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Advanced methodologies for model-based optimization 
and control of pharmaceutical processes
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Richard D Braatz

Traditionally, the pharmaceutical industry relied on resource- 
intensive and empirical methods for process development, 
optimization, and control. Heuristic approaches to 
pharmaceutical development and manufacturing have led to an 
unsustainable number of drug shortages and recalls and to 
escalating costs for launching new drug products. Optimization 
and control strategies rooted on process modeling are helping 
to advance pharmaceutical manufacturing by reducing 
development times and manufacturing costs, improving 
productivity and quality control, and enhancing process 
understanding. This perspective discusses recent 
developments toward model-based optimization, state 
estimation, and control of pharmaceutical processes. Ancillary 
areas such as software tools, equipment and sensor 
technology, and process modeling are first covered. Then, 
several recent academic and industrial case studies are 
discussed to highlight workflows and benefits related to the 
implementation of model-based optimization, state estimation, 
and control in (bio)pharmaceutical manufacturing. Finally, 
strategies for overcoming current challenges in the real-world 
application of model-based optimization and control are 
discussed.

Address
Department of Chemical Engineering, Massachusetts Institute of 
Technology, Cambridge, MA, USA  

Corresponding author: Braatz, Richard D (braatz@mit.edu)
* Co-first authors.

Current Opinion in Chemical Engineering 2024, 45:101035

This review comes from a themed issue on Pharmaceutical 
Manufacturing

Edited by Kimberley B. McAuley, Salvador García Muñoz and 
Jonathan McMullen 

Available online xxxx

https://doi.org/10.1016/j.coche.2024.101035

2211–3398/© 2024 Elsevier Ltd. All rights are reserved, including 
those for text and data mining, AI training, and similar technologies.

Introduction
The formal definition of process optimization entails a 
well-defined mathematical procedure by which an eco
nomic objective function is optimized under a set of 
constraints [1]. Within most manufacturing sectors, pro
cess optimization is routinely applied to identify the 
operating conditions that maximize the efficiency and 
the productivity of a process under given quality con
straints [2]. In pharmaceutical manufacturing, the term 
‘process optimization’ typically refers to a broad set of 
activities that are conducted for enhancing a process, not 
necessarily involving mathematical optimization [3]. 
Historically, pharmaceutical process development was 
carried out with heuristic approaches, prioritizing speed 
over efficiency and robustness, to timely scale up pro
cesses for new products to clinical trial volumes and then 
to commercial scale [4]. Even today, design of experi
ments and response surface methodology are the most 
widely used approaches for process enhancement in the 
pharmaceutical sector [5]. A similar lag between the 
pharmaceutical industry and other industries exists in 
terms of advanced process control, with most pharma
ceutical processes lacking the implementation of feed
back control of the product quality variables [3,5,6]. 
These limitations in pharmaceutical manufacturing 
contribute to the large number of shortages and recalls of 
drug products that have recently been registered, as well 
as to escalating costs for bringing new pharmaceuticals to 
the market [7,8]. In response to these issues, the phar
maceutical industry accelerated its modernization ef
forts, driven by regulatory initiatives, such as current 
good manufacturing practices [9], process analytical 
technology (PAT) [10], and quality by design (QbD) 
[11,12]. QbD represents a departure from traditional 
quality-by-testing methods, adopting a scientific and 
risk-based approach to ensure consistent production of 
high-quality drugs. PAT enhances the QbD framework 
by enabling real-time monitoring of critical process 
variables through advanced sensors, unlocking the po
tential to achieve real-time release testing. Within the 
recent interest in improving efficiency and quality in 
pharmaceutical manufacturing, process development 
and manufacturing workflows can benefit from the 
adoption of process optimization and control approaches 
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based on mathematical models, as advocated by reg
ulators [13,14]. This article reviews advances in meth
odologies and applications of model-based optimization 
and control of pharmaceutical processes, with a focus on 
contributions published within the past 5 years. Earlier 
progress toward model-based optimization and control of 
pharmaceutical processes and a comprehensive overview 
of the role of process modeling in QbD are presented 
elsewhere [15]. The next section summarizes the tools 
for process optimization and control that are currently 
available to practitioners, with a focus on both hardware 
and software capabilities. Then recent studies on model- 
based optimization and control of pharmaceutical sys
tems are discussed, highlighting emerging trends and 
potential developments. 

Ingredients for optimization and control 
This section explores recent advances in the constitutive 
components of both the construction of a suitable pro
cess model and for subsequent application of advanced 
optimization and control methods. A summary of drivers 
helping advance the field can be found in Figure 1. 

Software tools and algorithms 
Recent developments in software tools for modeling, 
optimization, and control are enabling users to rapidly 
develop and implement various computational tools into 
the pharmaceutical process development workflow. 
Three trends can be observed, which are facilitating the 
adoption of computational resources and methods:  

• Open source. Many authors, both from academia and 
industry, are increasingly making their code publicly 
available on sites such as GitHub and publishing as
sociated articles outlining the tool. This helps users 

gain a better understanding of the tool and facilitates 
modification to suit their needs. 

• Ease-of-use. Many modern software packages are ei
ther being developed entirely in accessible program
ming languages (e.g. Python, Julia) or have wrappers/ 
interfaces with these languages. Many of these tools 
also have extensive documentation with helpful ex
amples and active discussion forums where users can 
get assistance. Developers and advanced users also 
often develop teaching material using specific 
packages, which provide another valuable resource 
(e.g. see Ref. [16]). The development of graphical 
user interfaces and web apps is also being made easier 
with modern tools, such as Streamlit [17] and 
PyQT5 [18].  

• Diverse range of capabilities. The ecosystem of 
available software tools is rapidly maturing, with a 
range of tools for different needs. Examples of ex
cellent software codes released recently are categor
ized by application: thermodynamics [19,20], partial 
differential equations [21,22], optimization [23,24], 
optimal control and model predictive control (MPC)  
[23,25], and process data analytics [26]. 

Concomitant advances in methods and algorithms for 
simulation and optimization are important for driving 
improvements in software in three domains: stability/ 
convergence, accuracy, and efficiency. In some cases, 
such as MPC and real-time optimization, the develop
ment of highly efficient numerical methods is essential 
for the application of these techniques in practice. The 
development of relevant software tools and algorithms 
can and often does take place in different disciplines 
(e.g. applied mathematics and physics communities), 
thus practitioners should strive to keep abreast of 

Figure 1  
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developments in adjacent knowledge domains. 
Advances in algorithms have been made for all of the 
classes of model equations that arise in pharmaceutical 
manufacturing, including differential–algebraic equa
tions (DAEs) and integropartial differential–algebraic 
equations (IPDAEs). An example is an efficient finite 
difference method [27,28] for simulating population 
balance models (PBMs), which are a powerful PDE- 
based framework for describing systems relevant to 
pharmaceutical manufacturing such as processes that 
include cells (e.g. to incorporate cell age/size as an in
trinsic variable) or crystals (e.g. to track the evolution of 
the crystal size distribution). The scheme employs spe
cially constructed transformations to solve the PBM ac
curately (in some cases to machine precision) with 
computational costs much lower than higher order 
methods and alternative techniques (e.g. [29–31]). For 
control-related applications, a fast technique for solving 
optimal control problems by reformulation as a system of 
DAEs has been developed, eliminating the need for an 
optimization solver and thus speeding up the simulation 
by more than an order of magnitude [32]. 

While this section focuses on open-source software, 
there are several commercial software packages available 
that have found significant use in the pharmaceutical 
industry. Some well-known commercial process simula
tors that have dedicated features for pharmaceutical 
processes include Aspen Plus (Aspen Technology, Inc.), 
gPROMS (Siemens AG), and SuperPro Designer 
(Intelligen, Inc.). Other notable commercial tools for 
multiphysics/computational fluid dynamics simulations 
that have found use in the pharmaceutical industry in
clude COMSOL (COMSOL, Inc.), Star-CCM+ 
(Siemens AG), and ANSYS (Ansys, Inc.). Many of these 
commercial tools are under active development to in
corporate new capabilities to support pharmaceutical 
applications (e.g. gPROMS Formulated Products). 
Commercial software providers often have helpful 
technical notes with exemplar models that are useful as 
templates and also are resourced to provide direct sup
port to users. The choice of which software tool to use 
can be complicated but ultimately depends on the 
nature of the problem at hand and the constraints (e.g. 
cost/know-how) of the user/organization. 

Process equipment and sensor technology 
Recent equipment developments have focused on au
tomation and/or lowering sample volume requirements, 
enabling high-throughput workflows, even for costly 
products and processes. These developments are taking 
place for several processes and unit operations, such as 
powder dispensing [33], pH adjustments for formulation  
[34], crystallization parameter estimation [35], and mul
tiple steps in both upstream and downstream biomanu
facturing [36,37]. In many cases, the technology is 
already commercially available as turn-key solutions or 

leverages existing know-how and equipment and can be 
incorporated into process development workflows rela
tively quickly. These advances, in particular, those re
lated to automation, will likely become prevalent, even 
in large-scale manufacturing operations and facilitate the 
implementation of advanced control strategies, which 
may require complex process operation (e.g. complex 
feeding policies for bioreactors). The ability to generate 
more high-quality data with less resources (both material 
and manpower) in shorter time frames will accelerate the 
development of process models. 

The advancement and promulgation of sensors and as
sociated technologies (e.g. software/algorithms for signal/ 
data processing) has enabled the real-time and/or inline 
measurement of process variables and conditions pre
viously deemed inaccessible in various pharmaceutical 
unit operations. Such tools are invaluable for providing 
deeper process insights and more accurate experimental 
data for the construction of mechanistic models and also 
for facilitating the implementation of more sophisticated 
process monitoring and control methodologies. Some 
notable recent developments in sensor technology for 
pharmaceutical manufacturing applications are as follows: 

• NanoFlowSizer by InProcess-LSP [38]: The Nano
FlowSizer platform enables the real-time and inline 
characterization of the particle size distribution (PSD) 
of nanodispersions in flow. This platform has enabled 
the inline measurement of the PSD during the con
tinuous manufacturing of nanoparticulate systems 
(e.g. emulsions formed using high-pressure homo
genization [39] and precipitation of lipid nanoparticles 
and/or liposomes using rapid mixing [40]).  

• Inline microscopy: The use of inline microscopy 
coupled with image processing can generate rich data 
for analyzing particulate and cell systems. For parti
culate systems (e.g. for crystallization processes), in
line microscopy has successfully been applied to 
measure properties, such as the PSD and solids con
centration [41,42]. For cell systems, the Ovizio iLine 
platform uses digital holographic microscopy, which 
can generate both cell images and several image 
features that can be used to characterize properties, 
such as cell viability and infection state in the case of 
viral particle systems [43,44].  

• Laser speckle with PEACE [45]: By employing a 
physics-enhanced machine learning algorithm to 
analyze the laser speckle from a powder bed, it is 
possible to obtain real-time noninvasive measure
ments of the PSD for a range of particulate processes, 
such as drying, blending, and milling.  

• Variable pathlength spectroscopy (VPS): 
Conventionally, quantification of high-concentration 
samples required dilution for the measurement to 
remain in the linear dynamic range. VPS technologies, 
such as the commercially available SoloVPE (at-line) 
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and FlowVPX (inline) platforms, use a variable 
pathlength and slope spectroscopy to enable efficient 
sample quantification [46,47]. 

Process modeling 
Broadly, the methods for constructing process models 
can be classified by the extent of physical insight and 
knowledge captured by the model with mechanistic 
models that capture mechanistic insights of the process 
at one end of the spectrum and data-driven models that 
empirically describe available data at the other end. This 
review focuses on mechanistic modeling due to its en
abling of increased process understanding and the ap
plication of model-based optimization and control and 
because such models can be less expensive to formulate 
due to lower data requirements. For a discussion of data- 
driven and hybrid modeling strategies, the interested 
reader is directed to topic-specific reviews, for example,  
[48,49]. As practitioners become more adept with model 
formulation and development, that is, translating me
chanistic insight of the process into a mathematical de
scription and validating the model with suitable 
experimental data, the use of mechanistic models will 
continue to expand and become more mainstream. 
Model development should not be carried out in isola
tion, and close collaboration between modeling and ex
perimental teams creates a synergistic relationship, with 
experimentalists providing insights that modelers may 
lack and modelers helping to guide experimental design 
and data analysis. 

Advances in mechanistic modeling fall into two cate
gories: (a) model refinement and improvement and (b) 
development of novel models. For brevity, we focus on 
advances in the latter category, and interested readers are 
directed to the literature for examples on the former (e.g. 
see Ref. [50] for chromatographic separations and Ref.  
[51] for high-pressure homogenization). The develop
ment of novel mechanistic models primarily is taking 
place for complex/novel process configurations, for ex
ample, microwave-assisted lyophilization (Figure 2a), and 
emerging modalities, for example, mRNA therapeutics 
and gene therapy manufacturing (Figure 2b). In both 
cases, modeling teams need to start from first principles 
and gain a deep understanding of the process to suc
cessfully develop a model since, in many instances, they 
are developing a first-of-a-kind model. Knowledge from 
adjacent domains is invaluable for model building and 
parameter estimation. For example, previous work in 
epidemiology and viral infection kinetics are useful 
sources of information for developing process models for 
viral particle manufacturing [52]. Table 1 lists several 
novel mechanistic models that have been recently de
veloped for a variety of pharmaceutical processes, with 
brief discussion. Figure 3a summarizes the workflow for 
developing a model to be used for optimization and/or 
control of a pharmaceutical process. 

Advances in optimization and control practice 
Optimization 
Several studies on model-based optimization of individual 
pharmaceutical unit operations have been presented in 
the past decade, including for reactors, crystallization, and 
chromatography [15]. In model-based optimization of a 
pharmaceutical process, a mathematical model for a unit 
of interest is first developed and validated with experi
mental data. Then, the model is used as in silico re
presentation of the process for determining the operating 
conditions that maximize a productivity metric, using ei
ther derivative-based or derivative-free algorithms. Mul
tiobjective optimization can be used for determining 
Pareto fronts that compromise across multiple goals. Al
though model-based optimization of individual unit op
erations represented a step forward with respect to earlier 
heuristic process development, simultaneous model- 
based design and optimization across multiple units and, 
eventually, plant-wide optimization, are the ultimate 
means to deliver next-generation pharmaceutical quality. 

Recently, a model was developed for a solid oral-dosage 
downstream manufacturing process, with interconnected 
wet granulation, drying, and milling unit operations [63]. 
The model was validated with experimental data and 
then used for optimizing the operating conditions, 
achieving an estimated 83% reduction of energy con
sumption [64]. Another study recently demonstrated 
model-based optimization of an end-to-end continuous 
pharmaceutical process for aspirin manufacturing [65]. 
Dynamic models were developed and validated for the 
individual unit operations, which included two-step flow 
synthesis, crystallization and in vitro dissolution of 
testing of the final product. Notably, plant-wide opti
mization led to threefold increase in overall productivity 
and 10% higher conversion compared with step-by-step 
optimization of individual unit operations. Another re
cent study exploited nonsmooth dynamic simulation and 
optimization to maximize the yield and productivity of 
an in silico plant that included recycles from the crys
tallizer outlet to either the crystallizer or the reactor [66]. 
The in silico plant considered for the dynamic optimi
zation was inspired by an experimental pilot plant op
erated in the Novartis-MIT Center for Continuous 
Manufacturing, which, however, did not include recycles 
in place [67]. Dynamic optimization showed that the 
introduction of recycles in continuous pharmaceutical 
manufacturing can increase yield and productivity. On 
the contrary, optimization of the considered plant 
through steady-state simulations did not generate a de
sign that met the target product quality specifications. 

Pharmaceutical process optimization is strictly connected 
to the regulatory concept of design space, namely, the 
feasible space of operating conditions that allow to meet 
the product quality with an acceptable probability, for 
given raw material attributes [11]. Several algorithms have 
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been proposed for design space description through 
model-based optimization [68], including a recent 
strategy that exploits derivative-free optimization and 
process models implemented as black boxes that can be 
called through commercial simulators [69]. A recent work 
demonstrated the use of robust optimization for simulta
neously defining the probabilistic design space and 
maximizing productivity therein for continuous integrated 
filtration–drying of crystallization slurries [70]. Surrogate 

models, which are simplified models derived from de
tailed and resource-intensive models, can be useful for 
constructing design spaces, and, more generally, for op
timizing pharmaceutical processes [71,72]. 

Given the fast pace of pharmaceutical process develop
ment, the capability to timely develop a novel process 
model can become the bottleneck toward the actual 
implementation of model-based optimization by 

Figure 2  
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Examples of recently developed mechanistic models of pharmaceutical processes. (a) Lyophilization of biotherapeutics. A model describes heat and 
mass transfer within the product during three phases of lyophilization: freezing, primary drying, and secondary drying. (b) Recombinant adeno- 
associated virus (rAAV) manufacturing in insect cells: multiscale model encompassing the bioreactor scale and resolving the intracellular 
reaction–transport network that leads to rAAV formation within producer cells. A detailed description of the model is given in Destro et al. [55].   
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practitioners. Model-based design of experiments can 
reduce this time [73] by optimizing the informativeness 
of the data to more quickly converge to the correct un
derlying mechanisms associated with any poorly under
stood phenomena [74]. In this context, a 70% reduction 
of the experimental effort for model-based design of 
tablet lubrication was recently achieved in a direct 
compression process through model-based design of 
experiments [75]. More generally, there is a high po
tential for platforms that can autonomously plan and/or 
execute experiments for model development and 
model-based optimization within pharmaceutical manu
facturing systems [76]. In the future, increasing model- 
based applications in biopharmaceutical manufacturing 
are expected, given the raising commercial importance 
of biologics. Within this domain, processes that involve 
the use of living cells create opportunities for novel 
optimization approaches, in which intracellular modeling 
is exploited for optimizing both the process conditions 
and the genetics of the biological platform for increased 
productivity, as recently shown [54,55]. 

State estimation 
State estimation is a framework for the real-time esti
mation of the unmeasured states, given the available 
measurements and mechanistic understanding of a 
system; a tool that performs state estimation is referred 
to as a state observer or state estimator, also known as a 
soft sensor in some fields [77]. Those unmeasured states 
could be internal states that cannot be measured or 
states that are difficult (or too expensive) to measure. 
State estimation is critical for process monitoring and 
control strategies that require access to any unmeasured 
states (Figure 3b). In the pharmaceutical industry, a 
state observer can be integrated with PAT and hence 
plays an important role in driving and ensuring the 
successful transition from batch to continuous manu
facturing [78,79]. Several well-known observers have 
been applied in the pharmaceutical industry, including 
the Luenberger observer, Kalman filter, sliding-mode 
observer, and moving horizon estimator (MHE); we refer 

to Refs. [80,81] for detailed discussion of those ob
servers. 

State estimation has been explored for various pharma
ceutical processes and unit operations. One of the most 
common unit operations in this context is a fluidized bed 
dryer for drying wet granules, in which the main objective 
is to ensure that the residual moisture content in dis
charged granules is below the required threshold. For this 
purpose, various observers have been developed to ap
proximate moisture-related quantities in real time, in
cluding an MHE for estimating moisture content, given 
the inlet gas and particle temperature measurements [82] 
and an extended Kalman filter (EKF) to estimate the 
drying rate and air humidity [83]. State observers have 
been demonstrated for process and product quality con
trol, for example, Luenberger and sliding mode ob
servers-based feedback control [84] and MHE-based 
nonlinear model predictive control (NMPC) [85]. 

Direct compression for table manufacturing is another 
process where state estimation has been investigated. A 
number of soft sensors have been proposed for mon
itoring of tablet potency, with the use of both mechanistic 
modeling [86] and hybrid modeling [87], offering alter
natives to the traditional monitoring approach with near- 
infrared spectroscopy. An EKF was developed for a 
compartmental model that represents the flow in the ta
blet press; the proposed EKF was shown to accurately 
estimate the species concentration in real time while ef
ficiently handling sensor noise [79]. A combined MHE- 
NMPC framework has been developed to help reduce 
plant-model mismatch effects, for example, caused by 
uncertain model parameters, in continuous direct com
pression [88]. State estimation has also been explored for 
feeding–blending [78] and crystallization [89]. 

Unlike small molecules, the literature on state estimation 
for biotherapeutic manufacturing spans decades. While 
state estimation based on simple bioreactor models using 
standard design methods is well established, some recent 
studies have explored other types of bioprocessing units 

Table 1 

Some recent advances in mechanistic modeling for pharmaceutical processes.     

Process Description Reference  

In vitro transcription (IVT) IVT modeling focuses on developing a more complete model that incorporates various 
complex phenomena that have not been captured by previous models. The model is 
used to described unexplained trends in the previous IVT literature and help guide 
future experiments. 

[53] 

Recombinant adeno-associated virus 
(rAAV) production 

The first models for rAAV manufacturing in mammalian and insect cell cultures were 
recently developed. 

[54,55] 

Lyophilization While models for conventional lyophilization are well established, recent extensions 
address nonconventional techniques, such as microwave-assisted and continuous 
lyophilization, and incorporate increased understanding of the freezing step. 

[56–61] 

Continuous column-based viral 
inactivation 

A model for a novel and low-cost continuous viral inactivation system was recently 
developed. 

[62] 
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and novel observers. An example of the former is the use 
of real-time thermal imaging and a Luenberger observer 
to estimate the amount of frozen material in a vial during 
cell thawing, which is the last processing step in cell 
therapy [90]. An example of the latter is the design of a 
sliding mode observer for estimating the net growth rate 
and the glucose consumption rate in continuously per
fused HEK-293 cell cultures [91]. 

State estimation is gaining increasing interest for appli
cation to process monitoring and control in 

pharmaceutical manufacturing. Although the primary 
aim of state estimation is to estimate unmeasured states, 
a state observer can also be used for other purposes, such 
as filtering sensor noise, reducing the effects of plant- 
model mismatch on model predictions, and estimating 
parameters. Future state estimation studies could focus 
more on these three aspects. First, applications to 
emerging biotherapeutics such as mRNA vaccines 
should be considered, as most of their states cannot 
currently be measured in real time. Second, future stu
dies on observer design should more explicitly take the 

Figure 3  

Current Opinion in Chemical Engineering

Model-based optimization and control of pharmaceutical processes. (a) Workflow for model development. Green arrows indicate the path after 
successful completion of a stage, while red arrows show the path if a stage is unsuccessful. Model formulation is the first stage of the workflow and is 
followed by model calibration with experimental data (i.e. parameter estimation) and by model validation. A validated model can be used for model- 
based optimization, state estimation, and/or control. Model development is an iterative procedure in which failure (red arrows) in calibration or 
validation leads to additional steps of model reformulation and/or experimental data collection. Model-based design of experiments can optionally be 
used at any stage to design experiments that target a specific goal (e.g. increasing model precision). (b) Use of state estimation for supporting process 
monitoring and control, demonstrated through an illustrative example in recombinant adeno-associated virus (rAAV) manufacturing. Dotted lines 
indicate information flow. GFP = green fluorescent protein.   
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effects of uncertainties in the model and its initial con
ditions into account. Many recent studies have assumed 
that the initial states are all perfectly known during the 
observer design, which is not true for most (bio)phar
maceutical processes. This deviation can significantly 
slow the convergence of the estimated states [90], re
sulting in poorly performing process monitoring and 
control. Finally, by carefully considering the mathema
tical structure of the model and observer, some advances 
in observer design, for example, fast MHE [92], could be 
used for more efficient and robust state estimation. 

Control 
In pharmaceutical manufacturing, maintaining the pro
duct critical quality attributes (CQAs) within target values 
is of utmost importance. Regulatory agencies have re
cently emphasized that implementing active control of 
CQAs through feedback control enhances the robustness 
and reliability of control strategies [12,93]. However, 
pharmaceutical processes are still predominantly operated 
in open loop with respect to product quality variables due 
to significant challenges in obtaining online measure
ments of the CQAs and addressing complex process dy
namics, disturbances, and model uncertainties. Recent 
progress in PAT for online measurement of critical pro
cess variables and in active process control is changing 
this paradigm [6,94,95]. In past years, model-based con
trol has been applied to several pharmaceutical unit op
erations taken in isolation, such as reactors and 
crystallization [15]. While implementation on integrated 
unit operations are not as mature, plant-wide MPC of a 
pharmaceutical process has been demonstrated in a non
linear simulation for end-to-end continuous pharmaceu
tical manufacturing [95]. High-performance control of the 
CQAs was demonstrated, even in presence of significant 
model uncertainties and disturbances. Although plant- 
wide MPC has not yet been implemented on a pharma
ceutical manufacturing plant in industry, industrial im
plementations of model-based control systems have been 
demonstrated for drug product manufacturing [96]. The 
use of MPC was successfully demonstrated in a con
tinuous feeding–blending process for rejecting feeder 
fluctuation disturbances, which is intrinsically a challen
ging control problem [97]. Advanced MPC algorithms 
have been demonstrated in academic studies. For ex
ample, nonlinear MPC was recently validated in in
tegrated roll compaction and ribbon milling unit 
operations within a continuous dry granulation line [98]. 
Better control of mass throughput and output ribbon solid 
fraction was achieved by the nonlinear MPC than for a 
classical control system. The MPC was based on a hybrid 
model, combining a mechanistic compartment for roll 
compaction with an artificial neural network for milling. 
Model-based control was also a key enabler for the in
tegration of a crystallizer with a drop-on-demand tech
nology that exploits 3D printing for manufacturing solid 
dosage forms from a liquid formulation [99]. Continuous 

connection of the crystallizer with the drop-on-demand 
platform was established through a three-phase settler, 
designed to achieve a suspension with controlled con
centration of active pharmaceutical ingredient crystals. A 
case study on continuous manufacturing of the drug lo
mustine demonstrated that the integrated platform could 
produce dosages presenting the target dose and dissolu
tion profile. The proposed process has the potential to 
replace traditional granulation lines, and the associated 
powder handling issues, for certain applications. Addi
tional applications of MPC and real-time optimization to 
pharmaceutical unit operations are documented for con
tinuous integrated filtration, washing and drying, and 
crystallization slurries [100]. An experimentally validated 
simulator was recently developed and made publicly 
available for benchmarking novel control systems for 
these unit operations, including model-free, model-based, 
and state estimation implementations [101]. These ex
amples showcase significant progress in model-based 
control of drug product manufacturing and of con
tinuously integrated pharmaceutical unit operations. On 
the biologics side, recent progress toward the transition to 
continuous and perfusion implementations of bio
pharmaceutical processes offer opportunities for model- 
based control, especially considering recently developed 
platforms for automated continuous manufacturing of 
protein-based biopharmaceuticals, such as monoclonal 
antibodies [102,103]. During the development of a con
tinuous end-to-end platform for monoclonal antibodies 
manufacturing, process models of the chromatography 
steps in the downstream section were developed and 
used for supporting the in silico design of the control 
system [104]. MPC was physically implemented in a 
continuous viral inactivation system for biologics derived 
from mammalian cultures [62]. Tight pH control and 
minimum residence time were achieved through MPC 
and Bayesian estimation. For both small-molecule and 
biologic drug manufacturing, future work should focus on 
further expanding model-based control studies towards 
the final goal of validating plant-wide MPC. 

Outlook 
The application of model-based methods for the opti
mization and control of pharmaceutical processes is 
broadly acknowledged as the future and has corre
spondingly received significant commitment from aca
demic, industrial, and regulatory stakeholders. Many 
efforts by industry and academia are continuing to bear 
fruit (e.g. see Ref. [105]). Nonetheless, the successful 
realization of model-based methods across the sector can 
be challenging due to various reasons, such as technical 
limitations (e.g. lack of sensors to measure certain pro
cess variables rapidly or inefficiency of numerical 
methods for some classes of models) and inexperience 
with incorporating modeling into the process develop
ment workflow (e.g. inadequate co-ordination between 
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modeling and experimental teams leading to insufficient 
or low-quality data being generated for model devel
opment). 

Considering the uptick in the application of model- 
based strategies for pharmaceutical processes both in 
academia and industry and the rapid pace of develop
ment in ancillary technologies, it is clear that there is 
significant momentum, and it is likely model-based 
methods for optimization and control will become the 
norm. However, continued work, both in developing 
new technologies (such as those outlined in Ingredients 
for optimization and control) and strengthening organiza
tional/manpower capabilities is necessary as there are 
still many challenges to be overcome. Collaborative ef
forts such as industry–regulatory–academic partnerships 
and precompetitive consortia (e.g. see Refs. [106,107]) 
are potentially useful platforms for derisking the devel
opment of necessary technologies and establishing 
sector-wide best practices. 
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