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Abstract—Soft sensors play a vital role in industrial process
monitoring and control by estimating difficult-to-measure quality
variables. While significant progress has been made in improving
the accuracy of soft sensor models, challenges remain in ensuring
their interpretability and stability in dynamic industrial envi-
ronments. From a measurement science perspective, ensuring
transparency and reliable performance under varying process
conditions is becoming increasingly critical, particularly in high-
stakes industrial applications. This paper provides a compre-
hensive review of methodologies to enhance the interpretability
and stability of soft sensor models. To address interpretability,
we analyze various interpretable machine learning techniques
applicable to soft sensors and discuss open-source projects that
facilitate the implementation of these techniques. For improving
stability, we emphasize the role of causal machine learning,
detailing methods for causal discovery in industrial processes and
highlighting relevant open-source tools. By highlighting current
limitations and identifying areas for improvement, we aim to
provide valuable insights and practical tools for researchers
and practitioners. These insights will guide the development of
more transparent and reliable soft sensors, ultimately enhancing
industrial process monitoring and control.

Index Terms—Soft Sensor, Interpretable Machine Learning,
Causal Machine Learning, Trustworthy Model, Industrial Pro-
cess Monitoring

I. INTRODUCTION
A. Background

With stringent requirements for product quality and cost, the
complexity and degree of automation of industrial processes is
continuously increasing [ 1]-[4]. As the scale of plants grows,
it is vital to monitor critical variables that are closely related to
process safety and economic benefits. These critical variables
are called quality variables. However, some quality variables
are difficult or costly to measure in real time, posing a signifi-
cant challenge for real-time process monitoring. To overcome
this challenge, soft sensor technology has been introduced.
The basic idea of a soft sensor is to select easily measurable

This work was supported by the National Natural Science Foundation
of China (Grant No. 62403229). Corresponding author: (Richard D. Braatz,
Bhushan Gopaluni.) Liang Cao and Richard D. Braatz are with the Department
of Chemical Engineering, Massachusetts Institute of Technology, Boston,
02139, United States (e-mail: liangcao@mit.edu, braatz@mit.edu). Jingyi
Wang, Yankai Cao and Bhushan Gopaluni are with the Department of Chem-
ical and Biological Engineering, University of British Columbia, Vancouver,
BC, V6T 173, Canada (e-mail: wjy1129@student.ubc.ca, yankai.cao@ubc.ca,
bhushan.gopaluni@ubc.ca). Jianping Su is with the China University of
Petroleum, Beijing, 102200, China (e-mail: jianping.su@cup.edu.cn). Yi Luo
is with the Research Institute of Big Data in Mines, Chinese Institute of Coal
Science, 10013, Beijing, China (e-mail: luoyi_ccteg@ 163.com).

process variables to construct a mathematical relationship that
can estimate the values of quality variables.

By enabling real-time estimation of quality variables, soft
sensors play a vital role in industrial applications, essential
for monitoring, control, and optimization of manufacturing
processes. In sectors like oil and gas, pharmaceuticals, and
chemicals, they enable real-time monitoring of key quality
and safety parameters. For example, in the oil industry, soft
sensors estimate the crude oil composition to maintain product
quality and process stability [5]. In pharmaceutical manufac-
turing, they monitor critical quality attributes to enhance the
consistency and effectiveness of the drug formulation [6].

The integration of soft sensors with advanced data analytics
and the industrial internet of things further amplifies their im-
portance. Modern industrial operations generate vast amounts
of data that, when properly analyzed, can provide actionable
insights for process improvement. Soft sensors leverage this
data to improve process control, support sustainable man-
ufacturing practices, and drive operational efficiencies. As
industries continue to evolve toward more automated and data-
driven methodologies, the reliance on soft sensors is expected
to grow. This trend underscores the indispensable role of soft
sensors in both current and future industrial landscapes.

B. Motivation

Soft sensors have become indispensable in modern indus-
trial measurement and control systems. However, many high-
performance soft sensors operate as black boxes, making it
difficult for operators to understand their predictions. Further-
more, these models may not perform consistently under the
varying conditions typical in dynamic industrial environments
(as shown in Figure [T). Addressing these challenges is crucial
to ensure that soft sensor models are not only accurate but
also trustworthy in practical applications [7[]-[12].

In the design of soft sensors, interpretability refers to the
transparency and ease with which a human can understand the
decision-making process of the model [[8]], [[13]. Interpretability
not only fosters confidence among operators and engineers,
but also guarantees adherence to stringent regulatory require-
ments by enabling transparent and justifiable decision-making
processes. Stability in soft sensor models refers to the ability
to maintain consistent performance under varying operating
conditions and data fluctuations [[14], [[15]]. Industrial envi-
ronments are dynamic, yet many models assume a consistent
data distribution between training and testing, which is often
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Fig. 1: Motivation for interpretability and stablility in soft

Sensors

violated in practice. This leads to performance degradation and
unreliable predictions under distribution shifts.

Lack of interpretability and stability in soft sensor models
may lead to suboptimal process control, wasted resources, and
reduced product quality. Addressing these challenges requires
methodologies from interpretable machine learning and causal
machine learning. By focusing on these aspects, we can
advance soft sensor technologies to meet the complex demands
of modern industrial processes, ultimately contributing to
safer, more efficient, and sustainable operations.

C. Objectives and Structure of the Review

In this paper, our objective is to provide a comprehensive
review of methodologies for enhancing the interpretability and
stability of soft sensor models in industrial processes. By
systematically analyzing current approaches and identifying
their limitations, we seek to offer insights that can guide the
development of soft sensors that are both high-performing and
suitable for deployment in real-world settings.

Soft Sensor
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Fig. 2: Challenges and Solutions in Soft Sensor Modeling

Specifically, we focus on the use of interpretable machine
learning and causal machine learning methods in soft sensor
development, as outlined in Figure [2 We explore how these
techniques can be employed to create trustworthy models
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by reviewing the existing literature and presenting emerging
methods. We aim to inspire future research and innovation
in this field and believe that addressing these aspects will
significantly contribute to the advancement of soft sensor
technologies, enabling them to meet the complex demands of
modern industrial processes.

The structure of this paper is organized as follows. In
Section 2, we provide an overview of soft sensor modeling
approaches. Section 3 discusses the challenges of implement-
ing soft sensors, focusing on issues of interpretability, stability,
and other practical considerations. In Section 4, we explore
methods for enhancing interpretability in soft sensors through
interpretable machine learning techniques and relevant open-
source projects. Section 5 addresses strategies to ensure the
stability of soft sensor models, highlighting the application of
causal machine learning and key open-source tools. Section
6 examines future directions and emerging trends in soft
sensor technologies. Finally, Section 7 concludes the review,
summarizing the importance of advancing interpretability and
stability in soft sensor development.

II. SOFT SENSOR MODELING APPROACHES

Soft sensor modeling approaches have evolved over time, re-
flecting advances in both theoretical and practical applications.
In the following sections, we first explore the definition and
historical evolution of soft sensors, providing a comprehensive
understanding of how they have developed. We then delve into
the characteristics of various modeling techniques, which can
generally be categorized into three main types: first principles
models, data-driven models, and hybrid models. This explo-
ration offers insights into how these different approaches are
applied in industrial settings and their respective strengths and
limitations.

A. Definition and Historical Evolution

The mathematical definition of a soft sensor can be given
as follows:

where d, X, and y are unknown noise, easy-to-measure
variables, and quality variables, respectively. As shown in
Equation T]and Figure [3] developing a soft sensor involves two
fundamental components: selecting appropriate input variables
X that are easily measured and designing a regression model
f that accurately captures the relationship between the inputs
and the target variable.

While X represents variables that are convenient to mea-
sure in real-time, not all such variables necessarily have a
significant or causal impact on the target variable y. Therefore,
practitioners must also carefully assess which subsets of these
easily measurable variables are truly relevant to the system
under study. This assessment often requires rigorous feature
selection, causal analysis, and domain expertise to ensure that
only those variables most influential on y are included in the
soft sensor model.

The early development of soft sensors for process control
and monitoring began in the 1970s, with a notable contribution
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Fig. 3: Two major tasks for soft sensor

by Weber and Brosilow in 1972, who systematically studied
process control using additional variables, commonly referred
to as ’secondary’ or ’proxy’ variables, to estimate hard-to-
measure process parameters [16]]. This indirect estimation ap-
proach became foundational for the evolution of soft sensors.
The term “’soft sensors” became formally defined and widely
recognized in the mid-1980s. From that point onward, the tech-
nology experienced rapid development, attracting considerable
attention from both academic and industrial communities
worldwide. A key milestone in this evolution was McAvoy,
T.J’s 1992 publication in Automatica, solidifying soft sensors
as a significant area of research in process control [[17].

Alongside conceptual advances, technological innovations
have expanded the range of soft sensor applications. According
to Kadlec et al. [18]], soft sensor applications can be broadly
classified into three primary classes. The first is real-time
or near-real-time predictions, which provide instantaneous
estimates of process variables that are essential for immediate
decision making and control actions. The second is dynamic
process monitoring and early fault detection, aimed at en-
hancing the ability to monitor processes over time and detect
faults at an early stage to prevent adverse outcomes. The third
class focuses on quality assurance and sensor data calibration,
ensuring product quality by calibrating sensors and validating
data to maintain accuracy and compliance with standards.
Over the years, soft sensor technology has continued to
evolve, driven by advances in computational techniques, data
acquisition systems, and industrial automation.

B. Classification of Soft Sensors

Soft sensor modeling approaches can be broadly classified
into three main categories: first principles models, data-driven
models, and hybrid models. Each of these approaches offers
distinct advantages and challenges, as summarized in Table[l]
The selection of the most appropriate method depends on fac-
tors such as process complexity, data availability and quality,
and domain expertise. Careful consideration of these factors
ensures the development of effective and reliable soft sensor
models tailored to specific industrial needs.

1) First Principles Models: First principles models are
grounded in fundamental physical, chemical, or biological
laws that govern the behavior of the system. These models
offer a comprehensive understanding of the dynamics of
the system by incorporating equations derived from these
fundamental principles [19], [20]. For example, in a chemi-
cal process, the model would include equations representing
reactions, mass transfer, and energy balance. These models
are highly reliable when the underlying principles are well
understood and can be accurately represented mathematically.

However, the development of first principles models can
be challenging due to the inherent complexity of the natural
processes they represent. Such models often involve higher-
order partial differential equations or systems of equations,
which are more difficult to obtain. Additionally, these models
often involve many parameters that need accurate estimation
to ensure validity and effectiveness. The complexity increases
when dealing with non-linear and multivariate systems, which
requires sophisticated computational techniques and algo-
rithms to solve and optimize the governing equations.

2) Data-Driven Models: Data-driven soft sensor models
learn patterns directly from historical and real-time process
data [21]]-[27]], offering flexibility but requiring careful evalu-
ation of their strengths and weaknesses for industrial applica-
tions.

Traditional machine learning techniques form the founda-
tion of data-driven soft sensors. Linear methods like Partial
Least Squares (PLS) [26] and ridge regression (RR) offer
excellent interpretability and computational efficiency but may
struggle with highly nonlinear relationships. Ensemble learn-
ing and meta-learning methods further integrate the advantages
of multiple models and algorithms to achieve performance
beyond that of a single model [28]-[36].

Deep learning approaches, including Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), au-
toencoders (AE) and generative adversarial networks (GAN),
excel at capturing complex dependencies and nonlinear rela-
tionships [37]-[39]. While these models can achieve superior
accuracy, they present challenges in interpretability and re-
quire substantial training data. Their “black-box” nature often
necessitates additional techniques for explanation, potentially
complicating deployment in regulated industries.

Reinforcement learning methods [40]-[43] offer unique
advantages in adaptive control and optimization but face chal-
lenges in industrial deployment due to exploration-exploitation
trade-offs and safety concerns. These methods show promise
in scenarios requiring continuous adaptation but may be less
suitable for critical processes where predictable behavior is
essential.

To facilitate systematic comparison, we present a detailed
analysis of various data-driven approaches in Table Each
method category presents distinct trade-offs between accu-
racy, interpretability, data requirements, and computational
complexity. The selection of an appropriate method should
consider not only predictive performance but also practical
constraints such as data availability, computational resources,
and regulatory requirements.
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TABLE I: Comparison of Soft Sensor Modeling Methods

Modeling
Approach

Specific Methods

Advantages

Disadvantages

First Principles
Models

o Differential Equations
(e.g., mass and energy
balances)

o Thermodynamic
Models

o Kinetic Models

o Empirical
Correlations

e High accuracy when underlying
physical laws are accurately repre-
sented

e Provides insights into the funda-
mental mechanisms of the system

e Requires detailed and precise
knowledge of the system’s physical
properties

e Time-consuming and complex
model development process

o High sensitivity to parameter uncer-
tainties and measurement errors

Data-Driven
Models

o Traditional Machine
Learning
o Deep Learning

e Reinforcement Learn-

o Ability to model complex and non-
linear relationships without explicit
physical equations

o Capable of handling large-scale
datasets with high dimensionality

e May lack interpretability and may
give unrealistic predictions

e Requires large amounts of high-
quality data for effective training
and prone to overfitting

Hybrid Models

ing e Can improve performance with e Limited ability when beyond the
more data range of the training data
o Combines the accuracy and flexibil- o Increased complexity in model de-
PINN ity of data-driven models with the velopment and implementation

Grey-Box Models
Neuro-Fuzzy Systems
Mechanistic-
Statistical Models

interpretability of first principles

o Enhances model reliability by in-
corporating physical laws and con-
straints

o Improves predictive performance in
scenarios with limited or noisy data

e Requires expertise in both domain
knowledge and data-driven tech-

niques

e May still inherit limitations
from both constituent modeling
approaches

TABLE II: Critical Comparison of Different Machine Learning Models for Data-Driven Soft Sensor

Method Representative Strengths Limitations Best Use Cases
Category Methods
Linear Methods e PLS High interpretability Limited nonlinear capa- Well-understood
e PCA Computationally bility processes
e Ridge Regres- efficient Sensitive to outliers Linear relationships
sion May oversimplify rela- Regulatory require-

tionships

ments

Tree-based Meth-

Random Forest

Moderate interpretabil-

May overfit on small

Medium-scale pro-

ods e XGBoost ity datasets cesses
e LightGBM Handle nonlinearity well Require frequent retrain- Nonlinear relation-
Built-in feature impor- ing ships
tance Memory intensive Feature  selection
needs
Deep Learning e CNN Superior nonlinear mod- Limited interpretability Complex processes
e RNN eling Large data requirements Large data availabil-
¢ LSTM Handle temporal depen- Complex training pro- ity
dencies cess Time-series predic-
Automatic feature ex- tion
traction
Reinforcement « DQN Adaptive optimization Safety concerns during Adaptive control
Learning o DDPG Online learning capabil- training Process
e SAC ity Complex implementa- optimization
Handle dynamic envi- tion Non-critical
ronments Unpredictable applications
exploration
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3) Hybrid Models: Hybrid models combine the strengths
of first principles and data-driven models, balancing physical
insights with the capability to model complex relationships.
By embedding physical laws into the model architecture,
hybrid models incorporate structured knowledge and enforce
constraints, while simultaneously leveraging data-driven com-
ponents to capture complex nonlinear relationships that are
challenging to express through analytical equations [44]-
[46]. Among the prominent hybrid modeling techniques are
hybrid neural networks [44], grey-box models [47]], neuro-
fuzzy systems [48], mechanistic-statistical models [49]] and
physics-informed neural networks (PINNs) [45]], [46].

PINNs incorporate physical laws, generally expressed
through partial differential equations (PDEs), directly into the
neural network’s training. Specifically, a PINN trains a neural
network wug(x,t) not only to fit the observed data, but also to
adhere to the governing physical equations. This is achieved
through a composite loss function £(#), which comprises both
data-based and physics-based components:

»C(H) = Edata(g) + »Cphysics(a) (2
1 2
Laaa(0) = — > |ug(zi,t;) — ud™| (3)
1 & 2
Acphysics(e) = F Z ’N[ue](a:;, ﬁ;)‘ (4)
L

Here, N{ug| denotes the differential operator defined by the
relevant PDEs, N, represents the number of data points, N,
is the number of residual points where the PDE residual is
evaluated, and u‘i’bs are the observed data values at spatial and
temporal coordinates (x;,t;). By minimizing £(6), the PINN
ensures that the neural network model aligns with empirical
observations while satisfying the underlying physical laws that
govern the system.

Hybrid models provide accurate and physically consistent
predictions, particularly in scenarios where data may be sparse
or noisy. This alignment with physical principles also improves
model interpretability and generalizability. Their ability to
integrate physical laws with data-driven insights places them
at the forefront of soft sensor technology.

III. CHALLENGES IN SOFT SENSOR IMPLEMENTATION

In the context of industrial measurement and instrumenta-
tion, soft sensors represent a crucial advancement in process
variable estimation and monitoring. The implementation of
soft sensors in industrial measurement systems presents unique
challenges that extend beyond traditional machine learning
considerations. When evaluating soft sensor performance, tra-
ditional machine learning metrics must be interpreted within
this measurement science context. In real-world industrial
environments, these measurement science considerations inter-
sect with practical challenges of deploying advanced sensing
solutions. Models must not only be transparent and reliable
under varying conditions but also satisfy rigorous metrological
requirements. Many advanced models, particularly those based

on data-driven methods, struggle to meet these combined
demands of measurement science rigor and practical deploy-
ability. This section explores these challenges, focusing on
how interpretability, stability, and other factors affect the
performance of soft sensors.

A. Interpretability

From a measurement science perspective, a highly inter-
pretable soft sensor must provide clear traceability in its mea-
surement chain, allowing users to understand how the model
transforms raw sensor inputs into calibrated measurements.
This includes quantifying measurement uncertainty at each
step of the indirect measurement process and understanding
how different input variables and their associated uncertain-
ties contribute to the final measurement result. Beyond just
understanding model predictions, interpretability in the mea-
surement context requires establishing clear links to reference
standards and documenting the complete measurement equa-
tion that relates input quantities to the measurand.

A highly interpretable soft sensor allows users to understand
how the model makes predictions based on input data, which
input variables significantly impact the prediction results, and
how these variables interact with each other. Providing a
mathematical definition of interpretability in a soft sensor is
challenging, as interpretability is a subjective and context-
dependent concept. However, we can attempt to propose a
more general definition linking interpretability to the charac-
teristics and behavior of a model. Suppose that we have a
model f : X — Y, the interpretability of model f can be
defined as:

Interpretability (f) = o - T(f) + 8- U(f)
T:f—1]0,1], %)
U:f—[0,1],a,5€0,1]

where T'(f) and U(f) are the transparency and understand-
ability measure functions of the model f, respectively. a and
[ are weight coefficients that reflect the relative importance
of transparency and understandability in a specific application
scenario.

In industrial applications, models with high interpretability
are usually more popular because they can help operators
and engineers better understand the process, diagnose prob-
lems, and make decisions. When users clearly understand the
working mechanism of the model, they are more likely to
trust its predictions and take actions accordingly. However,
achieving high interpretability often requires simplifying the
model, which can lead to reduced accuracy and performance.
In addition, complex data-driven models, such as deep neural
networks, inherently lack transparency, making it difficult to
elucidate the underlying decision-making process. Balancing
interpretability with model complexity and performance re-
mains a significant challenge in the implementation of soft
Sensors.

B. Stability

A stable soft sensor can provide consistent and reliable
predictions when exposed to minor perturbations or changes in
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the data. Similar to interpretability, we can attempt to propose
a more general definition for stability. To define stability,
we integrate the concept of uniform stability from statistical
learning theory. We first define the average error (AE) and
stability error (SE) to quantify the model’s stability:

1 i
AE = - § RMSE ©6)
€€
1 .
= [ T _ 2
SE= 5 ;EE(RMSE AE) 7

where £ denotes the number of operating conditions, and
RMSE' represents the root mean square error under operating
conditions ¢. Uniform stability measures the sensitivity of a
learning algorithm to changes in its training data. A learning
algorithm A is said to be uniformly S-stable if for any two
training sets S and S’ differing by a single sample, and for
all inputs z € Z:

|Lz(hS)_Lz(hS’)| SB (8)

where hg and hgs are models trained on S and S’ respectively,
L.(h) is the loss of model h on input z. By incorporating
uniform stability, we link the model’s sensitivity to training
data perturbations with its performance consistency across
different operating conditions. Specifically, a uniformly S-
stable soft sensor ensures that:

SE<p

Low SE indicates that the model maintains low and stable
prediction errors in different operating conditions. By defining
AE and SE and introducing the stability coefficient [, this
framework provides a practical assessment of stability for soft
sensor models. Stability can be explored in depth from differ-
ent perspectives, which mainly include algorithmic stability
[S0], feature selection stability [S1], and hyperparameter tun-
ing [52], [53]]. Different model architectures, different subset
of features, along with varying hyperparameter settings like
learning rate and regularization parameters, can significantly
influence model stability.

C. Trade-offs Between Interpretability and Stability

In the development of soft sensor models, practitioners
often encounter inherent trade-offs between interpretability
and stability. Simple, highly interpretable models may lack
the complexity required to maintain stable performance under
varying conditions, while more complex, stable models often
sacrifice transparency. This tension becomes particularly ev-
ident in industrial settings where both understanding model
decisions and ensuring reliable performance are crucial.

Consider linear models or simple decision trees, which
offer clear insights into feature relationships and decision
boundaries. While these models excel in interpretability, al-
lowing operators to easily understand how input variables
influence predictions, they may struggle to maintain consistent
performance when faced with significant process variations or
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distribution shifts. Conversely, ensemble methods or deep neu-
ral networks can achieve remarkable stability across different
operating conditions through their complex architectures and
robust training procedures, but their intricate decision-making
processes often appear as “black boxes” to users. The balance
between these competing objectives depends on several factors
specific to the industrial application:

e Regulatory Requirements: In highly regulated industries
like pharmaceuticals or chemical manufacturing, inter-
pretability may take precedence due to compliance needs,
even if it means more frequent model recalibration.

e Process Dynamics: Processes with frequent operational
changes or significant variability may necessitate priori-
tizing stability over complete interpretability.

e Safety Criticality: Applications where incorrect predic-
tions could lead to safety incidents may require both high
interpretability for operator trust and robust stability for
reliable operation.

e Maintenance Resources: The availability of technical
expertise and resources for model maintenance can influ-
ence whether to favor simpler, more interpretable models
or complex, stable ones.

Several strategies can help mitigate these trade-offs. One
approach involves using hybrid models that combine inter-
pretable base models with stability-enhancing techniques. For
example, employing ensemble methods with simple, inter-
pretable base learners can provide both clarity in individual
predictions and robustness across different operating condi-
tions. Another strategy involves implementing post-hoc inter-
pretation methods for stable, complex models, allowing users
to understand specific predictions without compromising the
model’s robust performance.

D. Feature Selection and Data Analysis

Feature selection is a critical step in soft sensor devel-
opment, directly impacting the model’s interpretability and
stability. Industrial processes often generate high-dimensional
data, where not all measured variables are relevant to the target
quality variable. Selecting the most informative features can
reduce model complexity, improve generalization, and enhance
interpretability by focusing on variables that directly influence
the prediction [54].

Common feature selection techniques in soft sensor applica-
tions include filter methods, wrapper methods and embedded
methods. Filter methods assess feature relevance based on
statistical measures such as correlation coefficients, mutual
information, or chi-square tests. They are computationally
efficient but may overlook interactions between features [55].
Wrapper methods use a predictive model to evaluate subsets
of features, selecting the combination that optimizes model
performance. While more accurate, they are computation-
ally expensive, especially for large datasets [54]. Embedded
methods incorporate feature selection into the model training
process, such as LASSO regression, which penalizes less
important features. They balance computational efficiency and
accuracy [56].
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Beyond feature selection, data analysis methods are essen-
tial for handling the unique characteristics of industrial data.
Industrial time-series data often exhibit trends, seasonality, and
autocorrelation, which must be accounted for in preprocessing.
Key data analysis techniques include data preprocessing, miss-
ing value handling, outlier detection, and data drift detection.

Data preprocessing contains normalization, scaling, and
transformation techniques that ensure data are suitable for
model training [S7]. Missing value handling involves imputa-
tion methods, such as mean imputation or k-nearest neighbors,
to address incomplete data [|58]]. Outlier detection encompasses
identifying and managing outliers, which is crucial as they can
skew model predictions. Common methods include Z-scores
or machine learning-based anomaly detection [59]. Data drift
detection incorporates monitoring changes in data distribution
over time, which is vital for maintaining model stability.
Statistical tests like the Kolmogorov-Smirnov test can detect
drift and trigger model updates [[60].

Integrating feature selection with data analysis methods
is key to developing soft sensors that perform reliably in
industrial environments. By carefully selecting relevant fea-
tures and preprocessing data to suit its unique characteristics,
practitioners can significantly enhance the performance and
reliability of soft sensor models.

E. Additional Challenges

The implementation of soft sensors faces several challenges
beyond interpretability and stability. Data quality is a critical
factor, as the performance of soft sensors, especially data-
driven models, is highly dependent on the completeness and
representativeness of the input data [61]. Industrial environ-
ments often generate noisy, incomplete, or outlier-containing
data due to sensor malfunctions, communication errors, or
manual recording inaccuracies. Poor data quality can lead to
significant errors in soft sensor predictions, reducing system
reliability. Techniques such as outlier detection, data cleaning,
and imputation methods are employed to mitigate these issues,
but they are not infallible.

Real-time processing requirements and scalability present
further challenges. Many industrial applications require soft
sensors to provide real-time or near real-time predictions
for timely decision-making and process control. This poses
computational challenges, particularly for complex machine
learning algorithms such as deep learning [38]]. Achieving real-
time performance often requires optimizing both hardware and
software components, potentially using lightweight models
or edge computing solutions. Scalability becomes crucial in
large-scale industrial operations where multiple processes and
variables require simultaneous monitoring [[62f]. Soft sensors
must maintain performance when scaled up to handle larger
and more complex systems with numerous variables, espe-
cially in industries like oil and gas or chemical manufacturing.

IV. ENHANCING INTERPRETABILITY IN SOFT SENSORS

Recent advances in interpretable machine learning have
established a robust foundation for developing transparent
and trustworthy models [[63]-[66]. This foundation rests on

understanding two fundamental aspects of interpretability:
when explanation occurs during the modeling process (in-
trinsic vs. post-hoc interpretation) and what scope of model
behavior is being explained (global vs. local interpretation).
These distinctions guide practitioners in selecting appropriate
interpretability methods for their specific applications.

The development of interpretability methods has progressed
significantly with the introduction of frameworks that can ex-
plain both simple and complex models [67]]. These frameworks
incorporate dual perspectives: a human-centric approach that
ensures explanations are meaningful to domain experts, and
a quantitative approach that uses formal metrics to validate
explanation accuracy [68]]. The theoretical understanding of
interpretability has also deepened through research examining
fundamental questions about what constitutes meaningful in-
terpretation and explanation [69]]. This theoretical work has
been complemented by practical advances in incorporating
domain expertise into model development [70].

These developments reflect the maturation of explainable Al
into a comprehensive field that emphasizes practical deploy-
ment, user trust, and regulatory compliance [71]], [[72]]. The
growing consensus is that interpretability is not merely desir-
able but essential for developing trustworthy and responsible
machine learning systems.

Building on these advances in general interpretable machine
learning, we now focus specifically on adapting these methods
for soft sensor applications. The industrial context presents
unique challenges that require careful consideration of how
interpretability techniques can be effectively implemented
while maintaining the high performance standards required
in process monitoring and control. In this section, we will
explore the significance of interpretability and examine various
interpretable machine learning techniques that can be applied
to make complex models more transparent. Our goal is to
develop soft sensor models that not only achieve accurate
predictions but also provide clear, trustworthy explanations of
their decision-making processes.

A. Interpretable Machine Learning for Soft Sensors

To systematically understand interpretable machine learn-
ing, it is useful to categorize approaches along two key di-
mensions [8]], [9]. The first dimension is based on whether the
model inherently possesses interpretability, dividing the meth-
ods into intrinsic interpretability and post hoc interpretability.
The second dimension considers whether the explanations
focus on the entire dataset (global interpretability) or on
individual predictions (local interpretability).

1) Intrinsic Interpretability and Post-hoc Interpretability:
Intrinsic interpretability refers to models that are inherently
transparent due to their simple and understandable struc-
tures. Examples include linear regression, logistic regression,
decision trees, rule-based models, etc. These models have
clear mathematical formulations or decision-making logic that
allow users to directly understand how input features influence
output predictions without the need for additional explanation
tools.

In contrast, post-hoc interpretability involves applying tech-
niques after model training to explain predictions from com-
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plex, often opaque models like deep neural networks or
ensemble methods. Post-hoc methods, such as visualization
techniques, perturbation analysis [73]], and surrogate modeling
[74], aim to provide insights into the model’s decision-making
process without altering its internal structure. Figure [ shows
the detailed classification for this dimension.

2) Local Interpretability and Global Interpretability: Local
interpretability focuses on explaining individual predictions
or a small subset of predictions. It aims to understand how
changes in the input features of a specific instance affect
the model’s output. For example, if a soft sensor model
produces an unexpected prediction at a particular moment,
local explanations can help determine the cause by analyzing
the influence of each feature on that specific prediction.

Global interpretability seeks to provide a holistic under-
standing of the model’s overall behavior across the entire
dataset. It involves analyzing general patterns, feature im-
portance, and feature interactions that influence the model’s
predictions on average. Global explanations are crucial for
validating the model, ensuring that it aligns with domain
knowledge, and communicating its behavior to stakeholders.
Table presents a detailed analysis of various interpretable
machine learning approaches classified according to these
dimensions, highlighting their key features, advantages, and
disadvantages.

B. Main Methods of Interpretable Machine Learning

This section explores the main methods of interpretable
machine learning relevant to soft sensors, detailing their
mechanisms, advantages, and limitations. A comprehensive
understanding of these methods enables practitioners to select
appropriate techniques tailored to the specific requirements of
industrial applications.

Intrinsic interpretability methods, such as linear regression,
serve as foundational models by providing direct coefficients
that indicate the strength and direction of the relationships be-
tween input features and the target variable. These coefficients
facilitate easy interpretation, making these models particularly
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suitable when simplicity and transparency are paramount. Sim-
ilarly, decision trees construct a tree-like structure where each
internal node represents a feature test, each branch signifies the
outcome of the test, and each leaf node denotes a class label
or continuous value. The decision path from the root to a leaf
offers a clear and interpretable sequence of decisions. Rule-
based models, including decision rules and association rules,
employ simple if-then statements to encapsulate knowledge,
ensuring that the captured patterns align with human reasoning
and are easily understandable.

However, while these intrinsically interpretable methods
excel in simplicity and transparency, they often fall short
in capturing complex, nonlinear relationships inherent in dy-
namic industrial processes. This limitation can impede their
predictive performance, particularly in scenarios that require
high accuracy and the ability to model intricate dependencies.

To address these challenges, post-hoc interpretability meth-
ods are frequently employed, enabling the extraction of expla-
nations from complex black-box models without sacrificing
their predictive capabilities. Among post-hoc methods, local
interpretable model-agnostic explanations (LIME) [74], [[75]]
and Shapley additive explanations (SHAP) [9], [[73], [76] are
prominent due to their versatility and effectiveness. LIME
approximates the behavior of a complex model locally around
a specific instance by fitting an interpretable surrogate model,
typically a linear regression. This is formalized by minimizing
the following loss function:

where:

o G represents the family of interpretable models.

e Z is a set of perturbed samples around the instance zx.

e 7. (2') measures the proximity between x and z’.

e Q(g) is a regularization term ensuring the simplicity of

g.

By minimizing this loss, LIME identifies a simple model
g that locally approximates the complex model f near the
instance x, weighted by their proximity 7, (z’). This approach
provides clear, instance-specific explanations, aiding operators
in understanding individual predictions, which is crucial for
debugging and building trust in critical industrial operations.
However, LIME’s explanations are inherently local and may
not generalize to the model’s global behavior.

SHAP, on the other hand, offers a unified framework based
on cooperative game theory to compute feature attributions,
known as Shapley values. For a model f and an instance «x,
the Shapley value ¢; for feature ¢ is defined as:

= Y

SCN\{i}

[SIEINT = |S] = 1)!
V]!

[fsugy (zsugiy) — fs(@s)]

(10)
where:
e N is the set of all features.
e S is a subset of features not containing i.
e fs(zg) is the model prediction using features in S.
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TABLE III: Analysis of Interpretable Machine Learning Approaches

planations

Approach Methods Key Features Advantages Disadvantages
e Easily understandable
e Linear Regres- o Inherently simple and without additional tools e Limited in capturing com-
sion transparent structures o Straightforward plex, nonlinear relation-
Intrinsic Inter- e Decision Trees o Clear relationships implementation and ships
pretability o Rule-Based between input features validation e May underperform com-
Models and predictions e Facilitates trust and pared to complex models
transparency
e Applied after model train- * Fle)ensble across - model o Computationally intensive
¢ LIME ing to explain predictions yp . with large datasets
. . o Enhances understanding . . .
o SHAP Compatible with complex, . . Potential for misleading or
Post-hoc Inter- without altering the . .
pretability o PDP black—box models model biased explanations )
e ICE o Provides local or global ex- e May lack consistency

o Identifies feature impor-

- . across instances
tance and interactions

e Feature Impor- * Provides

tance Scores

overarching .
model behavior insights

Useful for model valida-

. S e May overlook nuances in
tion and key driver iden- y

individual predictions

lobal Explana- ighli influ- i i . TN

?oba xplana o Global SHAP . H]ghllghts ‘fefitures influ tlﬁcatl_on _ « Potential to oversimplify
ions encing predictions on aver- o Simplifies communica- . .

Values . . complex interactions

age tion with stakeholders
o LIME . . .

Local SHAP o Explains individual predic- e Aids in debugging and e Not comprehensive of
Local Explana- ¢ Values tions building trust overall model behavior
tions o Counterfactual e Provides insights into spe- o Identifies unique pat- o Computationally expensive

Explanations cific feature influences terns or anomalies for multiple instances

e I g is the instance x restricted to features in S.

This formulation ensures a fair allocation of the prediction
to individual features by averaging the marginal contributions
of each feature across all possible feature subsets. SHAP’s
strengths lie in its strong theoretical foundation, model-
agnostic applicability, and the provision of consistent feature
attributions where the sum of contributions equals the model’s
output. Additionally, SHAP offers robust visualization tools,
such as summary plots and dependence plots, which effectively
illustrate feature importance and interactions.

Methods like partial dependence plots (PDP) [77] and
individual conditional expectation (ICE) plots [78] enhance
the interpretability landscape. PDP visualizes the marginal
effect of one or two features on the predicted outcome while
holding other features constant, offering global insights into
the model’s behavior. ICE plots extend this by displaying the
individual effects for each instance, revealing heterogeneity
in feature impacts. Additionally, counterfactual explanations
suggest minimal changes to input features that would alter the
prediction outcome, providing actionable insights and helping
users comprehend decision boundaries.

While post-hoc methods like LIME and SHAP facilitate
the interpretation of complex models without altering their
structure, they can be computationally demanding and may
introduce approximation errors or biases if not implemented
carefully. In industrial applications, selecting appropriate inter-
pretable machine learning methods involves balancing factors
such as process complexity, the trade-off between interpretabil-
ity and performance, available computational resources, and
stakeholder requirements. In environments where safety and
regulatory compliance are critical, intrinsic interpretability
methods may be favored to ensure transparency. Conversely,

when capturing intricate process dynamics necessitates com-
plex models, post-hoc methods become indispensable for
explaining these models without compromising their predictive
performance.

C. Open-Source Projects on Interpretable Machine Learning

Open-source projects play a pivotal role in advancing
interpretable machine learning, providing practitioners and
researchers with accessible tools to develop and deploy models
that are accurate and transparent. In this subsection, we review
several prominent open-source projects that are relevant to the
development of interpretable soft sensors.

Developed by Microsoft, InterpretML (https://github.com/
interpretml/interpret) is a toolkit that provides a suite of inter-
pretable machine learning models and visualization tools, inte-
grating both intrinsically and post-hoc interpretable models. It
includes glass-box models like explainable boosting machines
[79] that are inherently interpretable and incorporates methods
like SHAP and LIME for explaining complex models. The
toolkit offers interactive visualization dashboards to explore
model explanations. Alibi (https://github.com/SeldonlO/alibi)
is an open-source Python library focused on machine learning
model interpretability, offering a range of explanation algo-
rithms suitable for various data types. It provides diverse
explanation methods, including counterfactual and contrastive
explanations, and supports both model-agnostic and model-
specific approaches.

Captum (https://github.com/pytorch/captum) is an inter-
pretability library for PyTorch models, providing algorithms
to understand and visualize feature importance and model
predictions. It integrates seamlessly with PyTorch models
and includes attribution methods such as integrated gradients
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and DeepLIFT [80], [81], along with visualization tools for
interpreting results. AIX360 (https://github.com/Trusted-Al/
AIX360) is an open-source toolkit from IBM that provides
a comprehensive set of algorithms to support interpretability
and explainability throughout the machine learning lifecycle.
It includes diverse techniques for data, model, and prediction
explanations, along with tools for fairness and bias detection.
The toolkit offers extensive documentation and examples for
various applications.

Several other open-source projects contribute to
interpretable ~ machine learning, including DALEX
(https://github.com/ModelOriented/DALEX), Eli5
(https://github.com/TeamHG-Memex/eli5) and  Fairlearn
(https://github.com/fairlearn/fairlearn). =~ DALEX  provides

tools for visualizing and understanding complex models
and is available in both R and Python. Eli5 simplifies the
debugging and explanation of machine learning classifiers and
is compatible with scikit-learn models. Fairlearn focuses on
assessing and mitigating fairness issues in machine learning
models, ensuring that ethical considerations are integrated into
model development. These projects extend the capabilities of
interpretable machine learning by offering specialized tools
for various aspects of model explanation, debugging, and
fairness assessment.

Although general-purpose interpretability libraries provide
foundational tools, adapting them for industrial soft sensor
applications necessitates domain-specific customization and
rigorous validation. In large-scale industrial processes, the
data streams often contain significant noise, correlated pro-
cess variables, and potential anomalies that can complicate
interpretation. Libraries such as InterpretML or Alibi can
assist in systematically selecting feature subsets and generating
transparent explanations, but practitioners must tailor these
frameworks to accommodate unique plant configurations and
instrumentation workflows.

A critical initial step involves choosing model architectures
that strike an optimal balance between explanatory power and
predictive fidelity. For high-stakes quality monitoring, intrin-
sically interpretable models—like Explainable Boosting Ma-
chines (EBMs) or Generalized Additive Models (GAMs)—can
yield both clarity and reliability. When deep neural networks
are indispensable for their superior accuracy, lightweight in-
terpretability methods such as Integrated Gradients (Captum)
allow on-device computation of attributions, minimizing la-
tency and resource consumption in real-time environments.

Once the model is in place, establishing iterative feedback
loops is essential for sustained interpretability. Periodically
comparing model explanations with empirical observations or
known first-principle models helps engineers diagnose dis-
crepancies early. In scenarios where unexpected predictions
emerge, counterfactual explanations from Alibi can simulate
alternative process conditions to reveal whether predicted
outcomes align with operational experience. These “what-
if” analyses not only foster trust but also guide proactive
interventions—engineers can adjust setpoints or refine control
strategies before deviations escalate into costly incidents.
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V. ENSURING STABILITY IN SOFT SENSOR MODELS

As industries move towards increased automation and re-
liance on real-time data, the stability of soft sensors becomes
a fundamental requirement for successful implementation in
dynamic industrial environments. Stability is crucial to avoid
costly downtime, maintain product quality, and ensure safety
in high-stakes industrial operations. Additionally, a stable soft
sensor reduces the need for frequent recalibration or retrain-
ing, lowering operational costs. In this section, we discuss
strategies to ensure the stability of soft sensor models. We
will explore the factors influencing stability, such as envi-
ronmental changes and data distribution shifts. Using causal
machine learning techniques, we discuss methods to enhance
the stability of soft sensor models against these challenges.

A. Factors Influencing Stability

Several factors inherent in industrial operations can affect
the stability of soft sensor models. Understanding these factors
is essential for developing robust models that can operate
reliably under varying conditions.

1) Environmental Changes: Industrial processes often oc-
cur in environments subject to fluctuations in temperature,
pressure, humidity, and other conditions. These changes can
directly influence the properties of raw materials, equipment
performance, and process variables. For example, temperature
variations might affect the viscosity of fluids in a chemical
process, impacting reaction rates and the sensor’s predictions.
Without mechanisms to account for environmental variations,
a soft sensor’s output may become unstable, leading to inac-
curate or inconsistent predictions.

2) Data Distribution Shifts: A significant challenge to
stability arises from changes in the underlying data distribution
over time, known as data drift. Such shifts occur due to
factors such as alterations in raw materials, changes in process
dynamics, or sensor degradation. If the soft sensor model is
not designed to handle such shifts, its predictions may become
inaccurate. Techniques like domain adaptation [10], transfer
learning [82]] are used to address shifts in data distribution,
ensuring that model performance remains stable as data evolve.
In addition, factors such as sensor noise and maintenance
cycles introduce variability into the system. Stable models
should be resilient to these fluctuations and ideally adapt to
new conditions with minimal intervention.

B. Causal Machine Learning for Improving Stability

Traditional machine learning models often rely on correla-
tions within data to make predictions. However, models based
solely on correlations can suffer from issues with stability
and interpretability because they may capture spurious or
non-causal relationships that are not robust across different
environments or over time.

In industrial settings, causal machine learning has emerged
as a powerful tool for enhancing the stability of soft sensor
models. By focusing on identifying causal relationships be-
tween variables rather than mere correlations, models can pro-
vide more reliable and explainable predictions. Understanding
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the causal structure within the data enables the development
of models that are robust to changes in the environment or
operational conditions, as causal relationships tend to remain
stable across different settings.

Here, we define causality as a relationship between random
variables. Assume X and Y are two random variables, X
is defined as the cause of Y, which means that the causal
relationship X — Y exists if and only if the value of YV
changes definitely as the value of X changes. Compared to
correlation, causality is directional, clearly indicating how a
treatment variable (also known as an independent variable)
directly influences one or multiple outcome variables (also
known as dependent variables) [83]—[85].

When examining the causal relationships between variables
in a dataset, two primary approaches are widely used: struc-
tural causal models (SCM) [86]] and the potential outcomes
framework (POF) [[85]. SCM utilizes directed acyclic graphs
(DAGs) to illustrate causal connections, where each node
represents a variable and each arrow indicates a causal influ-
ence from one variable to another. By analyzing observational
data with SCM, researchers can identify both dependencies
and conditional independencies among variables, helping to
uncover possible causal structures. Once the causal structure is
established, SCM can estimate the causal impact of individual
variables on the outcome and also simulate the effects of
external interventions, providing a solid theoretical basis for
making informed decisions.

The potential outcomes framework, also known as the Rubin
causal model, represents causality by assuming that each indi-
vidual has potential outcomes Y for every possible treatment
condition (for example, receiving or not receiving treatment).
In POF, causal effects are defined by comparing the potential
outcomes of the same individual under different treatment
scenarios. However, since multiple potential outcomes for the
same individual cannot be observed simultaneously, statistical
methods are necessary to estimate these causal effects, such
as calculating the average treatment effect. Randomized ex-
periments are considered ideal for these estimations because
randomization ensures that the treatment and control groups
are comparable. To account for confounders that may influence
the results, specialized statistical techniques such as propensity
score matching or instrumental variable methods are essential
to accurately estimate causal effects [84].

C. Methods for Causal Discovery In Industrial Processes

In this section, we dive into one major area of causal
machine learning research: causal discovery. Causal discovery
aims to automatically or semi-automatically identify potential
causal relationships from observational data. Through causal
discovery, we can effectively distinguish causal relationships
in the data and use these relationships for prediction.

In general, consider that the observational data is composed
of variables X1, Xo, ..., X4, spanning d dimensions, with n
samples in total. The goal of causal discovery is to utilize these
observational data to derive a causal graph made up of d nodes,
where each node represents one of the variables X, Xo,
..., Xgq. The resulting causal graph from a causal discovery

algorithm depicts the causal relationships among the variables
in the observational data. This graph is a directed acyclic
graph. Moreover, depending on the chosen causal discovery al-
gorithm and the particular problem context, the directed edges
may be weighted or unweighted. Causal discovery methods
can be broadly classified into three main types (as shown in
Figure [5): randomized experiments [87], computer simulation
experiments [88], and methods based on observational data
[89]-[105]]. Table presents a detailed overview of causal
discovery methods in industrial processes.

Randomized experiments are a conventional method for
identifying causality, yet they are both expensive and time-
intensive. In this approach, subjects are randomly allocated
to different groups, each subjected to different interventions.
When the subject pool is large enough, this technique can
minimize the influence of both known and unknown con-
founders within each group. Nevertheless, conducting real
experiments in sophisticated large-scale industrial processes is
seldom practical. Alternatively, computer simulation tools like
Aspen demand considerable expertise and extensive data for
physical modeling. Consequently, discerning causal relation-
ships in complex industrial processes is challenging without a
comprehensive understanding of the physical model and access
to substantial data.

Discovering causal relationships using observational data
overcomes these constraints and is currently a prominent
area of research in the field of causality. Causal discovery
methods leveraging observational data can be categorized into
those based on non-temporal data [89]-[98]] and those based
on temporal data [103]-[105]. Among temporal methods,
the Granger causality analysis (GCA) [104] and the transfer
entropy (TE) [103]] are frequently used to determine pairwise
causality between variables. However, pairwise causality is
limited when addressing indirect causality and confounders.
Although temporal data can offer significant causal insight,
findings are often affected by temporal resolution. Typically,
it is challenging to infer high-resolution causal relationships
from data with lower temporal resolution.

In industrial processes, causal discovery algorithms that
utilize non-temporal observational data are widely applicable.
These algorithms are mainly divided into three categories:
constraint-based [89]], [90], [93], [97]], causal function-based
[91]I, [92[I, [99], [100], and score-based [98]l. Constraint-
based algorithms, such as Peter-Clark (PC) [89]], inductive
causation (IC) [90]], and fast causal inference (FCI) [97]], build
the causal structure via conditional independence tests and
determine the causal direction using predefined rules [97].
These methods typically yield partially undetermined causal
directions. To address this issue, researchers have introduced
causal function approaches like linear non-Gaussian acyclic
model (LINGAM) [91]], [92]], additive noise model (ANM)
[99], and the post-nonlinear model (PNL) [[100], which rely on
specific assumptions about the data generation process. Score-
based algorithms, on the other hand, employ scoring functions
and search algorithms to identify the optimal Bayesian causal
network [98]]. However, this approach involves a graph search
operation with high time complexity and assumes that all
confounders are observable, which is often impractical.
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TABLE IV: Overview of Causal Discovery Methods in Industrial Processes

Method Category

Specific Methods Advantages Disadvantages

Randomized
Experiments

Establishes salit ith . L
¢ ¢otablishes  causauty wi e Often costly and time-consuming in

o A/B Testing high confidence through ran- industrial settings

o Factorial domization Lo & . .
Experiments o Effectively removes ¢ Ethlcal 15sues may restrict experimen-

o Randomized confounding variables . ;flitrlr?irtlegnszz;tirllitv a?grlfiisfferent ro-
Controlled Trials e Provides clear cause-and- Y P

effect links cesses and large systems

¢ Explore many  scenarios Depends on the accuracy of simula-
e Process Simulation without physical experiments * tior? mo;iels and input daB;a ’
Software (e.g., As- e Incorporates complex physi- o May miss real-worlg complexities and
Computer Simulation pen Plus, HYSYS.) cal, chemical, and biological emergent behaviors
e System Dynamics processes ; L
Models e Test various hypothetical * Requires specialized knowledge to

conditions safely

develop and interpret results

o Constraint-Based

o Structural Equation
Modeling (SEM)

Methods e Uses existing data, reducing hidden confounders
e Causal  Function- need for costly experiments e Requires large, high-quality, well-
Based Methods e Uncovers complex causal re- curated datasets
Observational Data e Score-Based Meth- lationships and interactions e Assumptions of specific algorithms
ods e Scales to large datasets with may not hold in practice

many variables o Difficult to validate causal links with-

e May be affected by unmeasured or

out experimental data

Despite the progress made through existing methods in
causal discovery, there remains a need for further exami-
nation and enhancement of their shortcomings. Researchers
are investigating hybrid techniques that merge the benefits
of constraints-based, score-based, and causal function ap-
proaches to counterbalance the weaknesses of each method.
Additionally, the combination of deep learning with causal
inference shows great potential for tackling challenges like
unobserved confounders and high computational demands. As
the discipline advances, future studies should focus on creating
more robust, scalable, and broadly applicable algorithms.

D. Open-Source Projects on Causal Machine Learning

In this subsection, we review several prominent open-source
projects that are relevant to the development of causal soft
sensors. Developed by Microsoft, DoWhy (https://github.com/

microsoft/dowhy) is a Python library that provides a principled
approach to causal inference by integrating causal graph-
based methods with statistical techniques. DoWhy allows
users to define causal models using graphical representations,
identify causal effects, estimate these effects using various
estimators, and perform robustness checks to validate the
findings. CausalML (https://github.com/uber/causalml) is an
open-source Python package developed by Uber that focuses
on estimating heterogeneous treatment effects from observa-
tional data. It leverages machine learning algorithms to provide
scalable and efficient causal inference solutions, implementing
various meta-learners such as the S-learner, T-learner, and
X-learner. CausalML is particularly useful for applications
like personalized marketing, recommendation systems, and
A/B testing, where understanding the differential impact of
treatments is crucial.

EconML (https://github.com/microsoft/EconML) is another
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Python library from Microsoft that bridges econometric tech-
niques with machine learning for causal inference. It is
designed to estimate heterogeneous treatment effects using
advanced machine learning methods, including double ma-
chine learning and causal forests. EconML provides a flex-
ible framework that integrates seamlessly with scikit-learn,
enabling users to incorporate causal inference into existing
machine learning pipelines effectively. Causallmpact is par-
ticularly useful for evaluating the effectiveness of market-
ing campaigns, policy changes, and other temporal inter-
ventions in industrial settings. CausalNex (https://github.com/
quantumblacklabs/causalnex)) is a Python library developed by
QuantumBlack. It combines causal discovery algorithms with
probabilistic modeling to uncover and leverage causal relation-
ships in data. CausalNex supports intervention simulation and
provides visualization tools to represent and interpret causal
graphs.

Several other open-source projects contribute to causal
machine learning, including Tigramite (https://github.com/
jakobrun/tigramite), Causal Discovery Toolbox (https://
github.com/FenTechSolutions/CausalDiscoveryToolbox), and
CausalPy (https://github.com/microsoft/CausalPy). Tigramite
specializes in causal discovery for time series data. The Causal
Discovery Toolbox offers a comprehensive suite of algorithms
for uncovering causal relationships from various data types,
supporting constraint-based, score-based, and functional causal
models. CausalPy provides tools for causal analysis, including
discovery, effect estimation, and counterfactual reasoning, with
a user-friendly API that integrates with popular data science
libraries.

These projects extend the capabilities of causal machine
learning by offering specialized tools for causal discovery,
effect estimation, and counterfactual analysis, facilitating their
deployment in industrial soft sensors. This alignment with
the goals of modern industrial process monitoring and control
ensures that soft sensors are effective and reliable, fostering
trust in complex industrial environments.

Although existing libraries for causal machine learning were
originally developed with general-purpose use, adapting them
effectively for soft sensor tasks in industrial settings requires
additional domain-specific considerations. In industrial sys-
tems, datasets often contain highly correlated process variables
or extraneous measurements that can obscure meaningful
causal links. Libraries like DoWhy and CausalNex assist in
iteratively refining candidate graph structures by testing con-
ditional independence and eliminating variables that contribute
noise or confounding. This process maximizes the clarity of
causal insights extracted from complex industrial data streams.

Another powerful use of causal toolkits lies in simulating
interventions and counterfactuals. Tools such as CausalML
provide meta-learners that estimate treatment effects, enabling
engineers to anticipate how process modifications may influ-
ence key outcomes. This capacity to test interventions in a
virtual, risk-free manner significantly reduces uncertainty in
operational decision-making.

After the causal structures or effects have been estimated,
validating them under real-world process shifts is critical. Fac-
tors such as changing feed composition or ambient temperature
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can challenge the robustness of any learned causal model.
Domain-driven hypothesis testing, combined with library-
specific stability checks, can quickly detect when causal rela-
tionships no longer hold. When inconsistencies arise, these
diagnostic methods facilitate targeted model retraining or
recalibration, preventing performance drifts that could under-
mine trust in the soft sensor.

VI. INDUSTRIAL APPLICATION

The practical implementation of interpretable and stable
soft sensors demonstrates significant value across industrial
sectors. This section presents a comprehensive case study from
petroleum refining to illustrate how causal feature selection
and SHAP-based explanations can enhance both interpretabil-
ity and stability of soft sensor.

In modern refineries, maintaining a precise flash point
for diesel fuel is paramount for safety and product quality.
However, accurately measuring the flash point in real time
poses a challenge due to harsh process conditions and the need
for frequent laboratory testing. To address this, a data-driven
soft sensor was developed within a diesel hydro-treating unit.
The primary objective was to provide stable and interpretable
flash-point estimates based on routine process measurement,
thus enabling operators to adjust key variables promptly in
response to any observed deviations.

Over 6000 samples were gathered from a diesel hydro-
treating unit in the Parkland refinery in Canada. Each sample
contained 24 routinely measured input variables (e.g., tem-
perature, pressure, flow rates), along with the corresponding
measured flash point. To rigorously assess robustness, the
dataset was divided into a training set (the first 4800 samples)
and two separate test sets (600 samples each). These test
sets intentionally represented distinctly different operating
conditions, helping validate the model’s stability.

To ensure that the model captures genuine causal effects
rather than spurious correlations, the study employed a com-
bination of FCI and Granger causality. This approach identified
9 key features with direct causal relationships to the flash
point, excluding variables whose correlations were found to
be indirect or environment-specific. By focusing on causally
relevant predictors, the resulting soft sensor is inherently more
robust to distribution shifts commonly encountered in refining
processes.

Using the selected causal features, an Extra Trees regressor
was trained to predict the flash point [36]. Figure [6] shows
the performance across the two distinct test distributions.
This indicates that the proposed model maintained consistent
accuracy despite considerable shifts in process conditions.

To explain the internal decision-making mechanism, SHAP
was computed for each feature. These SHAP values quanti-
fied how much each feature contributed—positively or neg-
atively—to each prediction, enabling process engineers to
pinpoint the root causes of sudden flash-point variations. This
interpretability not only bolstered user trust in the soft sensor’s
decisions but also facilitated timely interventions. For instance,
if the SHAP contribution of a particular temperature variable
significantly deviated from its normal range, operators could

Authorized licensed use limited to: MIT. Downloaded on April 21,2025 at 18:56:05 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://github.com/quantumblacklabs/causalnex
https://github.com/quantumblacklabs/causalnex
https://github.com/jakobrun/tigramite
https://github.com/jakobrun/tigramite
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/microsoft/CausalPy

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3556830

0.04946
w MMMW '
i [Im I ‘
1 il I

feature9 -
,'Hm
I

featurel 7]

feature5 -
feature3 - }iI }
feature8 - I

feature2 -

SHAP value (impact on model output)

feature7 - I |

feature6 -

featured - | i |
| | i \ | J -0.04946
0 200 400 600 800 1000

Instances

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

100 Reliability of Proposed Soft Sensor on Testing Data
—— Test Distribution 1
—— Test Distribution 2
— Transformer Prediction
—— Proposed model prediction
90

=
i
= ——
—
==
——__—
—
:A‘;‘
—
——

0 200 400 600 800 1000 1200
Sample Index

Fig. 6: SHAP Value and Performance of Proposed Soft Sensor on Testing Data

investigate potential equipment malfunctions or feedstock in-
consistencies before they escalated into major operational
disruptions.

In addition to the diesel hydro-treating unit case, these
interpretable and causal machine learning approaches can be
applied to a variety of other industrial settings. For example, in
pharmaceutical fermentation, real-time monitoring of critical
quality attributes (CQAs)—such as biomass concentration,
metabolite levels, and product yields—is essential to maintain
compliance with stringent regulatory guidelines and ensure
product efficacy. However, these CQAs can be both costly
and difficult to measure directly. Soft sensors designed with
interpretable machine learning techniques, coupled with causal
feature selection algorithms, can systematically identify a
smaller subset of truly influential variables (e.g., pH, dissolved
oxygen, substrate feed rate). By honing in on causal rather than
purely correlational factors, these models offer more stable
and transparent predictions. This enhanced interpretability em-
powers process engineers to understand precisely why certain
features grow in importance under evolving fermentation con-
ditions, enabling faster root-cause analysis and more informed
decision-making—both critical for optimizing operations and
simplifying regulatory reporting.

VII. FUTURE DIRECTIONS AND RESEARCH
OPPORTUNITIES

Looking toward the future, there are numerous opportunities
to push the boundaries of soft sensors by addressing existing
challenges and exploring new methodologies. Enhancing in-
terpretability and stability remains a central theme, but several
specific research directions can significantly advance the field.

One promising area is the development of adaptive and
online learning models that can operate effectively in non-
stationary environments. Industrial processes are subject to
continuous changes. By employing techniques such as online
learning, meta-learning, and reinforcement learning, soft sen-
sors can be designed to update their parameters in real-time,
adapting to new data without the need for extensive retraining
[33], [34], [401, [41], [43], [106]. This adaptability not only
improves model stability but also reduces maintenance costs
and downtime associated with model recalibration.

Advanced data fusion methods represent another critical
area for innovation. Industrial environments generate a large
amount of heterogeneous data, including sensor measure-
ments, images, and textual logs [[61]. Effectively integrating
these diverse data sources can enrich soft sensor models, lead-
ing to more accurate and comprehensive predictions. Research
into multimodal data fusion [107]], deep representation learning
[[108]], and transfer learning [82]] can facilitate the development
of models capable of handling complex data types and extract-
ing meaningful features across different modalities.

Improving computational efficiency for real-time applica-
tions is also a significant research focus. Many existing soft
sensor models, especially those based on deep learning, are
computationally intensive and may not meet the requirements
of time-critical industrial processes. Innovations in model
compression techniques, such as pruning and quantization
[109], as well as the exploration of lightweight neural network
architectures, can help reduce computational demands [110].
Additionally, leveraging advancements in hardware accelera-
tion, such as GPUs and TPUs, and exploring edge computing
paradigms can facilitate real-time processing and deployment
of soft sensors in industrial settings.

Privacy and security considerations are important, especially
with the rise of the Industrial Internet of Things. Develop-
ing privacy-preserving machine learning techniques, such as
federated learning and differential privacy, can enable collab-
orative model training without compromising sensitive data
[111]], [112]]. This approach allows multiple industrial sites or
organizations to benefit from shared learning without exposing
proprietary information. Furthermore, there is potential in
integrating soft sensor technologies with digital twin systems.
Digital twins are virtual replicas of physical assets, processes,
or systems that can be used for simulation, analysis, and
control [113]], [[114]. By coupling soft sensors with digital
twins, it is possible to create more accurate and responsive
models that reflect real-time changes in the physical system.

The future of soft sensor technologies lies in addressing
current gaps. This requires interdisciplinary research that
combines advances in machine learning, control engineering,
and domain-specific knowledge. Developing models that are
interpretable, stable, and adaptable is essential. By leveraging
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emerging technologies and methodologies, soft sensors can
become more reliable and widely adopted tools in industrial
process monitoring and control. Continued collaboration be-
tween academia and industry is essential. This collaboration
will translate innovations into practical solutions that meet the
evolving needs of modern industrial operations.

VIII. CONCLUSION

This review presented a comprehensive analysis of method-
ologies to enhance the interpretability and stability of soft
sensors in industrial processes. For interpretability, we ex-
plored various interpretable machine learning techniques that
can be applied to complex models to improve transparency and
trustworthiness. We also highlighted open-source tools that
facilitate the practical implementation of these techniques. On
the topic of stability, we emphasized the role of causal machine
learning and discussed key causal discovery methods. These
approaches provide more robust model predictions by focusing
on stable causal relationships rather than mere correlations.
In addition, we introduced relevant open-source projects that
help to apply these methods to real-world industrial processes.
A practical application of interpretable and stable soft sensor
in a diesel hydro-treating unit further demonstrated the po-
tential to significantly impact industrial process monitoring
and control. As industries continue to evolve towards more
automated and data-driven methodologies, the development
of sophisticated, reliable, and transparent soft sensors will be
crucial. This review serves as a foundation for future research
and innovation in this vital field, ultimately contributing to
safer, more efficient, and sustainable industrial operations.
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