of training. Third, the spatial distribution of training effects cannot be accounted 

for fully in terms of a change in the gain of the response to trained stimuli, nor is it 

related to face selectivity. In contrast, training changes the spatial distribution of activity 

across visual cortex, and training effects were distributed across multiple sub-regions in 

high-level object-selective cortex. 

Several novel aspects of our method were important for obtaining these results. First, our 

relatively high resolution scanning (1.4 x 1.4 x 2 mm voxel size) involves considerably 

less averaging across distinct neural populations than occurs in the more standard 

resolutions used in human fMRI studies. This reduction in “partial voluming” in the 

present study is likely important to detect two-fold training effects distributed across 

small sub-regions.  Individual-subject analyses are also important for avoiding the loss of 

resolution entailed in the necessarily imperfect registration across individual brains. 

Further, some of our analyses were based on a between-session alignment of the 
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functional data for each subject, providing more detailed information about the spatial 

distribution of training effects compared to more traditional region-of-interest analyses. 

The combination of these methods enabled us to show large training effects in relatively 

small and discontiguous cortical regions.

Several aspects of the design of our study are important for understanding the scope of 

our conclusions. First, we studied the object-specific effects of training by using 

untrained objects as the baseline condition. Second, subjects performed a control task in 

the scanner for which the trained object differences were not relevant (see Methods). 

Thus, we studied effects of training that transfer across task conditions, and that are not 

confounded by changes in performance or task difficulty. Third, like all previous studies 

of complex object learning (Gauthier et al., 1999; Grill-Spector et al., 2000; Kourtzi et 

al., 2005), our study does not distinguish between effects of active training and effects of 

passive exposure. The strongest evidence that our fMRI training effects are relevant for 

task performance is our finding that the strength of training effects in object-selective 

cortex is correlated with behavioral improvements. Fourth, no study has investigated 

long-term retention of the behavioral and neural effects of object learning, which is an 

important topic for future research. Finally, we measured changes in the response to 

whole object classes, rather than changes in the response to individual exemplars. With 

the resolution of fMRI it might be difficult to find differential responses to very similar 

exemplars of object classes (e.g., two different faces), but it will be important for future 

studies to test whether training may change the response to individual exemplars of the 

trained class.
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Although our study is the first to investigate the effects of object discrimination training 

throughout human visual cortex at this high resolution, several related studies have been 

reported previously. Our finding that training increases responses to trained objects in 

extrastriate cortex is consistent with most previous human imaging and monkey 

physiology studies that used training procedures (Logothetis et al., 1995; Kobatake et al., 

1998; Gauthier et al., 1999; Grill-Spector et al., 2000; Grill-Spector, 2003; Xu, 2005; Yue 

et al., 2006), although some studies have found decreased responses (Baker et al., 2002; 

Kourtzi et al., 2005). Effects in low-level visual cortex have been found after training on 

simpler stimuli (Schiltz et al., 1999; Schoups et al., 2001; Schwartz et al., 2002; 

Furmanski et al., 2004; Yang and Maunsell, 2004) or after training to segment relevant 

stimuli from a distractor background (Kourtzi et al., 2005; Sigman et al., 2005). Taken 

together, this pattern of results across studies suggests that the strongest effects of 

training occur at the cortical levels most critical for performance on the trained task.

Our study adds several critical findings to this literature. First, we formulated and tested 

several basic hypotheses about how training might change the spatial distribution of 

activity across visual cortex. We found that training does not act simply as a gain 

mechanism, a finding that argues against the idea that training induces an overall increase 

in attention or arousal for trained compared to untrained objects (overall differences in 

attention are also inconsistent with the equal behavioral performance during scanning for 

trained versus untrained objects). Rather than changing the overall gain of visual 
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responses, training changes the spatial distribution of activity across visual cortex, most 

notably in high-level object-selective cortex. 

Second, in contrast to a prior study claiming that effects of training with complex objects 

are primarily found in the rFFA (Gauthier et al., 1999), we found training effects in 

object-selective cortex but not in the rFFA. The existence of training effects in non-face-

selective cortex is not in contradiction with the previous work, since some of the data in 

that study suggested substantial training effects in object-selective cortex (Gauthier et al., 

1999; Yue et al., 2006). Thus, it is likely that the effects seen previously reflected a more 

general training-related increase in response that was not restricted to face-selective 

regions. Nevertheless, training effects in rFFA were absent in our study while the 

previous work found significant effects. There were several differences between these 

studies that might explain this discrepancy. Previous studies have emphasized the 

importance of “configural processing” with very familiar objects in relation to activation 

in FFA, but it is controversial whether any highly familiar non-face objects are processed 

“configurally” in the same way as faces (Gauthier and Bukach, 2006; McKone and 

Robbins, 2006). It remains a topic for further investigation whether the training effects 

observed here in extrastriate cortex reflect neural selectivity for the entire object shape, or 

for more local components or features of the trained objects. 

One other important factor to explain differences between studies may be that the stimuli 

used previously by Gauthier et al. (“Greebles”) can be seen as human-like, an 

interpretation that was encouraged because subjects learned proper names for the 
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Greebles, and were trained to recognize them at the “gender”, “family”, and “individual” 

level. Indeed, the one subject in our study who construed our stimuli as human-like

(specifically, as “women wearing hats”) was also the only subject who showed training 

effects in face-selective cortex. Thus, training effects in rFFA may arise only when 

subjects construe the stimuli as face-like or human-like.  Finally, although many studies 

have proposed that lab-training paradigms provide a valid way to test the relationship 

between expertise and face selectivity (Gauthier et al., 1999; Gauthier and Logothetis, 

2000; Gauthier and Tarr, 2002; Palmeri and Gauthier, 2004), ten hours of lab training is a 

far cry from a lifetime of experience, and the present study does not address the effects of 

long-term expertise. Two previous studies have shown effects of real-world expertise in 

face-selective cortex (Gauthier et al., 2000; Xu, 2005), but these studies did not 

investigate the response pattern beyond face-selective cortex to exclude hypotheses such 

as an additive offset or a multiplicative gain.

Overall, our results are consistent with the proposal that training results in the creation of 

new object representations in high-level visual cortex (Henson et al., 2000), and that the 

largest effects of training occur in regions that already process stimulus properties that 

are relevant during training, even if stimuli were not initially processed that way. Thus, as 

we showed here that training on object discrimination leads to enhanced activity in and 

around object-selective cortex, others have argued that training to categorize human-like 

forms increases the response to these stimuli in the rFFA (Gauthier et al., 1999), training 

subjects to use novel objects as navigational landmarks leads to enhanced responses in 

the parahippocampal place area (Janzen and van Turennout, 2004), and training subjects 
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to use novel objects as tools leads to enhanced responses in regions that respond strongly 

to tools (Weisberg et al., 2006). However, our study also revealed differences in the size 

of training effects at a finer scale between sub-regions of object-selective cortex. We 

were not able to explain this spatial distribution of training effects by the distribution of 

either face selectivity or pre-training response. It remains to be determined what other 

factor explains this spatial distribution. 

In sum, we found that training increases responses and changes their distribution across 

object-selective cortex. There was no simple relationship between the distribution of 

training effects and the distribution of face selectivity or pre-trained responsiveness. 

Future investigations into the underlying neuronal mechanisms may make the most rapid 

progress by combining human and monkey fMRI studies, which enable sampling a broad 

region of cortex in a similar way in the two species, with higher resolution techniques 

such as single-unit recording (Tsao et al., 2006).
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FIGURE CAPTIONS

Figure 1. Stimuli and tasks used in the training experiment. For each of the three classes 

(‘smoothies’, ‘spikies’, and ‘cubies’), exemplars were constructed from a four-

dimensional object space. Each exemplar had a value from 0 to 5 on each of four shape 

dimensions. The top three rows show exemplars from each class: value 0 on each 

dimension (far left), value 5 on one dimension and value 0 on the other dimensions 

(middle four exemplars), value 5 on each dimension (far right). The bottom half of the 

figure shows the task used to train subjects in shape discrimination.

Figure 2. Sensitivity (d’) in the shape discrimination task as a function of time (training 

session). Sensitivity is shown separately for small (0.5), intermediate (2 and 4), and large 

(8 and 12) distances in object space (see Methods for explanation of distance metric). 

Performance is shown for the first block of trials in each of the 10 training sessions and in 

the test session. For the test session at the end of the experiment, the data for the trained 

object class are shown with filled symbols and the data for the untrained classes with 

open symbols. Error bars show the standard error of the mean (sem) across subjects.

Figure 3. Different ways in which training could change the strength and spatial 

distribution of activity across cortex. The blue crosshairs in these panels represent for 

four hypothetical sub-regions the response before and after training for an object class 

that was not trained during the training phase, and the schematic blue line represents the 
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corresponding regression line. Red arrows and corresponding regression line illustrate 

three ways in which training could change these responses if this object class would be 

trained during training: a, additive offset, training could increase or decrease activity with 

a constant that is the same in each sub-region (all red arrows are identical); b, 

multiplicative gain, the increase or decrease in activity could depend on the pre-trained 

response in each sub-region, with for example the strongest increase in activity in sub-

regions with the strongest pre-trained activity (red arrows largest on the right). This will 

change the slope of the regression line. c, change in spatial distribution of activity, the 

effect of training could vary between voxels in a way that is not related to pre-trained 

response (red arrows of variable length). This will change the correlation between pre-

training and post-training responses across voxels (represented by the aspect ratio of the 

blue and red ellipse for untrained and trained objects, respectively).

Figure 4. Functional activations for trained objects before and after training. Activations 

(significance maps thresholded at p < 0.0001, uncorrected) are shown for the contrast 

[trained > untrained], with red/yellow indicating positive contrast and blue indicating 

negative contrast. a, Functional activation overlaid on a coronal anatomical slice for three 

subjects. The left, middle, and right subject were trained with the smoothies, spikies, and 

cubies, respectively. These subjects were representative in the size of training effects seen 

across the population. Slices are shown with right hemisphere at the left. b, Functional 

activation overlaid on a ventrolateral view of the inflated brain of a fourth subject (trained 

with the smoothies).
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Figure 5. Effect of training on responses (percent signal change from fixation condition) 

in ROIs. a, Percent signal change (PSC) for trained and untrained object classes before 

and after training for three regions of interest: LOC, right FFA (rFFA), and foveal 

V1/V2. Error bars show the sem across subjects of the difference in the response between 

trained and untrained objects, and ‘*’ highlights the cases in which trained and untrained 

conditions were significantly different (* p < 0.05 and ** p < 0.001). b, The training 

index in each of these ROIs. The error bars show the sem across subjects of the training 

index in each ROI, and ‘*’ highlights the ROIs in which the training index was 

significantly different from zero (* p < 0.05 and ** p < 0.001). c, PSC for trained and 

untrained object classes before and after training for four sub-regions of LOC: right LO 

(RLO), left LO (LLO), right pFs (RpFs), and left pFs (LpFs). Conventions as in panel a. 

d, The training index in each of the sub-regions of LOC. Conventions as in panel b.

Figure 6. Effect of training on the spatial distribution of responses across cortex. a-c, 

Scatterplots of the normalized response in individual voxels before training versus after 

training for the trained object class (a) and for the two untrained object classes (b-c). All 

visually active voxels of all subjects are visualized together (analyses are done per 

subject). Each crosshair in the scatterplots represents the data from one voxel. The 

response of each voxel in each session was normalized to a mean of zero by subtracting 

the mean response across all object classes (Haxby et al., 2001). As described in the text, 

the data of trained and untrained classes show two differences that are significant across 

subjects: the trained object class is associated with higher post-trained responses than the 

untrained object classes, and the correlation between pre-trained and post-trained 

Page 48 of 80

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only



49

responses is lower for the trained class than for the untrained classes. d, Effect of training 

on the percentage of correct discrimination when the pre-trained distribution of responses 

is used to categorize the post-trained activation maps. Discrimination is shown separately 

for pair-wise comparisons that involve the trained object class and for other pair-wise 

comparisons, and as a function of cortical region. Cortical regions are retinotopic cortex 

and three sub-divisions of object-selective cortex that are labeled according to their 

preferred object class: Voxels with a significant preference for the trained objects before 

and/or after training (“Trained”), voxels with a significant preference for one untrained 

object class above another untrained object class before and/or after training 

(“Untrained”), and voxels with a significant selectivity for objects over scrambled images 

before and/or after training but without any specific selectivity for one object class above 

another (“No preference”). The error bars show the sem across subjects.

Figure 7. Percent signal change for trained and untrained object classes in trained voxels. 

Trained voxels were selected based on a significant post-training preference for trained 

objects over untrained objects. Data are shown for different sets of runs: Post-training 

selection runs (the post-training runs used to select the voxels), post-training test runs (the 

other runs in the post-training scan session), and pre-training runs (all runs in the first 

scan session). The error bars show the sem across subjects of the difference in the 

response between trained and untrained objects. 

Figure 8. Stimulus preferences after training in odd and even runs. 
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Stimulus preference is represented by a continuous color scale. Saturation represents 

amount of selectivity (no saturation = white = same response to each object class) and 

hue represents which object class is preferred. This scale was applied to each voxel that 

was visually responsive. This color scale is overlaid on one unsmoothed functional slice 

in each of three subjects. The approximate position of the slices is represented by the line 

intersecting the brain pictogram.

Figure S1. Comparison between direct functional alignment and indirect anatomical 

alignment in terms of the between-session replicability of face selectivity in the right 

fusiform gyrus: a, replicability for direct functional alignment; b, replicability for indirect 

anatomical alignment. Data are shown for different sets of runs: Post-training selection 

runs (the post-training runs used to select the voxels), post-training test runs (the other 

runs in the post-training scan session), and pre-training runs (all runs in the first scan

session). The error bars show the sem across subjects of the difference in the response 

between faces and objects. See supplemental material SM1 for more information.

Figure S2. Object-selective activations before and after training. Activations 

(significance maps thresholded at p < 0.0001, uncorrected) are shown for the contrast 

[objects > scrambled], with red/yellow indicating positive contrast and blue indicating 

negative contrast. a, Functional activation overlaid on a coronal anatomical slice for three 

subjects. Slices are shown with right hemisphere at the left. b, Functional activation 

overlaid on a ventrolateral view of the inflated brain of a fourth subject. These subjects 

and slices correspond to the subjects and slices in Figure 4.
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Figure S3. Percent signal change in trained voxels (A-B) and control voxels (C). 

Trained voxels showed a significant post-training preference for trained objects, control 

voxels preferred one untrained object class above the other. a, Response of the trained 

voxels to trained and untrained objects. The identical panel is shown in the main 

manuscript (Figure 6), but is repeated here to facilitate a direct comparison with panel c. 

Data are shown for different sets of runs: Post-training selection runs (the post-training

runs used to select the voxels), post-training test runs (the other runs in the post-training 

scan session), and pre-training runs (all runs in the first scan session). The error bars 

show the sem across subjects of the difference in the response between trained and 

untrained objects. b, Response of the trained voxels to faces, objects, and scrambled 

images. Data are shown separately for session 2 and session 1 localizer runs. The error 

bars show the sem of the difference in the response between objects and scrambled 

images. c, Response of control voxels to their preferred and unpreferred untrained 

objects. Same conventions as in panel a. See supplemental material SM4 for more 

information.

Figure S4. Scatter plots of the relation between behavioral improvements during training 

and the training index in three ROIs.
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Figure 3 
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Figure 6 
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SM1. Comparison of different methods for between-session alignment 

 

There are at least two proceduresthat can be followed to align two separate functional 

sessions of one subject:direct functional alignment and indirect anatomical alignment. In 

direct functionalalignment (which we used in this study), the two sessions are treated as 

onelarge session, and all the volumes are aligned with one functional referencevolume in 

one step at the pre-processing stage. In contrast, in indirectanatomical alignment there are 

two steps. First, all functional volumes of eachsession are aligned with a within-session 

functional reference volume duringpre-processing. Second, this within-session functional 

reference volume of eachfunctional session is aligned with an anatomical reference 

volume. 

 

Each of these methods hasadvantages and disadvantages. Advantages of direct functional 

alignment arethat it requires no alignment between different image modalities (e.g., 

frombold EPI images to T1-weighted anatomical images), and it requires each volumeto 

be re-sampled only one time during pre-processing. However, we can expectthis method 

to perform poorly when the slice prescriptions in the two sessionsare very different. 

Algorithms such as those used in AFNI are not designed todeal with large image 

displacements. Furthermore, differences in head or sliceposition might be associated with 

position- and session-specific geometricdistortions. Indirect anatomical alignment can be 

expected to perform betterthan direct functional alignment when very different slice 

prescriptions areused. However, it requires the alignment of different image modalities, 
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andmultiple re-sampling of each volume (one time during pre-processing and anothertime 

for the mapping to the anatomy).  

 

This overview suggests that directfunctional alignment is a good strategy when the slice 

prescription in the twosessions is very similar. Since we were careful to take very similar 

sliceprescriptions in the two sessions, this is the strategy we opted for. Our dataindicate 

that the strategy worked well enough for our purposes. For example,preferences for 

untrained object classes replicate very well across sessions(see SM4 and Fig. S3c), and 

thedistributed profile analyses show positive correlations between objectpreferences 

before training and object preferences after training. Mostimportantly, any conclusion 

about training-related changes in the spatialdistribution of activity is based on a 

comparison of results for trainedobjects with results for untrained objects (each of which 

should be affectedequally by any problem with alignment). 

 

Nevertheless, we wondered how thequality of alignment with this strategy compares to 

the quality of alignmentthat would be obtained with an indirect anatomical alignment. 

We compared thetwo methods using face selectivity in the right fusiform face area 

(rFFA). Thisis an interesting benchmark for several reasons. First, it is a well-

knownregion of interest with replicable selectivity. Second, rFFA is not a verylarge 

region, so problems with alignment can be expected to result in pooracross-session 

replicability of face selectivity. Third, rFFA is located in theproximity of the large 

susceptibility artifact in the temporal lobe. Thus, thisis a region that should show inferior 
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quality of alignment if geometricdistortions are different in different sessions or in 

different imagemodalities. 

 

For each procedure, we defined rFFAbased on the contrast [faces Ð objects] in three of 

the four post-traininglocalizer runs (Òselection runsÓ). We assessed the quality of 

alignment bycomparing the face selectivity in the fourth post-training Òtest runÓ  with 

the face selectivity in thepre-training scan session. For direct functional alignment, rFFA 

was definedusing the functional data only. For indirect anatomical alignment, we 

onlyselected face-selective voxels that intersected with the cortical surface asdefined after 

anatomical reconstruction with Freesurfer software. Theseface-selective patches on the 

cortical surface were than re-mapped to eachfunctional session. 

 

Each method resulted in a goodquality of alignment, so that the post-training face 

selectivity was also foundbefore training:  The pre-trainingdifference between face and 

object responses was significant across subjectsfor the direct functional alignment (t(8)= 

4.63, p = 0.0017; see Fig. S1a) and for the indirect anatomical alignment (t(8) = 2.90, p =

.02; see Fig. S1b).Nevertheless, the data suggest that the between-session alignment was 

not perfect,since this pre-training difference tended to be smaller than the 

differencebetween object and face responses found in the post-training test run. Thistrend 

was noted for each method, but it was not significant for directfunctional alignment (t(8) 

=1.85, p = 0.10) nor was itsignificant for indirect anatomical alignment (t(8) = 1.45, p =

0.18). Thus, in our study where we aligned two sessions with verysimilar slice 
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descriptions, the two methods for between-session alignment seemto result in a good 

across-session replication of category-selective responses. 
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SM2. Responses to specific object classes in FFA and LOC

We investigated whether the three novel object classes were associated with the same 

overall response before training in two regions of interest, the fusiform face area (FFA) 

and the lateral occipital cortex (LOC). 

The FFA responded more strongly to smoothies than to spikies or cubies, and this effect 

was found both in right FFA (smoothies: 0.63 PSC; spikies/cubies: 0.41 PSC: t(8) = 3.48, 

p < 0.01) and in left FFA (smoothies: 0.43 PSC; spikies/cubies: 0.26 PSC; t(8) = 2.96, p

< 0.02). The higher response for smoothies was also found if the analyses were restricted 

to the eight subjects that did not interpret the smoothies as face-like, both in rFFA (t(7) = 

2.98, p < 0.05) and in left FFA (t(7) = 2.60, p < 0.05). This small preference might be 

related to previously reported responses in FFA to concentric patterns (Wilkinson et al., 

2000). 

The stronger response to smoothies in FFA was not a general characteristic of the 

response strength in the visual system to the three object classes. There was no significant 

preference for or against any of the three object classes in LOC (p > 0.10, paired t-tests), 

and, if anything, the LOC response to smoothies tended to be smaller than the response to 

the other two classes (smoothies: 1.12 PSC; spikies: 1.21 PSC; cubies: 1.16 PSC).

A related question is whether the strength of training effects in FFA depends on the 

object class that a subject is trained with. The most straightforward prediction would be 
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that the FFA would show the strongest training effect when a subject is trained with the 

preferred object class (smoothies). This is the prediction of a multiplicative gain, and this 

prediction was not confirmed by our data in general (see main Results section). More 

anecdotal evidence against this comes from the training index in rFFA for the three 

subjects trained with the smoothies. Only the subject that interpreted the smoothies as 

face-like showed a large training index, the other two subjects did not (training index –

0.04 PSC and –0.03 PSC). Thus, as far as we can rely on such a low number of subjects, 

the important relationship seems not to be the stimulus class by itself, but rather whether 

or not that stimulus is interpreted as a face. 
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SM3. Effects of training in sub-populations of all visually active voxels

Across all visually active voxels, training was associated with an increased 

responsiveness and a change in the spatial distribution of activity across cortex. If these 

two effects were completely distributed across visual cortex, then they should be found in 

all regions of visual cortex, including both early retinotopic regions and higher-level 

object-selective regions. To test this hypothesis, we selected two large sub-populations 

from all the visually active voxels. The first sub-population was comprised of the voxels 

that significantly preferred stimuli presented to the contralateral visual field above 

ipsilateral stimuli in the localizer scans in at least one session (average of 4322 voxels in 

individual subjects). These voxels include most of parafoveal retinotopic cortex, which is 

where we expect to find voxels that are differentially activated by the foveally presented 

stimuli (which have some differences between object classes in their retinotopic 

envelope). The second, object-selective sub-population was comprised of voxels that 

showed any sort of object selectivity in at least one session, either by responding 

significantly more strongly to the three novel object classes than to scrambled images, or 

by responding significantly more strongly to one of the three novel object classes than to 

the other two (average of 1397 voxels in individual subjects). In order to clearly 

distinguish between these two populations, we did not include voxels that fulfilled both 

selection criteria (contralateral preference and object selectivity). 

As shown in Supplementary Table 1, training effects were stronger in object-selective 

cortex than in retinotopic cortex. The training index was twice as large in object-selective 
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cortex compared to retinotopic cortex, and the change in spatial distribution (measured by 

a reduction in between-session correlation for trained compared to untrained objects) was 

only found in object-selective cortex. The latter difference between retinotopic cortex and 

object-selective cortex was not due to a nonreliable response profile in retinotopic cortex 

(if correlations were zero even for untrained objects, then they could not go down by 

training): the average correlation between the two sessions was 0.29 in retinotopic cortex 

and 0.30 in object-selective cortex. To summarize, training was associated with a small 

increase in responsiveness but no change in the distribution of activity in retinotopic 

cortex. In contrast, object-selective cortex showed a strong increase in responsiveness 

and a change in the spatial distribution of this response across voxels.

Additional analyses showed that this effect was seen in several mutually exclusive sub-

populations of this large object-selective population (Supplementary Table 1): voxels 

with a significant preference for the trained objects before and/or after training (trained-

preferring voxels; average of 166 voxels per subject), voxels with a significant preference 

for one of the two untrained object classes above the other untrained object class 

(untrained-preferring voxels; average of 157 voxels), and voxels with a significant 

preference for objects above scrambled images before and/or after training but without 

any specific selectivity for one object class above another (not-class-selective voxels; 

average of 1099 voxels). Thus, changes in the distribution of activity do not only occur in 

sub-regions that show selectivity for the trained class (before or after training), but also 

for regions with a selectivity for other object classes and regions with responses for 

objects in general (without a specific selectivity for smoothies, spikies, or cubies). 
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Supplementary Table 1. Mean, standard error of the mean (across subjects), and significance of 

the training index and the difference between untrained and trained objects in the correlation of 

their response profile between scan sessions

       Training index      Difference in correlation

All active voxels  0.13 (+- 0.02), p < 0.001 **      0.08 (+- 0.03), p < 0.05 *

Retinotopic voxels  0.10 (+- 0.02), p < 0.001 **      0.04 (+- 0.03), p > 0.20

Object-selective voxels  0.18 (+- 0.03), p < 0.001 **      0.13 (+- 0.05), p < 0.02 **

Trained-preferring voxels  0.45 (+- 0.09), p < 0.001 **      0.39 (+- 0.11), p < 0.01 **

Untrained-preferring voxels  0.16 (+- 0.06), p < 0.02 **      0.26 (+- 0.12), p < 0.05 *

Not-class-selective voxels  0.14 (+- 0.03), p < 0.001 **      0.16 (+- 0.06), p < 0.02 **

Significantly different from zero: * p < .05; ** p < .02

We conclude in the Results section that the lower between-session correlation for trained 

objects compared to untrained objects is related to a change in the distribution of activity 

from one session to the other. However, a low reliability of the data for the trained 

condition in one of the two scan sessions would also result in a lower correlation. We 

therefore assessed the reliability of the data from all visually active voxels by dividing the 

data from each session in two sub-sets (first and last runs versus middle runs, that is, the 
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same division as the selection runs vs. test runs comparison used in the main text). The 

within-session correlation/reliability was very similar for trained objects and untrained 

objects before training (0.29 and 0.33, respectively; t(8) = 1.34, p > 0.20), and tended to 

be even larger (more reliable) for trained than untrained objects after training (0.38 and 

0.27, respectively; t(8) = 2.16, p = 0.06). Thus, the data for trained objects are not less 

reliable than the data for untrained objects.

Another alternative explanation for the lower between-session correlation for trained 

objects compared to untrained objects would be a nonlinear relationship between BOLD 

responses and underlying neuronal activity (e.g., due to saturation effects). It is possible 

that training increases neuronal activity with an additive offset or multiplicative gain, but 

that due to a nonlinearity this training effect is manifested as a change in the spatial 

distribution of BOLD responses. For example, a very strong increase in underlying 

neuronal response might be associated with a strong increase in BOLD response in a 

region where this BOLD response was not saturated yet, while a ceiling effect might 

cause the increase in BOLD response to be less in another more saturated region that has 

the same increase in the underlying neuronal response. The more the overall BOLD 

response changes, the more we expect such nonlinearities to come into play. Thus, if the 

change in spatial distribution of activity would be caused by a nonlinear and spatially 

heterogeneous effect in the BOLD response that is caused by a homogeneous training-

related neuronal response increase, then we would expect a correlation across subjects 

between the overall activity increase (training index) and the change in spatial 

distribution of activity (expressed as the between-session correlation for trained objects 
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subtracted from the between-session correlation for untrained objects). This prediction 

was not confirmed, with r = 0.29 (p > 0.4) for all visually active voxels and r = -0.18 (p > 

0.4) for all object-selective voxels. This suggests that the change in profile that we found 

is not due to a homogeneous training-related increase in the neuronal response that is 

hidden by the nonlinearity of BOLD responses.
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SM4. Effect of training in voxels with maximal post-training preference for trained 

objects

We argue in the Results section that the voxels with maximal post-training preference for 

trained objects above untrained objects, referred to as trained voxels, did not show a 

preference for the to-be-trained objects before training, and that the large training effects 

in these voxels are not related to a strong general object selectivity, a strong pre-training 

response to the to-be-trained objects, or face selectivity.  Here we present further analyses 

that corroborate each of these conclusions.

First, to show that the lack of between-session transfer of preferences in the trained 

voxels was due to training and not due to problems with co-registration of data across 

sessions, we selected a second population of voxels with a significant preference for one 

untrained class above the other untrained class in the post-training selection runs, 

excluding all voxels with a contralateral preference. As shown in Supplementary Figure 

3c, part of this preference for one untrained class above the other was also found in the 

post-training test runs (0.28 PSC difference). However, there was an equally strong 

preference (0.28 PSC difference) for one untrained class above the other in the pre-

training runs, showing that the post-training preference for this untrained class does not 

reflect a training effect. This finding contrasts with the aforementioned finding of no 

transfer of preferences across sessions in the trained voxels (shown in Figure 6 and again 

in Supplementary Figure 3a), and it indicates that this latter effect is related to training 

and that it is not caused by factors such as the quality of across-session co-registration. 
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Second, the large training effect in the trained voxels was not due to an extraordinarily 

strong preference for objects in general compared to scrambled objects. The trained 

voxels showed some general object selectivity before and after training, as illustrated by 

the response of these voxels to objects and scrambled images in the localizer runs (Fig. 

S3b). As a population, the trained voxels showed a significant preference (t-test, p < 0.01) 

for objects above scrambled images in each of the two scan sessions. Furthermore, most 

of the trained voxels were located in the vicinity of object-selective cortex in the lateral 

occipital and fusiform gyri (as illustrated with Fig. 3 and S2). Nevertheless, less than one 

third of these voxels individually showed significant activation (p < 0.0001, uncorrected) 

in the contrast of [objects > scrambled] in the localizer runs (21 % of the trained voxels) 

or in the contrast of all three object classes minus scrambed images in the novel object 

runs (28 % of the trained voxels). This suggests that the voxels with strongest training 

effects were not always voxels with a strong general object selectivity (defined as a 

preference for all sorts of objects above scrambled images). In agreement with this 

suggestion, the trained voxels responded almost as strongly to scrambled images as to 

untrained objects in the novel object runs: The response to untrained objects and 

scrambled images was 0.44 PSC and 0.46 PSC in the post-training test runs (t(8) = .28, p

> 0.5), and 0.62 PSC and 0.55 PSC in the pre-training session (t(8) = 1.16, p > 0.25). 

Thus, on average, the voxels with the most significant post-training preference for trained 

objects had a relatively weak general preference for objects above scrambled images. As 

a consequence, the large training effects in these trained voxels were not related to a 

particularly strong object selectivity.
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Third, the trained voxels responded much less strongly to the to-be-trained objects before 

training than did other brain regions with equal or even smaller training effects, in 

contrast to the predictions of a multiplicative gain. This is illustrated by a direct 

comparison of pre-training responses and training effects in these trained voxels with the 

results found in sub-regions of LOC. In a comparison between right LO and the trained 

voxels, the training index was approximately the same in the two populations of voxels, 

0.35 PSC in right LO versus 0.37 in the trained voxels. However, right LO responded 

much more strongly to the novel objects before training (1.45 PSC) than the trained 

voxels (0.64 PSC), t(8) = 4.52, p < 0.005. Even more strikingly, another subdivision of 

LOC, left LO, showed a significantly smaller training effect (0.20 PSC) than the trained 

voxels (t(8) = 2.42, p < 0.03), while left LO responded much more strongly to the novel 

objects before training (1.42 PSC) than the trained voxels (t(8) = 4.80, p < 0.001). Thus, 

the trained voxels showed an extraordinarily large training effect, the size of which 

cannot be explained by their pre-training response to the to-be-trained objects.

Fourth, the responses of these voxels with maximal training effects are also interesting as 

a test for the expertise hypothesis mentioned in the Introduction. According to this 

hypothesis, the strongest training effects should be found in face-selective regions. In 

contrast to this prediction, the trained voxels were on average not selective for faces 

compared to objects (Fig. S3b), and they even tended to respond less to faces than to 

objects in each of the two scan sessions (t-test, p = 0.11 and p < 0.05 in the pre-training 

and post-training session, respectively). 
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To summarize, the results of the analyses of these trained voxels, which we can consider 

as being the hot-spots of training effects, are not consistent with a multiplicative gain or 

the expertise hypothesis, and they strongly support the idea that training changes the 

profile of response across cortex. 
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SM5. Cluster analysis of trained voxels and face-selective voxels

We performed a cluster analysis on the distances between voxels to compare the number 

of clusters comprising the trained voxels with the number of clusters comprising the face-

selective voxels. We determined the number of clusters formed by a set of voxels with an 

algorithm that classified voxels as belonging to one cluster when these voxels were 

connected by a continuous array of other voxels or were only separated by a small 

distance. The distance between voxels that still counted as part of the same cluster was 

set by a distance parameter. For example, a distance parameter of 5 means that 2 voxels 

were put in the same cluster as long as there was no gap of more than 5 mm separating 

the voxels. 

The non-retinotopic voxels with a significant post-training selectivity for trained 

compared to untrained objects (trained voxels) formed many small discontinuous 

clusters. We selected these voxels based on all post-training runs after alignment to the 

pre-training session (average of 212 voxels per subject). We performed the cluster 

analysis on the coordinates of these voxels (with distance parameter set to 5);  The 

trained voxels belonged to an average of 18 different clusters per subject. As a 

comparison, we performed the same analysis on all voxels with a significant preference 

for faces compared to objects (149 voxels per subject), and these voxels formed a 

significantly lower number of clusters (7.7 clusters per subject; t(8) = 3.33, p = 0.01). 

This number of face-selective clusters is close to the expected number given that three 
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face-selective regions have been described before (in fusiform gyrus, lateral occipital 

gyrus, and superior temporal sulcus), and these regions can be found in each hemisphere. 

The different number of clusters may be affected by the fact that there tended to be fewer 

face-selective voxels than trained voxels (t(8) = 2.15, p = 0.07). However, even when the 

selection criterion for the trained voxels was more stringent (significance level of 

0.00005), as such selecting 154 voxels per subject (not different from the number of face-

selective voxels, t(8) = 0.87, p > 0.4), there were still twice as many clusters of trained 

voxels (average of 15.3 per subject) than of face-selective voxels (significant difference: 

t(8) = 2.88, p < 0.03).  The exact number of clusters depended strongly on the distance 

parameter, but there were always more clusters of voxels with a significant selectivity for 

trained objects compared to the number of clusters of face-selective voxels: there were 

significantly more trained clusters with the minimum distance of 2 mm (this is the 

distance between 2 adjacent voxels), and also with a distance parameter of 1 cm. 

Thus, voxels with a post-training preference for the trained objects form a relatively high 

number of local clusters.
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Supplementary Figure S1. Comparison between direct functional alignment and indirect 
anatomical alignment in terms of the between-session replicability of face selectivity in 

the right fusiform gyrus: a, replicability for direct functional alignment; b, replicability for 
indirect anatomical alignment. Data are shown for different sets of runs: Post-training 

selection runs (the post-training runs used to select the voxels), post-training test runs 
(the other runs in the post-training scan session), and pre-training runs (all runs in the 
first scan session). The error bars show the sem across subjects of the difference in the 

response between faces and objects. See supplemental material SM1 for more 
information. 
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Supplementary Figure S2. Object-selective activations before and after training. 
Activations (significance maps thresholded at p < 0.0001, uncorrected) are shown for the 

contrast [objects > scrambled], with red/yellow indicating positive contrast and blue 
indicating negative contrast. a, Functional activation overlaid on a coronal anatomical 

slice for three subjects. Slices are shown with right hemisphere at the left. b, Functional 
activation overlaid on a ventrolateral view of the inflated brain of a fourth subject. These 

subjects and slices correspond to the subjects and slices in Figure 4. 
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Supplementary Figure S3. Percent signal change in trained voxels (A-B) and control 
voxels (C). Trained voxels showed a significant post-training preference for trained 

objects, control voxels preferred one untrained object class above the other. a, Response 
of the trained voxels to trained and untrained objects. The identical panel is shown in the 

main manuscript (Figure 6), but is repeated here to facilitate a direct comparison with 
panel c. Data are shown for different sets of runs: Post-training selection runs (the post-

training runs used to select the voxels), post-training test runs (the other runs in the 
post-training scan session), and pre-training runs (all runs in the first scan session). The 

error bars show the sem across subjects of the difference in the response between 
trained and untrained objects. b, Response of the trained voxels to faces, objects, and 

scrambled images. Data are shown separately for session 2 and session 1 localizer runs. 
The error bars show the sem of the difference in the response between objects and 
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scrambled images. c, Response of control voxels to their preferred and unpreferred 
untrained objects. Same conventions as in panel a. See supplemental material SM4 for 

more information.  
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Supplementary Figure S4. Scatter plots of the relation between behavioral improvements 
during training and the training index in three ROIs. 

Page 81 of 80

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only


