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Conventional battery simulation tools offer current, voltage, and power operating modes. This article presents General Operating
Modes (GOMs), which move beyond these standard modes and allow battery models of any scale to simulate novel operating
modes such as constant temperature, constant lithium plating overpotential, and constant concentration. The governing equations of
the battery model are solved alongside a single algebraic constraint that determines the current. The operating modes are simulated
efficiently and deterministically inside a differential-algebraic equation (DAE) solver, and constraints are satisfied within solver
tolerances. We propose a mixed-continuous discrete (aka hybrid) solution to the constrained charging problem, using the GOMs to
satisfy charging constraints. This approach enables nonlinear model predictive control (NMPC) to be implementable in real-time
while directly using sophisticated physics-based battery models. The approach is demonstrated for three models of various
complexity: a thin-film nickel hydroxide electrode model, a Single-Particle (SP) model, and a Porous Electrode Theory (PET)
model. The hybrid fast charging algorithm is shown to be slightly suboptimal for the thermal SP model in some cases, which is not
of practical importance for NMPC.
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Lithium-ion batteries have become ubiquitous in modern tech-
nology, including laptops, cell phones, and automobiles. A common
problem in the battery field is quickly charging batteries while
maintaining safe operation and limiting degradation. Slow charge
times are a significant barrier to the widespread adoption of electric
vehicles (EVs). Fully charging an EV battery pack can take several
times longer than refilling the gasoline in an internal combustion
engine vehicle. Advanced battery management systems (ABMS) that
provide safe, fast, and reliable charging are critical to delivering
maximum efficiency from batteries.

Conventional lithium-ion battery (dis)charge protocols involve
constant or variable current, voltage, and power operating modes,
which are standard experimental measurements. Correspondingly,
many battery simulation tools offer options to evaluate these
operating modes in silico.1–4 Several articles performing optimal
charging have demonstrated use cases for alternative operating
modes, including constant temperature as a safety mechanism to
prevent extreme temperatures,5–7 constant lithium plating over-
potential to limit the rate of parasitic side reactions on the anode,8

and constant concentration to protect from lithium depletion and
oversaturation.5,7,9 Online optimal charging studies often use model
predictive control (MPC) with reformulated or reduced-order models
that are more computationally efficient at the cost of greatly
simplifying the physics.

This article proposes General Operating Modes (GOMs) for
battery simulations that extend their abilities beyond the conven-
tional current, voltage, and power operating modes. This framework
allows for efficient and deterministic simulation of novel operating
modes such as constant or variable temperature, lithium plating
overpotential, mechanical stress, and electrolyte- and solid-phase
concentrations/potentials. First, we provide a brief background on
differential-algebraic equations (DAEs) and introduce GOMs.
Simulations using the GOM have a similar computational cost as a
constant current simulation, and battery models of all scales can use
this framework by first appending a single algebraic equation to the
governing equations and then solving the coupled system of DAEs.
Second, we propose a strategy for simulating the mixed continuous-
discrete (aka hybrid) solution of the optimal charging problem,

where “continuous” refers to the direct simulation of operating
modes (e.g., constant current, voltage, power) and “discrete” refers
to a transition between operating modes. The charging problem is
solved in terms of its initial condition(s), constraint(s), and terminal
objective(s) that removes all additional degrees of freedom from the
problem when combined with the GOM. Third, we present case
studies using three models of increasing complexity: a thin-film
nickel hydroxide electrode model, a Single-Particle (SP) model with
temperature dynamics, and a Porous Electrode Theory (PET) model
with spatially varying temperature. Four optimal charging case
studies are presented, which utilize novel operating modes, including
constant potential, temperature, plating overpotential, and electro-
lyte/solid particle concentrations. Lastly, we discuss coding and
numerical considerations when simulating models with GOMs. This
article is an extension of the authors’ previous work10 with the
addition of the thin-film and SP models, the analysis of suboptim-
ality for the non-isothermal SP model, and the discussion on coding
and numerical considerations.

Novel Battery Operating Modes

This Section describes the numerical implementation of the
GOM, which permits direct simulation of novel operating modes
(e.g., constant/variable temperature, plating overpotential) for
lithium-ion batteries, which can be efficiently and deterministically
computed for models of all scales.

Differential-algebraic equations (DAEs).—Systems of ordinary
differential equations (ODEs) are commonplace in science and
engineering to describe physical phenomena. In many physical
systems, some governing equations (such as the conservation of
charge) are algebraic. DAE solvers simultaneously solve coupled
systems of differential and algebraic equations.

Battery models are usually described by a set of partial
differential equations (PDEs), which are converted into a system
of DAEs by the finite difference or finite volume method.a DAEs can
be specified in fully implicit form,

( ( ) ̇( ) ) = [ ]F y t y t t, , 0, 1

zE-mail: braatz@mit.edu aSuch systems are also referred to as descriptor or singular systems in the literature.
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or in mass matrix form,

( ) ̇( ) = ( ( ) ) [ ]M t y t g y t t, , 2

where y is the vector of states, ̇y is the derivative of y with respect to
time t, F and g are vectors that describe the physicochemical
phenomena, and M is the square mass matrix. At a particular time
instant t*, the DAE solver calculates the values of the time
derivatives of the states, ̇( *)y t , and the states, y(t*). ODEs are a
special case of DAEs, and the DAEs 1 and 2 can be rewritten as
explicit ODEs when the Jacobian ̇Fy or the mass matrix M is
nonsingular.b

General Operating Modes (GOMs).—Battery simulation tools
conventionally offer current, voltage, and power operating modes.1–3

When writing code for a battery model, it is common to begin with a
model that accepts a parametric input for the current and then revise
the system of equations to satisfy voltage and power operation.
Redefining the modeling equations to accommodate each operating
mode independently is time-consuming, may not be possible for
implicit constraints, and fragments the model code.

The GOM concept expands the possible operating modes during
simulation, permitting complex simulations such as constant/vari-
able temperature, lithium plating overpotential, and electrolyte/solid
concentrations. With the GOM, the battery governing equations are
augmented with a single algebraic constraint that solves for the
current, I(t). Here, I(t) is treated as an algebraic state in the modeling
equations, which is found by simultaneously solving the governing
equations and an additional algebraic constraint within a DAE
solver. Generally, I(t) is determined to satisfy the constraint

( ̇ ) = [ ]f y y t, , 0, 3

where ( ̇ )f y y t, , is any user-specified function that is physically
achievable.

Algebraic states (e.g., current, voltage, potentials) are determined
by the residual between the algebraic state and an applied value,

ξ ξ( ̇ ) − ( ̇ ) = [ ]y y t y y t, , , , 0, 4app

where ξ ( ̇ )y y t, , is a state or model output and ξ ( ̇ )y y t, ,app is the
desired value of ξ (which may be constant or a function of the time
and/or states). For example, the expression for a constant current
(CC) simulation is

( ) − = [ ]I t I 0, 5app

for an applied current Iapp. Constant power (CP) is similarly defined
as

( ) ( ) − = [ ]I t V t P 0. 6app

where Papp is the applied power defined by Ohm’s law and the
voltage V(t) is the difference between the solid potentials at the
electrode-current collector interfaces,

( ) ≔ Φ ( )∣ − Φ ( )∣ [ ]= =V t x t x t, , . 7s x L s x 0

For the simple CC and CP examples, I(t) can be solved analytically
and inserted into the modeling equations, but this is not required
under the GOM. Consider the constant voltage (CV) operating
mode,

( ) − = [ ]V t V 0. 8app

In this case, V(t) is an implicit function of I(t), which cannot be
solved analytically, but the algebraic constraint for I(t) will still be
satisfied by the DAE solver.

In contrast to algebraic states, differential states (e.g., concentra-
tion and temperature) are determined by a constraint on their

derivative,

ξ ξ∂ ( ̇ )
∂

− Δ ( ̇ ) = [ ]y y t

t
y y t

, ,
, , 0, 9t app

where ξΔ ( ̇ )y y t, ,t app is the desired rate of change of ξ. Constraints
on differential terms are more restrictive than constraints on
algebraic terms: the value of differential states at some time, t*, is
always fixed, but their rate of change as a function of time may
change freely. The distinction between algebraic and differential
terms is evident when fixing states to a constant: algebraic states are
fixed by setting ξapp of 4 to the desired value, while differential states
are fixed by setting Δtξapp of 9 to zero given that the value of the
differential state at t* is already equal to the desired value. For
example, the residual for the temperature derivative,

− Δ = [ ]T

t
T

d

d
0, 10t app

maintains a constant temperature (CT) operating mode fixed at T(t*)
when the temperature rate of change, ΔtTapp, is set to zero.

Example operating modes are presented in the Case Studies
Section for the thin-film electrode, SP, and PET models. Example
GOM equations are summarized in Table I.

Mathematical Reformulation of Fast Charging Protocols

This Section outlines the framework of the hybrid solution for
charging protocols of lithium-ion batteries.

Dynamic optimization.—Srinivasan et al.11 describe methods
for solving finite-time optimal control problems which allow for
discrete transitions in the control input trajectory. The optimal
control trajectory is parameterized as a combination of active
equality path constraints where the states strictly follow along the
arc of a specified bound, singular arcs where the sensitivity of the
objective function is small,12 switching times which denote the
transition point between intervals, and terminal objectives that
end the simulation. Analytical solutions were derived to satisfy
the equality path constraints and singular arcs to solve single-
input optimal control problems. Replacing optimization with
analytical solutions that satisfy equality path constraints drama-
tically reduces the computational cost of solving the control
problem. A limitation of the approach11 is that deriving closed-
form analytical expressions can be tedious or impossible for
complex and nonlinear models.

Hybrid solution strategy.—Charging Li-ion batteries in a
minimum amount of time while remaining within constraints is a
common problem in the literature. Constraints (often based on
heuristics) are chosen to ensure safe operation and to minimize
degradation. The proposed framework has the same goals as in the
numerical optimization-based approach to determining fast charging
protocols but is distinctively different in its implementation. For
specificity, consider a charging protocol formulated in terms of
optimizing an objective function:

∫ φ= ( ( ) ( ) ) [ ]
( ) ∈[ ]

J y t u t t tmin , , d , 11
u t t T

T

, 0, 0f

f

subject to the constraints

⩽ ( ) ⩽ [ ]u u t u , 12lb ub

⩽ ( ) ⩽ [ ]y y t y , 13lb ub

where J is the control objective, φ is the cost function, u is the input
to the system (for batteries, the current), Tf is the final time, and the
subscripts lb and ub denote lower and upper bounds respectively. A
typical objective function for the optimal charging problem is tob

̇Fy is the Jacobian with respect to ̇y, i.e., ∂ ∂ ̇F y.
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minimize the time required to reach some final State of Charge
(SOC).

This article proposes an approach for determining fast-charging
protocols that follows equality path constraints numerically instead
of analytically. The critical insight is that, with the GOM, the
charging trajectories do not need to be derived analytically since a
relationship with current can be stated and solved numerically within
the DAE solver. The flowchart in Fig. 1 describes the mixed
continuous-discrete (aka hybrid) solution applied to the fast charging
problem for lithium-ion batteries, where “continuous” refers to the
direct simulation of operating modes (e.g., constant current, voltage,
power) and “discrete” refers to a transition between operating
modes. The first input to the system is always the same: maximize
the current to charge as fast as possible. If the model encounters a
new inequality constraint (e.g., ( ) ⩽V t Vmax) different from the
active equality constraint during runtime, then the active constraint
switches to enforce the new equality path constraint at the boundary
(e.g., 8), and the system of DAEs is reinitialized with the updated
GOM equation. This hybrid procedure finds the fast charging
protocol deterministically defined by its initial condition(s), con-
straint(s), and terminal objective(s).

Several articles on fast charging are consistent with the above
framework either explicitly or as a result of a control algorithm—the
most well-known example is the constant current-constant voltage
(CC-CV) charging protocol. Park et al.13 applied Pontryagin’s
Minimum Principle to analytically derive optimal charging trajec-
tories for an SP model with a Padé approximation in the solid
particles, which were found to follow the same hybrid framework
described above. Pathak et al.14 employ Proportional-Integral (PI)
control and set-point tracking to enforce boundaries on states of the
thin-film, SP, and reformulated P2D models. Mohtat et al.7 also
followed a similar framework using a tuned PI controller to establish
a CC-CV-CPo-Cσ-CT protocol, where Cσ is constant mechanical
stress. Gains of the PI controller must be retuned to account for
different set points (some of which are not experimentally obser-
vable, such as plating overpotential and mechanical stress) or model
parameters.

Case Studies

This Section presents four case studies that simulate novel operating
modes with the GOM (see the Novel Battery Operating Modes Section)
using a simple thin-film electrode model, an SP model, and a PET
model. The examples follow the hybrid fast charging framework (see
the Mathematical Reformulation of Fast Charging Protocols Section).

The thin-film and PET models are simulated with the Julia
programming language,15 and the SP model is simulated with
MATLAB.16 Since Julia is a compiled language, the first evaluation
of the model is slow. Reported evaluation times are after the first
run. All tests are performed on a 2019 MacBook Pro 2.4 GHz 8-Core
Intel i9 computer with 32 GB of RAM.

Thin-film nickel hydroxide electrode model.—The galvanostatic
charge of a thin-film nickel hydroxide electrode is described by the
simple DAE system

ρ
=

( )
[ ]y

t

j t W

VF

d

d
, 141

( ) = − ( ))
(Φ( ) − Φ )

− ( ) −
(Φ( ) − Φ )

[ ]

j t i y t
t F

RT

y t
t F

RT

2 1 exp
2

exp
2

, 15

1 01
eq,1

eq,1

⎜

⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

( ) =
(Φ( ) − Φ )

− −
(Φ( ) − Φ )

[ ]

j t i
t F

RT
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Table I. GOM equations to simulate various operating modes for the thin-film electrode, SP, and PET models.

Operating mode Thin-film Single-Particle Porous Electrode Theory

Current I(t) − Iapp = 0 I(t) − Iapp = 0 I(t) − Iapp = 0
Voltage — V(t) − Vapp = 0 V(t) − Vapp = 0
Power — I(t)V(t) − Papp = 0 I(t)V(t) − Papp = 0
Potential Φ(t) − Φapp = 0 — Φ( )∣ − Φ =*x t, 0x app

Ionic flux j(t) − japp = 0 ( )∣ − =*j x t j, 0x app ( )∣ − =*j x t j, 0x app

Plating overpotential — — η η( )∣ − =*x t, 0xp p,app

Concentration rate of change − Δ =y

t
y

d

d
0t app

∂ ( )
∂

− Δ =
*

c x t

t
c

,
0

x
t app

∂ ( )
∂

− Δ =
*

c x t

t
c

,
0

x
t app

Temperature rate of change — − Δ =T

t
T

d

d
0t app

∂ ( )
∂

− Δ =
*

T x t

t
T

,
0

x
t app

Figure 1. Flowchart for the mixed continuous-discrete (hybrid) solution to
charging protocols.
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( ) + ( ) − = [ ]−j t j t I10 0, 171 2
5

app

where y(t) is the mole fraction of nickel hydroxide, Φ(t) is the
potential difference at the solid-liquid interface, and j(t) is ionic flux,
and the remaining parameters are listed in Table A1. In the standard
CC formulation above, the applied current Iapp is a parameter—with
the GOM, we replace Iapp with the time-varying state variable I(t),

( ) + ( ) − ( ) = [ ]−j t j t I t10 0, 181 2
5

and append an additional algebraic equation to the governing
equations which solves for I(t) at every time instance. Even with
this simple model, the GOM approach permits new operating modes
such as constant/variable mole fraction, potential, and fluxes (see
Table I). This model is simulated in Julia using the implicit DFBDF
solver and static arrays, which are very fast for small systems of
equations.

Case study I.—The goal is to quickly charge an electrode and
enforce a maximum potential:

( ) =
( ) ⩽
Φ ⩽ Φ
= [ ]

y t

I t

t

0.350236

2 A m

2, 500 s 19f

0
2

max

where Φ ∈ { }0.40 V, 0.45 V, 0.50 Vmax . The CC operating mode is
evaluated by simultaneously solving 5, 14–16, 18, which is
equivalent to the standard formulation using Iapp in 14–17. The
algebraic constraint

Φ( ) − Φ = [ ]t 0 20app

maintains a constant potential (CΦ) operating mode by simulta-
neously solving 14–16, 18, 20. While the standard formulation of the
thin-film model is implicit and does not have an analytical solution
for the states, the CΦ formulation does have an analytical solution
(see A1–A5).

The charging protocols follow a similar trend for all Φmax
(Fig. 2):

1. The initial input is the CC operating mode (Iapp = 2 A/m2 in 5)
at the upper bound to charge the cell as quickly as possible.

2. The input switches to the CΦ operating mode (Φ = Φapp max in
20) when the potentials reach the various Φmax values until the
final time of 2500 s.

Starting with CC, Φ(t) and y(t) increase monotonically until
Φ( ) = Φt max at various times. When the CΦ operating mode is
activated, the current follows an exponential decay. By 2000 s, the
model states approach steady state with a small but non-zero current.

A significant benefit of the GOM approach is that the analytical
solution does not need to be derived, nor is its existence required—
the CΦ expression 20 can be solved numerically along with the
physical governing equations. During the CΦ operating mode, the
analytical solutions for the states match the numerical solutions
within the specified tolerances indicating that the GOM and the DAE
solver are working correctly. With Julia, the average wall time to
simulate each charging protocol is 103 μs.

Single-Particle (SP) model.—The SP model is a widely used
reduced-order electrochemical model for simulating lithium-ion
batteries.17 In each electrode, a single solid particle describes
Fickian diffusion of lithium and interfacial reaction kinetics at the
particle surface. Electrolyte dynamics are assumed uniform
throughout the electrodes (in contrast to the pseudo-two-dimensional
model described by PET in case studies III–IV). This article uses a
modified SP model from Ref. 17 with temperature dynamics and
spectral collocation in the solid particles. To support the GOM, the
SP model was converted from a system of ODEs to a system of
DAEs. The resulting system of DAEs has 40 equations: 20
Chebyshev node points were chosen to discretize each solid particle
(19 equations in each section), 1 equation for temperature, and 1
equation for the GOM. This model is simulated in MATLAB using
the implicit ode15i solver for a LiCoO2 cell. The reader is referred to
Ref. 17 for the complete set of governing equations and parameter
values.

Case study II.—Degradation mechanisms in lithium-ion
batteries18 are highly sensitive to temperature, so avoiding extreme
temperatures is key to a long-lasting battery. Extreme temperatures
are avoided by simulating a CT operating mode, where ΔtTapp in 10
is set to zero.

The objective is to charge a cell to an SOC of 90% in the
minimum amount of time under the constraints

( ) =
( ) =

( ) = °
( ) ⩽
( ) ⩽
( ) ⩽ [ ]

t
t

T t
T t T

V t
I t I

SOC 0%
SOC 90%

25 C

4.2 V
21

f

0

0

max

max

with an ambient temperature of 25 °C.
First, we will analyze an example where =I 5Cmax and

= °T 40 Cmax . The resulting fast charging protocol for this problem
(shown in Fig. 3) consists of four intervals:

1. The initial input is the CC operating mode (Iapp = 5C in 5) at the
upper bound to charge the cell as quickly as possible.

2. The input switches to the CV operating mode (Vapp = 4.2 V in
8) when the voltage reaches the maximum voltage.

3. The input switches to the CT operating mode (ΔtTapp = 0 K/s in
10) when the cell temperatures reaches 40 °C.

4. The input again switches to the CV operating mode
(Vapp = 4.2 V in 8) when the voltage reaches the maximum
voltage until the SOC hits its target of 90%.

The CC-CV-CT-CV protocol charges the cell from 0%–90%
SOC in 1902.3 s. At 94.8 s, the operating mode transitions from the
initial 5C charge to a short CV hold at 4.2 V. The cell temperature
continues to rise until the maximum temperature of 40 °C after
164.0 s. At the CV to CT transition, the current falls dramatically
from 4.5C to 3.9C to avoid crossing the temperature threshold. The
nonlinearity of 10 and the dramatic change in current significantly

Figure 2. CC-CΦ charging protocol at three values of Φmax for the thin-film
nickel hydroxide electrode model. The gray vertical lines indicate the
transitions from constant current to constant Φ operating modes.
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increase the stiffness of the system of DAEs. Still, the solver can
efficiently handle these changes using an adaptive time-stepping
algorithm. After charging for an additional 106 s, the voltage again
reaches 4.2 V and the CV hold is maintained until reaching the final
SOC of 90%. In MATLAB, the wall time to simulate the SP model
with 40 equations is 71 ms, which is comparable to a runtime of a
CC simulation.

Park et al.13 applied PMP to an isothermal SP model with Padé
approximation in the solid particles to show a Bang-Ride approach is
globally optimal. As such, the search space for solutions to the
optimal charging problem can be reduced to only the hybrid
charging trajectories. These results imply that the proposed hybrid
charging approach is globally optimal for the isothermal SP model.

The proposed approach can be suboptimal for the nonisothermal
SP model. Figure 4 shows the total charge time and resulting
protocols for the thermal SP model while varying Imax and Tmax with
21. In most cases, the charge time decreases as the constraints
become less restrictive when Imax and Tmax increase; however, for

< ∘T 40 Cmax , increasing Imax can increase the charge time using the
hybrid algorithm. For example, for = °T 32 Cmax , the charge time for
maximum currents of 5C and 5.5C is 2124.8 and 2125.4 s,
respectively, a 0.6 s increase in charge time for an increased C-
rate. This shows that the hybrid algorithm can be suboptimal in some
cases, at least to a small degree. The =I 5.5Cmax protocol is
suboptimal because the =I 5Cmax protocol satisfies all constraints
of the =I 5.5Cmax protocol while charging slightly more quickly.
Notably, this only occurs for increases in maximum current,
∂ ∂ ∣ ∈( )=t If tmax SOC 90%f , but increases in maximum temperature
do not lead to greater charge times, ∂ ∂ ∣ ⩽( )=t T 0f tmax SOC 90%f . The
example in Fig. 4 with the highest amount of suboptimality is for a
constant =T 30max °C, where =I 3.97Cmax results in a CC-CT-CV
protocol which charges the most quickly in 2287.0 s and the CV-CT-
CV protocol ( ⩾I C14.2max ) charges in 2293.4 s—a small 6.4 s or
0.28% increase in charge time. Having some degree of suboptimality
is not a significant concern when the approach is used within a
nonlinear model predictive control algorithm, as such algorithms
intrinsically incorporate a feedback mechanism to correct for small
deviations from global optimality at each sampling instance.19

When Imax and Tmax are free parameters, six protocols arise from
the hybrid charging algorithm. Figure 4 shows a complex relation-
ship between the various charging protocols. For small values of
Imax, the current is not large enough to activate CV or CT charging,
resulting in a single-step CC protocol. For large values of Imax, the

cell voltage quickly hits the upper bound of 4.2 V resulting in
protocols such as CC-CV-CT-CV. At an initial applied C-rate of
I(t0)= 14.2C, the voltage instantaneously hits the upper bound and
enters the CV mode, removing all initial CC steps where

⩾I 14.2Cmax . The CC-CV-CT-CV region envelops the CC-CT-CV
region. The single-step CV protocol, unconstrained by Imax and Tmax,
is the fastest charging protocol at 1870.0 s.

Porous Electrode Theory (PET) model.—In PET, each porous
electrode has an electrically conductive solid phase in close contact
with a liquid electrolyte.20–23 Lithium ions are dynamically trans-
ported between active particles in the electrolyte described by
Fickian diffusion and Ohmic conduction. The two phases are
coupled by interfacial electrochemical kinetics, typically modeled
in the literature by Butler-Volmer kinetics but adaptable to Marcus
theory. Solid-phase transport is assumed to be Fickian. The PET
model is commonly referred to as being “pseudo-two-dimensional
(P2D),” in which one dimension is the position between the two
metal contact points on the opposite sides of the electrode-separator-
electrode sandwich, and the second dimension is the distance from
the center of a solid particle.

To simulate PET, this article uses PETLION,1 which is an open-
source high-performance computing implementation of the PET

Figure 3. Fast charging results for a CC-CV-CT-CV protocol with the SP model.

Figure 4. Total charge time with the SP model subject to the constraints in
21. Six charging protocol are possible when varying Imax and Tmax. The color
axis is cut off at 2500 s for visual clarity as Imax approaches 0.
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model in Julia based on the finite volume method. The PETLION
package on GitHub24 has been updated to include all operating
modes described in this article. Examples are provided online to
show how a user can define new operating modes by specifying

( ̇ )f y y t, , in 3. In all case studies, the model has 10 discretizations in
the cathode, separator, anode, current collectors, and each solid
particle for 351 total DAEs. The system of DAEs is solved using the
IDA solver in SUNDIALS25 with the KLU sparse linear solver26 for
a LiCoO2 cell. The reader is referred to Ref. 3 for the complete set of
governing equations and parameter values.

Case study III.—In addition to lithium-ion intercalation reac-
tions, various side reactions occur in the cell which may cause the
battery to degrade during charge. Anodic side reactions leading to
lithium plating have been shown to occur when the lithium plating
overpotential becomes negative.27 The lithium plating overpotential
is defined as

η ( ) ≔ Φ ( ) − Φ ( ) [ ]x t x t x t, , , , 22s ep

where the equilibrium potential of the side reaction is usually
assumed to be 0 V. During fast charging, the anodic lithium plating
overpotential is minimized at the separator-anode interface (x= Ln).
A constant lithium plating overpotential (CPo) at the lower bound is
maintained by satisfying the constraint

η η( )∣ − = [ ]=x t, 0, 23x Lp p,appn

where ηp,app is the desired plating overpotential at the interface.
Consider a fast charging protocol with constraints to reduce

degradation from lithium plating:

η

( ) =
( ) =

( ) = °
( ) ⩽
( ) ⩽

( )∣ ⩾ [ ]=

t
t

T x t
V t

I t
x t

SOC 0%
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Following the hybrid charging framework of hybrid solution
strategy subsection, the resulting CC-CPo-CV charge consists of
three continuous intervals with two discrete transitions:

1. The initial input is the CC operating mode (Iapp = 4C in 5) at the
upper bound to charge the cell as quickly as possible.

2. The input switches to the CPo operating mode (ηp,app = 0 V in
23) when the lithium plating overpotential at the separator-
anode interface reaches the minimum bound to avoid degrada-
tive side reactions.

3. The input switches to the CV operating mode (Vapp = 4.1 V in
8) when the voltage reaches its maximum bound until the SOC
hits its target of 60%.

Figure 5 presents a comparison between the CC-CPo-CV
protocol and a traditional CC-CV protocol which does not abide
by the constraint on ηp. At t= 325 s, the simulation enters the CPo
operating mode and ηp is held exactly at ηp,app = 0 V. Compared to
CC-CV, the CC-CPo-CV protocol has a lower current and voltage
during CPo to prevent the cell from charging too quickly and
incurring degradation. Subsequently, the SOC(t) is slightly lower.
After entering CV mode, the current is slightly higher than the CC-
CV current for the same time point. The CC-CV and CC-CPo-CV
protocols charge the cell to 60% SOC in 604.6 and 609.8 s
respectively, which is a minor difference in charge time considering
the significant advantage of avoiding the lithium plating side
reactions with the CPo operating mode. An additional NMPC
experiment subject to the constraints was compared to the CC-CV
and CC-CPo-CV methods. The NMPC method used sequential
quadratic programming (SQP) to minimize charge time with

constant current segments of sample time Δt= 1 s. The NMPC
results are visually identical to the CC-CPo-CV method. The
simulation times for CC-CV and CC-CPo-CV are 8.4 and 14.7 ms,
respectively. The 6.3 ms time increase in the CC-CPo-CV method is
attributed to the CPo step, which makes the problem stiffer.

Case study IV.—Constraints on the solid active material and
electrolyte protect from lithium depletion and oversaturation.9 The
operating modes for constant electrolyte concentration (CCe) and
constant solid surface concentration (CCss) are

∂ ( )
∂

− Δ = [ ]
*

c x t

t
c

,
0, 25e i

x
t e i

,
, ,app

*
*∂ ( )

∂
− Δ = [ ]

*

c x t

t
c

,
0, 26s i

x

t s i
,

, ,app

respectively, where the subscript i refers to the section of the battery
and Δ ct e i, ,app and Δ *ct s i, ,app are the desired rate of change for
electrolyte and solid surface concentrations, respectively. The
GOM eqs. 25 and 26 must be evaluated at a particular position of
the cell, x*, as concentrations have large spatial variation. Upon
reaching a maximum concentration constraint, the value of x* for
CCe and CCss operating modes are

*
* *

= ( )
= ( ) [ ]

x c x t

x c x t

arg max , and

arg max , , 27

x e i

x s i

,

,

respectively (and likewise with arg minx for minimum constraints).
These equations are general, but x* is predictable for fast charging
simulations: starting from rest, concentrations of the solid particle
surface and electrolyte monotonically increase with x from the anode
to the cathode. Constant concentrations at x* are maintained by
setting Δ =c 0t e i, ,app or Δ * =c 0t s i, ,app .

The objective is to charge a cell to an SOC of 80% in the
minimum amount of time under the constraints:

* θ
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3

where * ( )c x t c,s n s n, ,
max is the anodic solid particle surface concentra-

tion normalized by the maximum solid concentration and
θ = 0.85510n

max is the maximum stoichiometry limit in the anode.
The results (Fig. 6) follow three discrete segments:

1. The initial input is the CC operating mode (Iapp = 4C in 5) at the
upper bound to charge the cell as quickly as possible.

2. The input switches to the CCe operating mode (Δtce,n,app =
0 kmol/m3s in 25) when the minimum electrolyte concentration
reaches 0.2 kmol/m3 at the anode-current collector interface.

3. The input switches to the CCss operating mode
(Δ * =c 0 kmol m st s n, ,app

3 in 26) when the normalized solid
particle surface concentration in the anode reaches θn

max . The
simulation terminates upon reaching a final SOC of 80%.

The first transition (CC-CCe) occurs due to lithium depletion at the
anode-current collector interface. At this transition, the current and
voltage quickly drop to prevent ce(0, t) from falling below
0.2 kmol/m3 before rising back up due to the high nonlinearity of
the concentration dynamics. The effects of the transition are visible in
the electrolyte concentration, where its spatial gradients immediately
shift to ensure the concentration constraint is satisfied at the anode-
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current collector interface. A similar shift is seen in the solid surface
concentration at the CCe-CCss transition to satisfy the solid surface
constraint at the separator-anode interface. The second transition sees
a drop in current and voltage, but the subsequent rise in current is
much less pronounced in its speed and magnitude. With PETLION,
the total evaluation time for the CC-CCe-CCss solution is 9.1 ms.

Coding and Numerical Considerations

GOM code implementation.— With the GOM, the model
governing equations remain the same for all operating modes except
for adding a single algebraic equation that solves for I(t). One

method to differentiate between each operating mode in the code is
with an “if” statement, which first defines the appropriate operating
mode equation based on an input string and then evaluates that
equation using the supplied value or function for ξ or Δtξ (from 4
and 9 respectively). The code may also accept the user-defined
expression in 3 as an input to the system. If the code uses an
analytical Jacobian, the code must also involve a similar “if”
statement for the row corresponding to the gradient of the GOM
equation. If the Jacobian is sparse, its sparsity pattern must also be
updated for each operating mode.

No feasible roots.—It is possible to specify a problem that only
has a solution under certain conditions. If there are no feasible y(t*)

Figure 5. Fast charging results comparing a CC-CPo-CV and a CC-CV protocol with the PET model. The horizontal lines are the constraints, and the vertical
lines denote the discrete switching times between operating modes for CC-CPo-CV.
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and ̇( *)y t to satisfy 3, then the solver will fail to converge. Consider
a fast charging scenario using a constant temperature operating mode
in 10. The minimum possible value of ∣ *=T td d t t occurs when the
cell is at rest; the maximum value is unbounded as

*∣ ( )∣ → ∞
= ∞ [ ]

= *I t

T

t
lim

d

d
. 29

t t

Since dT/dt is continuous in I(t*), 10 has a feasible solution only if
Δ ⩾ ∣ *( )=T T td dt I tapp 0.

c

Consistent DAE initialization.—A crucial part of simulating
systems of DAEs is correctly initializing the algebraic and differ-
ential states at the start of the simulation (often using a nonlinear
root-finding algorithm like Newton’s method). If the system cannot
be properly initialized within the specified tolerances, the model may

fail to start or propagate errors from a poor initialization to further
time points in the simulation.28 Governing equations that form
systems of ODEs (e.g., the SP model) may see a slight increase in
computational cost with the GOM after being converted to a DAE
system since DAE solvers can be slower than ODE solvers in some
cases.

Event handling.—It is common to encounter events in battery
simulations (e.g., exceeding the maximum temperature or voltage
before the final time). Events can be handled discretely—instantly
terminating the simulation after detecting a constraint violation—or
continuously—finding the exact time when an event is violated.
Continuous event handling is more computationally expensive than
discrete event handling, but continuous event handling is required
for accurate mixed continuous-discrete simulation.1 Differential
formulations of the GOM in 9 require that the simulation begins at
a given initial value, which cannot be guaranteed with discrete event
handling, but can be ensured with continuous event handling.

Increasing DAE index.—The DAE systems that simulate the
thin-film, SP, and PET models in this article have a differential index

Figure 6. CC-CCe-CCss charging protocol with the PET model.

cThe solution for 10 actually has two roots for I—one positive and one negative—
since the limit in 29 is the absolute value of I(t*). If the initial guess for I(t0) is the
correct sign when initializing the DAE, the nonlinear solver should converge to the
root with the appropriate sign.
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of 1. A user-defined algebraic equation to find I(t) in 3 has the
potential to increase the index of the system of equations which may
not be solvable with standard DAE solvers.28–30 The approach in this
article applies to higher index DAEs by reduction to index-1 DAEs
by the dummy derivative method.31

Conclusions

This article presents General Operating Modes (GOMs), an
approach to efficiently simulate novel operating modes for lithium-
ion battery models of all scales. The GOM framework moves
beyond the conventional current, voltage, and power operating
modes to simulate new operating modes such as constant/variable
temperature, plating overpotential, concentrations, and potentials
regardless of model complexity or nonlinearity. The battery gov-
erning equations are augmented with a single algebraic constraint
and solved as a coupled system of DAEs. The computational cost to
simulate the novel operating modes is similar to that of a CC
simulation for the same model. We present a flowchart for the
mixed-continuous discrete (aka hybrid) solution to the fast charging
problem. The solution uses the GOM to embed the solution of the
control problem within the DAE solver, which is dependent only on
the specified initial condition(s), constraint(s), and terminal objective
(s). Case studies are presented that use the hybrid solution for fast
charging for three models of increasing complexity: a thin-film
electrode model, an SP model with temperature, and a PET model
with spatially varying temperature. Considerations about the coding
and numerical implementation of the GOM are detailed.

As discussed in case study III, the proposed approach results in a
globally optimal charging protocol for the isothermal SP model. On
the other hand, it is shown that a small amount of suboptimality can
occur for the non-isothermal SP model. Some amount of suboptim-
ality is acceptable within a nonlinear model predictive control
algorithm as minor deviations from global optimality are corrected
by feedback mechanisms. Although not of practical importance
within the context of nonlinear model predictive control, character-
izing the types of battery models for which the proposed hybrid
approach produces a globally optimal charging protocol is of
theoretical interest and a topic for future work.
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Appendix

The standard formulation for the constant current, thin-film
nickel hydroxide electrode model (see 14–17) is implicit and does
not have an analytical solution. When the potential is fixed to a
constant applied potential, Φapp, the ODE for dy/dt is a linear
differential equation with the analytical solution
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The analytical expressions for the remaining algebraic states are
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