- Édouard Lucas
- (1842-1891)

http://faculty.evansville.edu/ck6/bstud/lucas.html

Rules for Moving Disks

1) We can only move one disk at a time.

We can move it from its current tower to either of the other two towers, assuming we obey Rule #2.

2) Any stack of disks must always be in ascending order, with smallest on the top and largest on the bottom.

Making a Towers of Hanoi – at Home

Rules for Moving Disks

1) We can only move one disk at a time.

We can move it from its current tower to either of the other two towers, assuming we obey Rule #2.

2) Any stack of disks must always be in ascending order, with smallest on the top and largest on the bottom.

N	2 ^N	2 ^N -1
1	2	1
2	4	3
3	8	7
4	16	15
5	32	31
6	64	63
7	128	127
8	256	255

Sequence of Moves for N = 3

- 1. Small to Right.
- 2. Medium to Middle.
- 3. Small to Middle.
- 4. Large to Right.
- 5. Small to Left.
- 6. Medium to Right.
- 7. Small to Right

First Note from Dr. 4 to Dr. 3

"Please do the N = 3 problem, placing the top 3 disks currently on Tower #1 onto Tower #2, the Middle one. Then pass everything back to me."

Second Note from Dr. 4 to Dr. 3

"Now please do the N = 3
problem again, this time
moving the 3 disks on Tower
2 (Middle) onto Tower 3
(Right). Then pass back to
me."

Note from Dr. 5 to Dr. 4

"Please do the N = 4 problem, placing the top 4 disks currently on Tower #1 onto Tower 2, the Middle one. Then pass everything back to me."

Second Note from Dr. 5 to Dr. 4

"Please again do the N = 4 problem, placing the 4 disks currently on Tower #2 onto Tower #3, the Right one. Then pass everything back to me."

The Good Drs.

www.shutterstock.com · 60289693

The Good Drs.

The Good Drs.

Recursion is a method of defining functions in which the function being defined is applied within its own definition.

Factorial: An Example of Recursion

By definition,

$$-N!=N(N-1)(N-2)...(3)(2)(1)$$

Recursion with Factorial:

$$-N!=N(N-1)!$$

- Sol(4,1,3) = Sol(3,1,2) plus Sol(1,1,3) plus Sol(3,2,3).
- Or,
- (Best set of moves to move 4 disks from Tower 1 to Tower 3) equals
- (Best set of moves to move 3 disks from Tower 1 to Tower 2) plus
- Movement of largest disk from Tower 1 to tower 3 plus
- (Best set of moves to move 3 disks from Tower 2 to Tower 3)

The 4-Disk Problem

- We have 4 disks:
 - Small
 - Medium
 - Large
 - Super Large
- Sol(4,1,3) = Sol(3,1,2) PLUS Sol(1,1,3) PLUS Sol(3,2,3)

Sol(3,1,2) = (Set of moves to move 3 disks from Tower 1 to Tower 2)

- 1. Small to Tower 3.
- 2. Medium to Tower 3.
- 3. Small to Tower 3.
- 4. Large to Tower 2.
- 5. Small to Tower 1.
- 6. Medium to Tower 2.
- 7. Small to Tower 2.

PLUS

Sol(1,1,3) = "Movement of 'Super Large' from Tower 1 to Tower 3"

PLUS

Sol(3,2,3) = (Set of moves to move 3 disks from Tower 2 to Tower 3)

- 1. Small to Tower 3.
- 2. Medium to Tower 1.
- 3. Small to Tower 1.
- 4. Large to Tower 3.
- 5. Small to Tower 2.
- 6. Medium to Tower 3.
- 7. Small to Tower 3.

The COUNT Operation

- COUNT{Sol(3,1,3)}=Number of moves required to move 3 disks from Tower 1 to Tower3.
- Sol(3,1,3)=
 - − 1. Small to Right.
 - 2. Medium to Middle.
 - 3. Small to Middle.
 - 4. Large to Right.
 - 5. Small to Left.
 - 6. Medium to Right.
 - 7. Small to Right

Counting Moves

```
COUNT{Sol(4,1,3)}=
COUNT{Sol(3,1,2)}+
COUNT{Sol(1,1,3)}+
COUNT{Sol(3,2,3)}.
```

Counts: Using our Hypothesis

COUNT{Sol(N+1,1,3)} = COUNT{Sol(N,1,2)}+
 COUNT{Sol(1,1,3)}+ COUNT{Sol(N,2,3)}, or

• COUNT{Sol(
$$N+1,1,3$$
)} =
$$[2^{N}-1]+1+[2^{N}-1]=$$

$$2*2^{N}+1-2=2^{N+1}-1.$$

Proof by Induction

Final Challenge Problem

- N = 64 disks.
- Monks correctly moving one disk per second, every second.
- How long for them to complete this
 Towers of Hanoi problem?
- One day, one week, one month, one year, ten years, 100 years, or longer?

Examples of Trail Markers

