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Abstract

Viral systems such as wild‐type viruses, viral vectors, and virus‐like particles

are essential components of modern biotechnology and medicine. Despite their

importance, the commercial‐scale production of viral systems remains highly

inefficient for multiple reasons. Computational strategies are a promising avenue for

improving process development, optimization, and control, but require a mathematical

description of the system. This article reviews mechanistic modeling strategies for the

production of viral particles, both at the cellular and bioreactor scales. In many cases,

techniques and models from adjacent fields such as epidemiology and wild‐type viral

infection kinetics can be adapted to construct a suitable process model. These process

models can then be employed for various purposes such as in‐silico testing of novel

process operating strategies and/or advanced process control.
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1 | INTRODUCTION

Viral systems such as wild‐type viruses, viral vectors (e.g., adeno‐

associated viruses [AAVs] and retroviruses [Warnock et al., 2011]) and

virus‐like particles (VLPs) have become essential components of modern

biotechnology and medicine. These systems are used in the production

of vaccines (e.g., inactivated or attenuated whole viral vaccines

[Plotkin, 2014], viral vector vaccines [Ura et al., 2014], and VLP‐based

vaccines [Mohsen et al., 2017]), vaccine adjuvants and antiviral therapies

(Frensing, 2015), gene therapies (Warnock et al., 2011), recombinant

protein production (Shah et al., 2013; Wurm & Bernard, 1999), and drug

delivery (Ma et al., 2012; Wen & Steinmetz, 2016).

The successful development and commercialization of many of

these biotherapeutics require large‐scale and high‐yield production

of these viral systems. Scaling up and optimization of viral system

manufacturing processes are currently active areas of research. Some

of the challenges are generally applicable to most viral systems, for

example, inefficient downstream separation and purification, (Singh &

Heldt, 2022), while others are system specific, for example, low yields

in recombinant AAV (rAAV) production due to inefficient filling of

capsids with the desired genetic material (Nguyen et al., 2021). These

challenges have motivated significant research activity throughout

the manufacturing and development pipeline, for example, engineer-

ing and optimizing cell lines (Genzel, 2015; Kiesslich & Kamen, 2020),

engineering the viral system itself to facilitate production

(Jordan et al., 2013; C. Li & Samulski, 2020), bioreactor process

development and intensification (Gallo‐Ramírez et al., 2015; Kiesslich

& Kamen, 2020), and improving the performance of downstream

separation processes (Singh & Heldt, 2022; Wolf & Reichl, 2011).

One of the comparatively nascent developments in the viral

systems production literature, which motivates this review, is the

development and application of mathematical modeling approaches to

understanding the manufacturing process both at the cellular and

reactor scales. The use of modeling strategies in biotechnology is well‐

established (a cursory search of the literature will reveal a plethora of

studies and reviews on the topic, [e.g., Bailey, 1998; Lee et al., 2005])
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and has significantly contributed to the development of the field.

Incorporating modeling into the process research and development

workflow can contribute several benefits such as providing deeper

process insights into the dynamics and multivariable interactions

present in the system (Nguyen et al., 2021; Udugama et al., 2021),

enabling the deployment of advanced process control and monitoring

strategies (Hong et al., 2018; Udugama et al., 2021), enhance process

optimization methodologies (Narayanan et al., 2020), and guide

and accelerate the development of novel manufacturing strategies

(Gernaey et al., 2010; Nguyen et al., 2021).

Fortunately, the development of process models for viral systems

manufacturing is significantly aided by a comprehensive pre‐existing

literature in adjacent fields such as wild‐type viral infection, epidemiol-

ogy, and chemical/biochemical reactor engineering. At the cellular scale,

detailed studies on the viral life cycle and infection kinetics provide the

basis for mapping the intracellular process steps and can serve as initial

kinetic estimators. At the reactor scale, the interactions between viruses

and cells can be coarse‐grained and approximated by functional forms

that are analogous to the compartment‐modeling frameworks used to

study infection at the scale of an individual human or a population.

These human‐scale (e.g., Gastine et al., 2021; Hadjichrysanthou

et al., 2016; Hill et al., 2018) and population‐scale models (e.g., Annas

et al., 2020; Carcione et al., 2020) are commonly used tools to

understand disease progression and the impact of specific interventions

like antiviral therapies or vaccination programs. Multiscale approaches

that combine cellular‐ and reactor‐scale modeling are also commonly

employed in the literature for similar applications.

This review aims to consolidate existing literature on the dynamical

modeling of upstream viral systems manufacturing and outline a robust

approach for constructing novel models. By breaking down the required

model constituents and processes at both the cellular and reactor scales,

we show how a model can be formulated using information and

strategies from the various aforementioned fields.

2 | CELLULAR‐SCALE MODELS

2.1 | Model constituents

Cellular‐scale models of viral processes describe the steps that map

the viral production processes within an individual cell. The specific

steps vary, but in general capture uptake, unpacking, transport,

replication, transcription, translation, budding, and release processes

occurring within the cell. Figure 1 provides an overview of the steps

often included in cellular‐scale reaction‐transport models of viral

systems.

When establishing a cellular‐scale model, the delineation of the

model steps depends broadly on four characteristics:

1. Virus Type: The type of wild‐type virus, viral vector, or VLP.

2. Cell Type: The type of cells being used to generate the virus, e.g.,

mammalian cells such as HEK293 or insect cells such as Sf9. The cell

type also impacts the kinetic parameter values used in the model.

3. Genetic Expression Approach: The method of expressing the gene

(s) of interest, e.g., transient transfection, stable expression, or

wild‐type infection.

4. Data Availability: The utility of the model depends on the type and

quality of the available experimental data.

Unlike wild‐type infection models, which seek to understand the

timing and dynamics of wild‐type viral infection, recombinant models

depict the cellular production of viral vectors or VLPs for therapeutic

or experimental use. Although recombinant viral system modeling is a

less mature area of development, models have been created for viral

vectors (Dinh et al., 2005; Nguyen et al., 2021), attenuated viruses for

vaccines (Laske et al., 2019), and VLPs (Hu & Bentley, 2000; Roldão

et al., 2007). Figure 2 shows predictions from an exemplar cellular‐

scale recombinant model. This work—which describes a transiently

transected rAAV system—is a demonstration of a cellular‐scale

modeling workflow: after the reaction‐transport network is deter-

mined and mathematically formulated, the model is fit to experimental

data, validated, and used to make predictions. In this case, the model

was used to make operational recommendations to increase the

proportion of filled rAAV capsids. For a thorough overview of wild‐

type infection models, refer to Ref. Yin and Redovich (2018).

The focus of this section of the review is the mathematical

approaches that enable cellular‐scale viral modeling. These mathe-

matical strategies are often application agnostic, and can be readily

applied to either wild‐type or recombinant systems.

2.2 | Mathematical approaches

Cellular‐scale models can be broadly categorized as either determi-

nistic or stochastic. Deterministic models neglect the inherent

randomness and noise of the biological system and provide precise

predictions. While the insights gleaned from deterministic models are

often useful, biological systems are inherently random, and stochastic

elements can be included to describe variations observed in

experiments and to capture a more complete understanding of the

system dynamics (Bressloff, 2014; Tsimring, 2014). Srivastava et al.

(2002) is a helpful primer on the differences of applying deterministic

and stochastic modeling approaches to viral systems.

2.2.1 | Deterministic modeling

Deterministic models of viral systems often employ a system of

ordinary differential equations (ODEs) or differential‐algebraic equa-

tions (DAEs) to describe the cellular‐scale mass action kinetics. This

approach assumes species homogeneity within the cell. The steps

outlined in Figure 1 provide an overview of the steps often included in

ODE‐ or DAE‐based reaction‐transport models of recombinant

viral systems. Three methods of gene delivery and production are

highlighted: (a) gene delivery through plasmid transfection, (b) gene

delivery through recombinant viral infection and receptor‐mediated
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endocytosis, and (c) a stable producing cell line. Note that not all steps

are relevant to all viral systems.

There is no consensus on the mathematical approaches used to

describe many of the cellular‐scale steps depicted in Figure 1. Some

mathematical approaches are summarized in Tables 1 and 2. Many of

the differences in approach are driven by differences in virus or

application, but differences are also caused by a lack of under-

standing of the precise mechanisms occurring at the process step,

which is often rooted in experimental limitations that make it difficult

to extract the granular kinetic details of the complex biological

interactions occurring in each step. Because of this, the steps

included in cellular‐scale models often describe lumped phenomena.

As an example, consider the assembly step. Viral assembly is a

complex process with many substeps: the capsid proteins assemble, the

nucleic acid becomes encapsulated within the capsid, and, in some cases,

the virus obtains a membrane coat. Modeling these interactions is an

F IGURE 1 Typical steps included in
cellular‐scale models of recombinant viral
systems. Transient gene delivery to a host cell
via (a) plasmid transfection and (b)
recombinant viral infection. First, the plasmids
or virus delivering the genes are taken up by
the cell (uptake), where they escape the
endosomal vesicles (unpacking), migrate to the
nucleus, and replicate. (c) The production of a
viral vector via a stable cell line, an alternative
to transient gene delivery, is used to depict
the transcription of viral genes, translation of
viral proteins, assembly of the recombinant
viral system, and its release from the cell. The
transient systems shown in (a) and (b) may also
incorporate these steps. Created with
BioRender.
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active area of research, and detailed mechanistic and physics‐based

models exist that can provide a thorough description for many viral and

VLP systems (Hagan, 2014; Perlmutter & Hagan, 2015). However, as

shown inTable 1, the assembly rate of the viral particles and VLPs is often

approximated in cellular‐scale dynamical models using Michaelis–Menten

kinetics (Grebennikov et al., 2021; Heldt et al., 2012; Zitzmann

et al., 2020), limiting‐substrate kinetics (Aunins et al., 2018; Nguyen

et al., 2021; Shcherbatova et al., 2020), or thermodynamic (Hu &

Bentley, 2000) approaches. When building an integrated cellular‐scale

model, a balance between detail and computability needs to be struck. If

the approximation accurately predicts the rate and stoichiometry of the

step, the model conclusions should be sufficient for making population‐

scale productivity and product quality assessments.

Even when a step's high‐level mathematical structure is the same,

the equation details can differ. For example, multiple groups have

modeled the transcriptional regulation of gene expression by tracking

the number of ribosomes available for translating the mRNA into

protein (Aunins et al., 2018; Binder et al., 2013; Lim et al., 2006;

Zitzmann et al., 2020). The models of Binder et al. (2013) and Zitzmann

et al. (2020) include ODEs for the translation complexes that form

when an mRNA binds to a ribosome. Each translation complex

represents a polyribosome, and a cap is placed on the number of

ribosomes available inside the cell. Aunins et al. (2018) also uses ODEs

to describe the formation of translation complexes, but include an

additional ODE that tracks the number of available ribosomes. Lim

et al. (2006) instead uses an algebraic approach in which ribosomes are

assigned to the various mRNAs based on their length.

2.2.2 | Stochastic modeling

The propagation of stochastic effects often leads to cell‐to‐cell

heterogeneity in viral systems. Including stochastic elements in

cellular‐scale models can capture this heterogeneity, providing a

more robust assessment of the range of possible outcomes. For

viral systems, these stochastic effects become increasingly relevant

at low multiplicity of infection (MOI) (Heldt et al., 2015; Srivastava

et al., 2002). However, even at high MOI, a range of cell‐to‐cell

productivity spanning multiple orders of magnitude is often

observed (Heldt et al., 2015; Hensel et al., 2009). Wild‐type viral

stochastic modeling is an active area of development, and models

have been built for human immunodeficiency virus (Sazonov

et al., 2021), influenza (Heldt et al., 2015), vesicular stomatitis

virus (VSV) (Hensel et al., 2009), poliovirus (Schulte et al., 2015),

and others.

That said, these stochastic approaches have not been widely

applied to recombinant systems. For linear systems and systems

operating near the thermodynamic limit at higher numbers of

substrates, deterministic and stochastic approaches should give

similar results (Hahl & Kremling, 2016). For some recombinant

systems, such as monoclonal stable cell lines with multiple genomic

copies, these assumptions likely hold, and deterministic approaches

are sufficient. However, for recombinant systems operating with a

lower or variable number of reactants, such as attenuated virus

production processes, these assumptions may not be valid and

stochastic elements can be considered.

F IGURE 2 Dynamical cellular‐scale model outputs for a recombinant adeno‐associated virus (AAV) production process. In this study,
Nguyen et al. (2021) created a mechanistic model that describes the generation of recombinant AAV (rAAVs) via transient transfection. The
model was fit to experimental results and used to elucidate the mechanisms driving the low proportion of full capsids produced by the system
(b). These model predictions were then used to generate hypotheses about ways to increase the proportion of full capsids, such as dosing the
plasmids at different time points. These plots were regenerated using software available at GitHub (Nguyen, 2021).
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3 | REACTOR‐SCALE MODELS

3.1 | Model constituents

A mechanistic model of a viral bioreactor at bioreactor length and

time scales needs to consider four aspects,

1. Bioreactor Configuration: The reactor design and operating

conditions are vital in writing the governing conservation and

balance equations describing the bioreactor.

2. Substrates and metabolites: A description of how key substrates

and metabolites are transported into and out of the bioreactor

along with their production and/or consumption by cells.

3. Viral Kinetics: A suitable model describing the kinetics of the viral

infection and viral particle production process is needed to specify

the kinetics terms in the model.

4. Biomass: A description of how the biomass evolves within the

system.

While this review focuses primarily on reactor‐scale viral kinetics

and biomass descriptions, the other reactor model constituents will

also be briefly considered.

3.2 | Bioreactor configuration

A variety of different bioreactor configurations for viral particle

production have been explored in the literature (Gallo‐Ramírez

et al., 2015; Grein et al., 2017; Gutiérrez‐Granados et al., 2018).

The bioreactor configuration can have a significant impact on various

aspects of the process such as its dynamics, control, and optimization

(Gallo‐Ramírez et al., 2015; Yamuna Rani & Ramachandra Rao, 1999).

For example, undesirable oscillatory behavior in viral titers can be

eliminated by employing a tubular plug‐flow reactor (PFR) instead of

a continuously stirred tank reactor (CSTR) as accumulation of

large concentrations of defective interfering particles (DIPs) can be

avoided in PFRs (Tapia et al., 2019). While computational fluid

TABLE 1 Mathematical approaches used in cellular‐scale viral models

Mathematical approach Equation structure Step References

Power law v k S= ∏ [ ]o i
N

i
αi Plasmid Uptake (1A) Nguyen et al. (2021)

Viral Uptake (1B) Lim et al. (2006), Zitzmann et al. (2020),
Grebennikov et al. (2021)

Unpacking (2) Heldt et al. (2012)

Migration to Nucleus (3) Dee and Shuler (1997), Heldt et al. (2012)

Replication (4) Roldão et al. (2007), Aunins et al. (2018)

Transcription (5) Roldão et al. (2007)

Translation (6) Heldt et al. (2012), Grebennikov et al. (2021)

Assembly (7) Aunins et al. (2018), Shcherbatova et al. (2020),
Nguyen et al. (2021)

Release (8) Grebennikov et al. (2021), Nguyen et al. (2021)

Power law with limiting or

regulating protein
k P S k C= [ ][ ] = [ ]

d C

dt b i i
d S

dt i
[ ] [ ]i i+1 Viral Uptake (1B) Dee and Shuler (1997), Nunes‐Correia et al. (1999),

Roldão et al. (2007), Heldt et al. (2012)

Replication (4) Lim et al. (2006), Heldt et al. (2012),
Zitzmann et al. (2020)

Transcription (5) Lim et al. (2006), Zitzmann et al. (2020)

Translation (6) Lim et al. (2006), Binder et al. (2013),

Aunins et al. (2018), Zitzmann et al. (2020)

Power law with time delay v k S t δ= [ ]( − )o i t Migration to Nucleus (3) Roldão et al. (2007)

Translation (6) Hu and Bentley (2000)

Michaelis–Menten v =o
v S

S K

[ ]

[ ] +

max i

i M
Transcription (5) Grebennikov et al. (2021)

Translation (6) Roldão et al. (2007)

Assembly (7) Heldt et al. (2012), Zitzmann et al. (2020),
Grebennikov et al. (2021)

Thermodynamics n K[ ] = ∏ [1]i
n

i
n

=2 Assembly (7) Hu and Bentley (2000)

Note: Many of the process steps summarized in Figure 1 have been described using multiple mathematical approaches.
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dynamics (CFD) models can be constructed for bioreactor configura-

tions to explore and identify an optimal design for a given process

and viral system, commercial availability and practical limitations

such as avoiding excessive shear stress and the need to get enough

oxygen to the cells limit the choice of bioreactor configurations.

Also, experimental validation of CFD models for some commercial

bioreactor configurations are not available, so the predictive accuracy

of these models for those configurations is unknown (KarimiAlavijeh

et al., 2022; Löffelholz et al., 2013; Nadal‐Rey et al., 2022; Scully

et al., 2020).

Given a choice of a bioreactor configuration, the corresponding

macroscopic model equations can be derived by considering mass,

species, and energy balances across the bioreactor, drawing upon

concepts from an extensive chemical engineering literature (e.g., see

Fogler, 2016; Froment et al., 2010; Levenspiel, 1999 and citations

therein). The model equations for CSTRs and batch bioreactors tend

to be comparatively more straightforward (often expressible as ODEs

and/or DAEs) than other bioreactor configurations (typically partial

differential equations [PDEs] with terms containing spatial deriva-

tives). The commonly employed assumption of perfect mixing in

CSTR/batch reactors eliminate the need for the model to capture

spatial variations in key variables. In subsequent sections, only CSTR/

batch reactor models will be considered to simplify the presentation.

The development of models for other bioreactor configurations is

much more computationally expensive and in many cases remain an

area of research (X.‐R. Li et al., 2019; Teng et al., 2021).

3.3 | Substrates and metabolites

The transport and consumption/production of key substrates

(e.g., glucose, glutamate, and oxygen) and inhibitory metabolites

(e.g., lactate and ammonium) can be captured by including suitable

transport equations based on the bioreactor configuration (e.g., see

Brotherton & Chau, 1996; Craven et al., 2013, 2014; Hong &

Braatz, 2021). The rate expressions should include substrate‐ and

metabolite‐dependent effects for those processes in which such

effects are significant (Pörtner & Schäfer, 1996). For example, viral

production in Sf9 insect cell cultures can be limited by nutrient

depletion, rather the accumulation of inhibitory metabolites, so that

supplementing glucose and other key substrates can improve viral

production (Fernandes et al., 2013). The addition of other supple-

ments such as pyruvate or anti‐oxidants can further increase viral

production by manipulating the cellular metabolic pathways (Carinhas

et al., 2010; Rodrigues et al., 2013). Metabolic shifts arising from

infection and/or bioreactor operation can also take place and impact

productivity (see Petiot et al., 2015 and citations therein). In some

cases, the bioreactor model can be simplified by omitting the model

equations related to substrates and metabolites when these variables

are kept constant as part of the reactor's regulatory control policy

and/or when the concentrations of specific substrates/metabolites of

interest do not impact the process (Genzel et al., 2004; Möhler

et al., 2005).

3.4 | Viral kinetics and biomass

For many viral systems, especially systems of infectious viral

particles, the relationship between the virus particles and the biomass

is closely coupled and are often considered together. Before

formulating the model, it is helpful to consider a flow diagram to

understand how the system dynamics impact the various compo-

nents. As a first case, consider a simplified batch bioreactor with

three species of interest: target cells (T), infected cells (I), and virus

particles (V). The following assumptions are employed: Target cells

grow exponentially with a rate constant μ, target cells are infected by

attachment of free viral particles with a rate constant k1, target cells

die with a rate constant k2, infected cells undergo apoptosis with a

rate constant k3, virus particles are released upon apoptosis of

infected cells with a proportionality constant k4, and free virus

particles degrade with a rate constant k5. It is often helpful to

construct a flowchart describing the processes of the system.

Figure 3 corresponds to one of the simplest models for viral

particle production in a batch bioreactor,

μT k TV k T

k TV k I

k TV k I k V

= − − ,

= − ,

= − + − .

dT

dt

dI

dt

dV

dt

1 2

1 3

1 4 5

(1)

This TIV model (and its variants, e.g., with additional terms to

account for flow into and out of a bioreactor in a continuous CSTR or

modifying various terms within (1) to more accurately reflect actual

processes) has been used to model the production of viral particles of

various viruses, e.g., Influenza (Frensing et al., 2013; Möhler

et al., 2005; Schulze‐Horsel et al., 2009), polio (Jiang et al., 2019;

TABLE 2 Variables used in Table 1 to describe cellular‐scale
modeling mathematical approaches

Variable Description

Ci Protein complex i

k Rate constant

Ki Association constant

Km Concentration of substrate needed to
achieve half the maximal reaction rate

n Number of subunits in VLP

N Number of reacting species

Pi Binding protein i

Si Reactant i

vmax Maximum achievable reaction rate

vo Rate of reaction

αi Order of reactant i

δt Time delay
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Ursache et al., 2015), and dengue (Abbate et al., 2019, 2016). As

previously mentioned in Section 1, it is helpful to note the parallels

between the TIV model and both patient viral infection dynamical

models (e.g., see Hernandez‐Vargas & Velasco‐Hernandez, 2020;

Perelson & Ribeiro, 2013; Saenz et al., 2010 and citations therein)

and compartment models in epidemiology (see Brauer et al., 2008

and citations therein). These related fields have a rich literature which

can serve as a source for formulating models and extensions. For

recombinant systems where the viral particle does not infect cells in

the bioreactor, the reactor‐scale model would be much more closely

aligned with well‐established bioreactor models for recombinant

protein production (e.g., see S. Liu, 2020; McDuffie, 1991).

Multiple avenues for model extension are available. In some

cases, it might be necessary to account for additional viral or cell

species. For example, some viruses are known to produce DIPs

during replication which can impact system dynamics (Frensing

et al., 2013; Shirogane et al., 2021). Frensing et al. (2013) extended

the TIV model by including three additional equations to track DIPs,

cells infected with DIPs, and cells coinfected with DIPs and standard

virus particles (STVs), and the proposed model was successfully able

to qualitatively match experimental bioreactor results (see Figure 4

for exemplar simulations). To integrate deeper insights of the cell

population into the model, the equations for one or more species of

interest can be reformulated as a population balance model (PBM)

with suitable intrinsic variables capturing the dimensions in which the

population varies (Inguva & Braatz, 2022; Inguva et al., 2022;

Villadsen et al., 2011). Table 3 summarizes exemplar intrinsic

variables considered in cell PBMs with a focus on viral particle

production.

4 | MULTISCALE MODELS

Viral systems are inherently multiscale; infection and recombinant

viral production are the result of a dynamic relationship between

different time and length scales. Coupling the cellular‐ and reactor‐

scale dynamics can improve model accuracy and predictability for

viral systems. This coupling often comes with increased model

complexity and computational requirements, which can be mitigated

via strategic application of simplifying assumptions and/or referral to

the literature on the modeling and simulation of multiscale systems

(Ingram et al., 2004; Raimondeau & Vlachos, 2002).

The literature is sparse regarding multiscale modeling of

recombinant viral systems. However, as with cellular‐ and reactor‐

scale models, analogous multiscale wild‐type viral models can be

leveraged for recombinant multiscale modeling (Garira, 2017). These

wild‐type models are typically motivated by mapping the spread and

treatment of a virus within a population, tissue, or cellular system, but

many of the high‐level mathematical approaches and considerations

F IGURE 3 Flowchart for a simplified TIV system adapted from
Möhler et al. (2005); see Müller (2015) for additional examples of
flow charts for more complex systems.

F IGURE 4 Exemplar reactor‐scale simulations performed using theTIV (left) and extended model (right) in a continuously stirred tank reactor
(CSTR) from Frensing et al. (2013). Frensing et al. (2013) observed oscillatory behavior during experimental runs which was explained by the
presence of defective interfering particles (DIPs). This effect was captured in the extended model which introduced additional species to track
DIPs and cells either infected with DIPs or coinfected cells.

CANOVA ET AL. | 635

 10970290, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28296 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [06/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



governing these systems are directly relevant to recombinant

application (Garira, 2017). Additionally, there are relevant multiscale

publications on nonviral recombinant cellular systems (e.g., monoclo-

nal antibodies), which are summarized by Kyriakopoulos et al. (2018).

Note that multiscale models in which cellular‐scale dynamics are

paired with reactor‐scale dynamics are often referred to as

“structured” models in the literature (Bailey & Ollis, 1986).

One approach to incorporating multiscale dynamics is to couple

the cellular‐scale production of virus or VLP with the infectivity state

of the cell population. Information is often transferred unidirection-

ally from the reactor‐scale to the cellular‐scale, such that the

intracellular dynamics are affected by the infection state of the cell.

Haseltine et al. (2005) demonstrated this approach for a general viral

infection system using a series of integro‐PDEs. The group used

simplifying assumptions to decouple the system (Haseltine

et al., 2008), an approach that was also successfully employed to

model Influenza A infection and antiviral efficacy (Heldt et al., 2013).

Dürr et al. (2017) extended this Influenza A infection model by using

approximate moment methods to solve a population balance system,

which was used to predict productivity effects due to heterogenous

gene overexpression and expedited the screening of suitable cell line

candidates (Duvigneau et al., 2020). Hu and Bentley (2000) instead

used a stochastic method to predict the infection pattern of a

baculovirus insect system producing VLPs. Protein synthesis and VLP

formation within individual cells was then tied to the time since

infection and the number of infecting baculoviruses.

An alternative way to incorporate multiscale dynamics is to

couple extracellular process variables to cellular‐scale dynamics,

which can prove useful for recombinant systems that do not contain

live infection dynamics. For example, Ho et al. (2006) linked antibody

production to bioreactor glucose concentration, building on the

model built by (Bibila & Flickinger, 1991). Also, Jedrzejewski et al.

(2014) used Monod kinetics to link extracellular metabolites to the

glycosylation model, building on the model published by (Jimenez del

Val et al., 2011).

These approaches linking cellular‐scale dynamics to process

variables have not been widely extended to segregated cell

population models, where, for example, the infection status of

individual cells is tracked. This simplification enables the model

equations to remain a system of ODEs, greatly simplifying the

solution approach. Future applications can extend these approaches

to include the cellular‐scale effects from other industry‐relevant

process variables such as dissolved oxygen and pH.

5 | PARAMETER ESTIMATION

Estimating the model parameters of a viral system is not trivial. Many

states cannot be measured using existing measurement techniques

and, when measurement techniques are available, the outputs are

often noisy or measured on a relative scale. Because of this, care

should be taken to understand a model's structural and practical

identifiability when performing parameter estimation. Structural

identifiability is achieved if a unique set of parameters exists for a

given model output and can be assessed before model fitting

(Wieland et al., 2021). Practical identifiability instead evaluates the

ability of the available experimental measurements to define finite

confidence intervals for the fit parameters.

A variety of parameter estimation techniques have been

employed in the biological modeling literature to fit model parame-

ters to experimental data. Methods include linear and nonlinear least

squares (Mendes & Kell, 1998), heuristic search algorithms (Calvez &

Hutzler, 1996; Srinivas & Patnaik, 1994), and Kalman filtering (Lillacci

& Khammash, 2010), among others. A common parameter estimation

approach is maximum likelihood (ML) estimation, which seeks to find

the parameters that make the fit data most likely. Assuming zero‐

mean, normally distributed and additive noise, the ML estimator can

be written as a function of the vector of measurements Y and model

outputs X θf ( , ) (Beck and Arnold (1977) by

⊤Y X θ V Y X θf fmin ( − ( , )) ( − ( , )),
θ

ϵ
−1

(2)

where X is the vector of state variables, θ are the model parameters,

and Vϵ is the measurement error covariance matrix.

Identifiability concerns often dictate that select parameters be

held constant during fitting. Uncertainty analysis methods can be

TABLE 3 Exemplar intrinsic variables considered in PBMs for biotechnology

Intrinsic variable Description Reference

Cell age/postinfection

cell age

Enables age‐based effects, e.g., cell death and

reproduction to be captured

Schmidt and Sawodny (2017), Haseltine et al. (2008),

Haseltine et al. (2005), Kurtz et al. (1998)

Cell mass/volume/size These properties can be measured and used to
capture similar effects as cell age

Quedeville et al. (2018), Abia et al. (2009),
Mantzaris et al. (1999)

Intracellular DNA/RNA
content

Provide deeper insights into the cell state Fischer et al. (2019), Dürr et al. (2017), Fadda et al. (2012),
Y.‐H. Liu et al. (2007)

Fluorescence Provides information on the extent/progress

of infection in the cell population. Data can
be obtained from flow cytometry

Müller et al. (2013), Dürr et al. (2012), Müller et al. (2008)

Note: Where possible, references to the literature considering viral systems are provided.

Abbreviation: PBM, population balance model.
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used to select the most effective fitting parameters; fitting sensitive

parameters that drive model uncertainty can improve the predictive

power of the model (Blower & Dowlatabadi, 1994; Nagy &

Braatz, 2007). Meanwhile, the parameters that are held constant

during model fitting should be sourced from prior knowledge, such as

literature or other models. For example, Nguyen et al. (2021) initially

fit parameters related to plasmid delivery when constructing their

cellular‐scale model of rAAV production. These model‐derived

plasmid delivery parameters were then held constant along with

four parameters leveraged from literature when fitting the rAAV

production model, the outputs of which are shown in Figure 2.

Predetermined parameters affect the determination of the fit

parameters (θ). Because of this, the group substituted a matrix of

overall experimental data covariance for the measurement error

covariance matrix in (2) that accounts for both the predetermined

parameter variance and the measurement noise.

For models of viral systems in which the available data are limited

and noisy, Bayesian techniques strike a balance between complexity

and usefulness (Beck & Arnold, 1977). Since Bayesian estimation

techniques allow inference of the entire probability distributions of

the estimated parameters, they are also able to quantify the

uncertainty in the parameter estimates. Bayes theorem describes

the a posteriori distribution θ YP ( ) as a function of the experimental

data Y and the a priori distribution θP ( ) of the model parameters,

 
θ Y

Y θ θ

Y
P

P P

P
( ) =

( ) ( )

( )
. (3)

Assuming zero‐mean normally distributed noise and normally

distributed priors with means μ and variances Vμ, the maximum a

posteriori estimator is Beck and Arnold (1977)

⊤ ⊤Y X θ V Y X θ θ μ V θ μf fmin ( − ( , )) ( − ( , )) + ( − ) ( − ).μ
θ

ϵ
−1 −1 (4)

While ML estimation is straightforward to implement and finds the

parameter values that make the fit data most likely, it does not

generalize beyond the observed data. The MAP estimator extends

the ML estimator by incorporating prior knowledge about the fitting

parameters. This prior knowledge can be leveraged from literature

results or previous experimentation.

6 | CONCLUSIONS

Demand is surging for products manufactured in viral systems.

Nevertheless, the yields of even the most state‐of‐the‐art recombi-

nant viral systems often fall short of market needs. Improvements to

recombinant viral processes are urgently needed to meet this

demand and ensure the consistent manufacture of high‐quality viral

products. Dynamical modeling is one way to realize high‐impact

process gains; understanding the cellular‐ and reactor‐scale dynamics

can increase specific productivity, improve control of critical quality

attributes (CQAs), and decrease the amount of time required for

process development by encouraging targeted experimentation.

Modeling can also inform other methods of upstream process

enhancement such as media development and process intensifica-

tion, leading to even greater gains.

Many of the modeling methodologies summarized in this

review were first applied to wild‐type viral systems. Extending

these approaches to recombinant systems is not trivial, and often

requires experimentation for model validation. That said, advances

in measurement technologies and synthetic biology will continue

to improve the informativeness of experiments, enabling even

more comprehensive models. Additionally, as more products made

in viral systems mature and scale into manufacturing systems,

dynamical models can be created with manufacturing‐specific

applications.
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