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H I G H L I G H T S

First identifiability analysis for Multiphase Porous Electrode Theory-based models.
The analysis is carried out for discharge data from a lithium iron phosphate battery.
The analysis identifies which parameters cannot be estimated from the data.
The lack of identifiability is explained in terms of the battery physics.
Approaches are proposed for removing the lack of parameter identifiability.
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A B S T R A C T

Porous electrode theory (PET) is widely used to model battery dynamics by describing electrochemical kinetics
and transport in solid particles and electrolyte. Standard PET models rely on black-box descriptions of the
thermodynamics of active materials, typically obtained by fitting an open-circuit potential which does not allow
for a consistent description of phase-separating materials. Multiphase PET (MPET) was recently developed to
describe batteries using white- or gray-box descriptions of the thermodynamics with additional parameters that
need to be estimated from experimental data. This work analyzes the identifiability of parameters in the MPET
model, including the standard kinetics and diffusion parameters, as well as MPET-specific parameters for the
free energy of active materials. Based on synthetic discharge data, both linearized and nonlinear identifiability
analyses are performed for an MPET model of a commercial Lithium Iron Phosphate/Graphite battery, which
identify which model parameters are not identifiable and which are identifiable only with large uncertainty.
The identifiable parameters control phase separation, reaction kinetics, and electrolyte transport, but not solid
diffusion, consistent with rate limitation by intercalation reactions at low rates and by electrolyte diffusion at
high rates. The article also proposes approaches for reducing parameter identifiability issues.
1. Introduction

Lithium-ion batteries are the leading technology for energy storage
for a huge range of devices (e.g., laptops, cell phones, electric vehicles),
and for smart grid applications [1,2]. Several lines of research focus
on optimizing battery design and management to enable fast charging,
minimize degradation, and improve safety, with the final goal of im-
proving the end-user experience [3–6]. Optimization and management
tasks typically leverage mathematical models of the battery [7–9].
Depending on the specific task, physics-based models of different levels
of complexity may be required, ranging from simplified, equivalent
circuit models to complex, electrochemical based models [10–13].
Moreover, data-driven models are also gaining attention in the liter-
ature [14–16], including for the modeling and prediction of battery
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performance degradation [13,17–19]. Physics-based and data-driven
modeling approaches can also be combined as proposed in [20]. Among
physic-based models, Porous Electrode Theory (PET) represents a well
consolidated modeling tool [21]. PET models electrochemical kinetics
at the solid-electrolyte interfaces in porous electrodes, with transport
at the continuum scale and particle reactions and diffusion at the
mesoscale. This description involves a set of parameters, whose values
are typically determined by regressing the model parameters over
experimental charge/discharge data [22–24]. On the other hand, the
thermodynamics is modeled by an algebraic function for the open-
circuit potential which is directly fit to experimental data, with a
black-box approach.
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In general, when dealing with a parameter estimation problem, it
is important to quantify the extent for which model parameters can be
estimated from the available data, to be able to make conclusions based
on the model parameters and to quantify uncertainties in the model
predictions. This quantification can be formalized by carrying out a
parameter identifiability analysis. Broadly speaking, a parameter is said
o be unidentifiable if several different values of the parameter produce

very similar model outputs. Moreover, parameter (un)identifiability
may be related to the values of the other model parameters. Sev-
eral works in the literature investigate the identifiability issue from
a structural [25,26] or a practical perspective [25,27–29], focusing on
different model families (e.g. equivalent circuit [28] or single-particle
models [30]), and on different battery chemistries (e.g., LiFePO4 [29],
NCA [31], LiCoO2 [32]). The identifiability analysis for the PET model
has been carried out [29,31], with Ref. [31] proposing a nonlinear,
global identifiability analysis employing a Monte Carlo Markov Chain
(MCMC) approach [33,34] and a nonlinear local analysis carried out by
direct inspection of two and three-dimensional parameter confidence
regions [35].

While PET represents a standard in lithium-ion battery modeling,
recent works underline that it is not completely suitable to describe
thermodynamics of multiphase active materials, due to the black-box
approach adopted to model thermodynamics. For this reason, PET was
recently extended to form Multiphase PET (MPET), [36–38], which
adopts a white- or gray-box description of the system thermodynamics,
thus enabling a description of multiphase phenomena. The main aim of
this article is to perform a detailed local identifiability analysis for an
MPET model of Lithium Iron Phosphate (LFP) batteries. The analysis is
based on both a linearized approach, and a local nonlinear analysis of
identifiability of couples and triplets of parameters by visual inspection
of confidence regions. While the former approach is less computation-
ally expensive, and represents a standard, baseline approach in the
literature, the latter is typically more suitable for highly nonlinear
systems as electrochemical models, and provides further insight into
the identifiability. Following the main contribution, the analysis pays
particular attention to the parameters defining the thermodynamic
behavior of active materials. Standard transport and kinetics parame-
ters are also included in the analysis, which is performed by relying
on an MPET model of A123 System’s APR18650M1A Lithium Iron
Phosphate (LFP) batteries, to ensure relevance of the results to practical
applications.

The paper is organized as follows: Section 2.1 provides background
on MPET and its relationship to PET; Section 2.2 summarizes the
parameter identification methodology, while Section 2.3 summarizes
linear and nonlinear approaches for parameter uncertainty quantifica-
tion. The methodology adopted in this article to examine parameter
identifiability is discussed in Sections 2.4 and 2.5. The results of the
analysis are presented in Section 3, and further discussed in Section 4.
Finally, Section 5 summarizes the main findings of this work.

2. Materials and methods

2.1. Multiphase porous electrode theory

Lithium-ion batteries are typically built using two porous electrodes
and a porous separator between them. Each porous electrode consists
of several different materials including electrolyte and active material
intercalation, binder and conductive additive. During discharge, the
lithium contained in the active material of the negative electrode
migrates towards the active material of the positive electrode, while
undergoing several transport and electrochemical reaction processes.
PET [21] represents a well-established approach to model this com-
plex dynamic behavior. In PET, the behavior of the active material is
treated by modeling a single representative particle for each electrode,
while transport of lithium ions between active particles in the elec-
trolyte is described by Stefan–Maxwell concentrated solution theory.
2
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In each electrode, solid active material and electrolyte are coupled
by Butler–Volmer (BV) kinetics. Finally, solid transport is modeled as
Fickian diffusion. Typically, PET models fall in the category of pseudo-
two-dimensional (P2D) models, where the position between the two
metal contact points on the opposite sides of the battery represent the
main dimension, while the distance from the center of a solid particle
represents the second, ‘‘pseudo’’ dimension.

A number of software implementations are currently available [39–
46]. Among these, some [43,44] are based on freely available mod-
eling languages, while others [45,46] require commercial software or
modeling languages.

While PET has been developed and tested for a variety of battery
materials, it relies on empirical models of the thermodynamics of the
active materials, typically obtained by fitting one or more Open Cir-
cuit Voltage (OCV) versus State Of Charge (SOC) measurements. This
model does not allow the description of active materials with multiple
stable phases, except by empirical modifications, such as artificial
‘‘shrinking core’’ [47] or ‘‘shrinking annulus’’ [48] phase morpholo-
gies, which unavoidably mask the true thermodynamic behavior of
intra-particle [49–57] and inter-particle [38,58–60] phase separation.
Recently, MPET [36,37] was developed to model multiphase materials
by modeling the free energy functional, rather than the voltage directly,
and consistently defining electrochemical activities, overpotentials, and
reaction rates [61]. MPET also improves the description of the solid-
state dynamics by relying on multiple, interacting particles, placed both
along the length of the electrode and also in parallel with each other in
terms of electrolyte access. Size and conductance values of individual
particles are drawn from suitable lognormal distributions. Moreover,
several particle shapes (spheres, cylinders, or rectangular approxima-
tion of platelet particles, reacting on the b plane only) and active
particle models (e.g., homogeneous, Allen–Cahn or Cahn–Hilliard Reac-
tion models [61–63]) can be considered for the two electrodes [36,61].
In addition, MPET also allows several choices of reaction kinetics,
ranging from the empirical Butler–Volmer typically adopted in PET,
to Marcus theory of electron transfer and its generalizations [64–67].
Finally, the electrolyte can be specified either as a dilute model or
using a full Stefan–Maxwell concentrated solution theory [36]. Many
experiments involving optical or X-ray imaging have directly validated
this modeling approach [37,38,49–61,68], which is freely available to
the public as a Python software. Specifically, the details of the Python
implementation of MPET are discussed in [36], where all the equations
are provided in full. The software is also provided open source to the
public at https://github.com/TRI-AMDD/mpet.

2.2. Parameter estimation: Maximum a posteriori and maximum likelihood

Consider a source of experimental data 𝐲 given by

𝐲 = (𝜽∗) + 𝝐 (1)

where 𝜽∗ is the true, unknown value of the parameter of the system ,
and 𝝐 is stochastic measurement noise. Due to the stochastic nature of
𝝐, experimental data needs to be treated as realizations of a (vector)
random variable 𝐘. In turn, when trying to estimate the value of 𝜽∗,
the model parameter 𝜽 is also treated as a (vector) random variable.
Both 𝐘 and 𝜽 are therefore characterized by suitable Probability Density
Functions (PDFs).

Given a set of observations for 𝐘 and any available prior information
bout the parameters 𝜽, Bayesian inference relates the joint distribution
f parameters and experimental data, conditioned over experimental
ata, 𝑃 (𝜽|𝐘), to the distribution of parameters 𝑃 (𝜽) by means of Bayes
heorem [33]:

(𝜽|𝐘) = 𝑃 (𝐘|𝜽)𝑃 (𝜽)
𝑃 (𝐘)

(2)

where 𝑃 (𝐘|𝜽) is the joint distribution of parameters and experimental
ata, conditioned over parameters, 𝑃 (𝐘) is the distribution of exper-
mental data, 𝑃 (𝜽|𝐘) is the posterior distribution, 𝑃 (𝜽) is the prior

https://github.com/TRI-AMDD/mpet
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Fig. 1. Schematic of the MPET model for a LFP/graphite cell during discharge.
distribution, and 𝑃 (𝐘|𝜽) is the likelihood. The term 𝑃 (𝐘) is a normaliz-
ing constant to ensure (2) integrates to 1. Maximum A Posteriori (MAP)
estimation sets 𝜽∗ as the value that maximizes the posterior probability:

�̂�𝑀𝐴𝑃 = argmax
𝜽

𝑃 (𝜽|𝐘). (3)

When no prior information about parameters is available, 𝑃 (𝜽) can
be set to a constant, non-informative value. In this case,

𝑃 (𝜽|𝐘) ∝ 𝑃 (𝐘|𝜽) (4)

and maximization of the posterior distribution corresponds to maxi-
mization of the likelihood function. The parameter estimate for this
Maximum Likelihood (ML) approach is given by

�̂�𝑀𝐿 = argmax
𝜽

𝑃 (𝐘|𝜽). (5)

Assume that 𝝐 ∼  (0,𝐕𝝐), that is, the measurement noise is
white, zero-mean, and normally distributed with covariance matrix
𝐕𝝐 . In particular, for independent noise acting on each output, the
covariance matrix 𝐕𝝐 is diagonal with 𝐕𝝐𝑖,𝑖 = 𝜎2𝜖𝑖 . As typical in the liter-
ature, the measurement noise is assumed to be independent, identically
distributed. Then the likelihood function can be expressed as [33]

𝑃 (𝐘|𝜽) =
𝑁𝑑
∏

𝑗=1

1
√

2𝜋𝑁𝑦 det(𝐕−1
𝝐 )

exp
(

−1
2
(𝐲𝑗 − �̂�𝑗 (𝜽))⊤𝐕−1

𝝐 (𝐲𝑗 − �̂�𝑗 (𝜽))
)

(6)

where �̂�𝑗 (𝜽) is the model prediction for the 𝑗th experimental obser-
vation 𝐲𝑗 based on the parameter 𝜽, 𝑁𝑑 is the number of available
experimental data, 𝑁𝑦 is the dimension of 𝐘, and superscript ⊤ is the
matrix transpose.

Due to its monotonicity, a logarithmic transformation can be ap-
plied to compute the log-likelihood, which can be maximized in place of
the standard likelihood function [33]:

�̂�𝑀𝐿 = argmax
𝜽

ln(𝑃 (𝐘|𝜽)) (7)

= argmin
𝜽

−2 ln(𝑃 (𝐘|𝜽)) (8)

= argmin
𝜽

𝑁𝑑 ln(2𝜋
𝑁𝑦 det(𝐕−1

𝝐 ))+ (9)

+
𝑁𝑑
∑

(

(𝐲𝑗 − �̂�𝑗 (𝜽))⊤𝐕−1
𝝐 (𝐲𝑗 − �̂�𝑗 (𝜽))

)

3

𝑗=1
= argmin
𝜽

𝑁𝑑
∑

𝑗=1

(

(𝐲𝑗 − �̂�𝑗 (𝜽))⊤𝐕−1
𝝐 (𝐲𝑗 − �̂�𝑗 (𝜽))

)

(10)

=∶ argmin
𝜽

𝐽𝑀𝐿(𝜽) (11)

In this particular case, the maximum likelihood estimate coincides with
Least Squares (LS), that is [33],

�̂�𝐿𝑆 = argmin
𝜽

𝑁𝑑
∑

𝑗=1

(

(𝐲𝑗 − �̂�𝑗 (𝜽))⊤(𝐲𝑗 − �̂�𝑗 (𝜽))
)

. (12)

2.3. Uncertainty analysis

The methodology discussed in Section 2.2 allows the determination
of a parameter estimate based on experimental observations. Once a
parameter estimate is available, it is advisable to quantify the uncer-
tainty associated with the parameter estimate. This can be achieved by
computing confidence regions for the parameter estimates, as discussed
in this section.

2.3.1. Linearized sensitivity analysis and confidence regions
For a model that is linear in the parameters 𝜽 with measurement

noise that is normally distributed, the uncertainty affecting a parameter
estimate (e.g., �̂�𝑀𝐿) can be characterized by computing a hyperellip-
soid [33,35]. A widely used method for estimating the uncertainty in
parameters in a nonlinear model is to replace the nonlinearity (1) by a
first-order Taylor expansion, e.g.,

�̂�𝑗 (𝜽) ≈ �̂�𝑗 (�̂�
𝑀𝐿) + 𝐅𝑗 (�̂�

𝑀𝐿)(𝜽 − �̂�𝑀𝐿) (13)

where the sensitivity matrix is given by

𝐅𝑗 (�̂�
𝑀𝐿) = 𝐽𝜽(�̂�𝑗 (𝜽))

|

|

|

|𝜽=�̂�𝑀𝐿
(14)

where 𝐽𝜽 refers to the Jacobian operator. The sensitivity matrix can be
computed with finite differences, a forward sensitivity analysis, or an
adjoint sensitivity analysis for all observed outputs and parameters.

The confidence region approximation 𝛩𝛼 is then given by the hy-
perellipsoid [69]:

𝛩𝛼 =
{

𝜽 ∶
(

𝜽 − �̂�𝑀𝐿)⊤
𝐕−1

(

𝜽 − �̂�𝑀𝐿) ≤ 𝜒2 (1 − 𝛼)
}

(15)
𝜽 𝑁𝑝
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where 𝜒2
𝑁𝑝

is the chi-squared distribution with 𝑁𝑝 degrees of freedom,
𝑁𝑝 is the number of parameters, 𝛼 is the level of significance, and the
parameter covariance matrix is given by

𝐕−1
𝜽 =

𝑁𝑑
∑

𝑗=1
𝐅⊤
𝑗

(

�̂�𝑀𝐿)𝐕−1
𝝐 𝐅𝑗

(

�̂�𝑀𝐿) (16)

Sensitivity analysis can also be used to reduce the dimension of the
parameter space by establishing statistical significance with a sensitiv-
ity cutoff. The sensitivity of the chosen cost function (e.g., 𝐽𝑀𝐿(𝜽)) with
respect to each candidate parameter is used to evaluate the impact of
parameter variations. As discussed above, for models that are nonlinear
in the parameters, the analysis can be based on its linearization around
an interesting point of the parameter space [16,35,70,71].

2.3.2. Nonlinear confidence regions
While the above formulation is appropriate for linear or nearly

linear systems, a linearized sensitivity analysis can produce mislead-
ing results for highly nonlinear systems, such as the electrochemical
system investigated in this work. In order to provide a meaningful
description of the uncertainty affecting parameter estimates, a more
general approach should be applied. For the ML estimation introduced
in Section 2.2 with normally distributed zero-mean noise, 𝐽𝑀𝐿(𝜽) has
a 𝜒2 distribution, i.e.,

𝜒2(𝜽) =
𝑁𝑑
∑

𝑗=1

(

(𝐲𝑗 − �̂�𝑗 (𝜽))⊤𝐕−1
𝝐 (𝐲𝑗 − �̂�𝑗 (𝜽))

)

= 𝐽𝑀𝐿(𝜽). (17)

The nonlinear confidence region 𝛩𝛼 is described by all 𝜽 that satisfy
the inequality

𝛩𝛼 =
{

𝜽 ∶ 𝜒2(𝜽) − 𝜒2
(

�̂�𝑀𝐿)≤ 𝜒2
𝑁𝑝

(1 − 𝛼)
}

, (18)

and can be mapped by evaluating 𝜒2(𝜽) over a grid of values in the
parameter space.

For nonlinear models, the shape of 𝛩𝛼 may not be ellipsoidal and
strongly depends on the significance level 𝛼. To obtain a quantitative
understanding of the shape, the procedure can be repeated for different
values of 𝛼, e.g., 0.01, 0.05, 0.1, which correspond to 99%, 95% and
90% confidence regions, respectively. In contrast, the linearization
approach produces an ellipsoidal confidence region that can be highly
inaccurate and misleading for the purpose of identifiability analyses.
Any approach for the accurate computation of 𝛩𝛼 for a nonlinear model
comes at the price of a higher computational complexity. Specifically,
a high number of model evaluations may be required if the parameter
space is large. Such function evaluations are independent on each
other, however, and can be easily performed in parallel to reduce
computational cost.

2.4. Identifiability analysis

Before carrying out parameter identification for a complex, non-
linear model, a parameter identifiability analysis should be performed
to determine whether the model structure, noise level, and operating
regime allow the parameters to be estimatable from the available
experimental data. In particular, a parameter is said to be identifi-
able if univocally estimable from the experimental data. When not
identifiable, the parameter is said to be unidentifiable. Parameter uniden-
tifiability can be classified based on its origin: structural unidentifiability
in which parameter groupings in the set of modeling equations cannot
be solved uniquely, and practical unidentifiability in which regression to
experimental data leads to non-unique results [35]. While structural
unidentifiability is strictly related to the choice of the model struc-
ture, practical unidentifiability depends on both model structure and
informativity of the available dataset.

Practical identifiability of a parameter can be assessed by verifying
that its confidence region is finitely bounded. If not, the parameter is
4

practically unidentifiable, and an unbounded set of parameter values
can describe the experimental data within desired level of confidence.
The techniques in Sections 2.3.1 and 2.3.2 allow the computation of
linear and nonlinear confidence regions, and can be exploited to study
parameter identifiability. When investigating parameter identifiability
for a nonlinear model, the linearized approach in Section 2.3.1 may not
be suitable, as the resulting confidence region can be highly inaccurate
and misleading.

As an example, consider a nonlinear model with 𝜽 ∈ R2. Two-
imensional contour plots of 𝜒2(𝜽) − 𝜒2(𝜽∗), and the nonlinear confi-
ence regions 𝛩𝛼 in Figs. 2 illustrate four distinct cases:

• The confidence region is finitely bounded, i.e., both parameters
𝜃1 and 𝜃2 are identifiable (Fig. 2(a)). A linearized analysis would
produce reasonable results, and the 𝜒2 function is strictly convex
and characterized by a unique optimizer.

• The parameter 𝜃1 is identifiable and the parameter 𝜃2 is uniden-
tifiable (Fig. 2(b)). The confidence region is bounded only in the
𝜃1 direction. The 𝜒2 function is not convex and admits infinitely
many minima. The confidence region obtained by linearization
at any point along the chi-squared minimum is inaccurate (either
has an upper and lower bound on 𝜃2, or has no bounds on 𝜃2).
Moreover, numerical optimization may produce very different
results, depending on the initial guess for the parameter.

• Both parameters are globally unidentifiable, as the confidence
region is unbounded on both sides (Fig. 2(c)). As in the previous
case, the 𝜒2 function is non-convex, and admits infinitely many
minima that lie within the bounds of the confidence region.
Specifically, the confidence region assumes a banana-like shape.
This scenario is particularly critical if a linearized analysis is
carried out, since the resulting sensitivities are heavily dependent
on the linearization point. For example, linearization around
point A would result in strong sensitivity along the 𝜃1 direction,
but a very low sensitivity in the 𝜃2 direction. In contrast, lin-
earization around point B would result in strong sensitivity along
the 𝜃2 direction, but a very low sensitivity in the 𝜃1 direction.
For both linearization points, the parameters would appear as
being locally identifiable. Moreover, numerical optimization at
any initial guess would converge to a point on the minimum curve
that would locally appear to be minimum over 𝜃1 for fixed 𝜃2 and
locally appear to be minimum over 𝜃2 for fixed 𝜃1.

• Both parameters are unidentifiable (Fig. 2(d)). The confidence
region is unbounded on both sides, and the 𝜒2 function admits
infinitely many minima.

.5. Identifiability methodology

In this work, a local identifiability analysis is performed for syn-
hetic data generated by an MPET model of A123 System’s
PR18650M1A Lithium Iron Phosphate (LFP) batteries [72]. Specific
etails of the MPET modeling are given in Section 3.1. The synthetic
ata includes Gaussian distributed measurement noise, with zero mean
nd known standard deviation. In this way, both 𝜽∗ and 𝜎𝜖 are known.
nowing the ‘‘ground truth’’ used to construct the data enables insights

o be gained into potential biases occurring during parameter estima-
ion, which would be less evident if the methodology was directly
pplied to experimental data (i.e., without knowledge of 𝜽∗ and 𝜎𝜖).
he parameter estimation is based on the ML approach summarized

n Section 2.2, and is performed on a logarithmic basis of 𝜃. This
s a standard approach used to improve numerical convergence for
arameters that can change by many orders of magnitude [35].

The identifiability analysis consists of four steps:

1. A linearized sensitivity analysis is performed around 𝜽∗ to give a
preliminary evaluation of the impact of each parameter varia-
tion on the battery output voltage, which is used as dependent

variable for parameter estimation. This approach is commonly
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Fig. 2. Example chi-squared distributions for (a) a pair of identifiable parameters, (b) one unidentifiable and one identifiable parameters, (c) a pair of globally unidentifiable
parameters that are locally identifiable, and (d) a pair of simultaneously unidentifiable parameters. The chi-squared minimum is the manifold of parameter values that minimize
the chi-squared function.
applied in the Li-ion battery literature [22,24,73], and works as
a baseline identifiability analysis. Sensivity is quantified by the
Cumulative Absolute Sensitivity (CAS),

CAS𝑘 =
𝑁𝑑
∑

𝑗=1
|𝐅𝑗,𝑘|, (19)

where 𝐅𝑗,𝑘 is the 𝑘th element of the sensitivity matrix of the 𝑗th
experimental observation 𝐅𝑗 . The sensitivities are computed via
central finite difference approximation, relying on three different
differentiation step sizes for sake of comparison. Moreover, a
local uncertainty quantification is performed, based on results
derived from the linearized sensitivity.

2. A two-dimensional nonlinear confidence region mapping is per-
formed for all possible combinations of two parameters. Param-
eters not belonging to the couple under investigation are set
to their true values. This thorough mapping allows to provide
further insight and classify couples of parameters according to
the taxonomy discussed with Fig. 2.

3. A three-dimensional nonlinear confidence region mapping is per-
formed for all possible combinations of three parameters. Param-
eters not belonging to the triplet under investigation are set to
their true values. Due to the high number of parameters, this
step only focuses on those parameters which always resulted
in identifiable couples, based the previous step of the analysis.
This further step of the analysis allows to study parameter
identifiability when triplets of parameters are identified at the
same time.

Remark. The analysis based on two- or three-dimensional nonlinear
confidence region mapping facilitates investigation of local identifi-
ability issues, respectively. This approach produces highly detailed
visualizations of the shape of the confidence regions, which are not pro-
vided when applying tools for global analysis, such as MCMC methods,
to systems with more than three parameters [31].

2.6. Interpreting identifiability

Broadly speaking, a parameter is said to be practically unidentifiable
if the same model output is generated for different values of the
parameter. From a physical perspective, this may occur if e.g., the
part of the battery dynamics controlled by the parameter under in-
vestigation is limited by other factors. As an example, in case of
reaction-limited dynamics, parameters related to diffusion may be prac-
tically unidentifiable, while, in the opposite case of diffusion-limited
dynamics, parameters related to reaction may be practically unidenti-
fiable. Another possible situation leading to practical unidentifiability
involves parameters simultaneously affecting the model output in the
same way. In this scenario, it is not possible to correctly separate the
effect of each of the parameters on the model output. This effect can
be demonstrated by the ‘‘resistances in series’’ case study, analyzed and
discussed in detail in [31].
5

Fig. 3. Comparison of experimental data and MPET-predicted discharge curve at a
C-rate of 4C.

Table 1
Nominal parameter values (𝜽∗

𝑖 ), lower bounds (𝜽𝑙𝑏,𝑖), and upper bounds
(𝜽𝑢𝑏,𝑖) adopted for parameter estimation and identifiability analysis.

Parameter ln𝜽∗
𝑖 ln𝜽𝑙𝑏,𝑖 ln𝜽𝑢𝑏,𝑖

𝛺𝑎
𝑎 −20.4765 −21.7775 −19.1755

𝛺𝑎
𝑏 −20.0393 −21.3403 −18.7382

𝜅𝑎 −6.39794 −7.69897 −5.09691
𝐷𝑎 −11.9031 −20.301 −9.69897
𝑘𝑎0 2.09325 −0.30103 3.30103
𝑅𝑎

film −2.01812 −5.30103 −1.69897

𝛺𝑐
𝑎 −19.7314 −21.0325 −18.4304

𝜅𝑐 −9.29975 −10.6008 −7.99872
𝐵𝑐 8.2824 6.98137 9.58343
𝐷𝑐 −18.2757 −20.301 −9.69897
𝑘𝑐0 −0.533281 −2.30103 2.30103
𝑅𝑐

film −2.0019 −5.30103 −1.69897

𝐷𝑒
+ −9.46884 −11.301 −7.69897

𝐷𝑒
− −8.53187 −11.301 −7.69897

3. Results

This section applies the methodology in the previous section to a
specific case study.

3.1. Case study

This work examines the parameter identifiability of an MPET model
of A123 System’s APR18650M1A LFP batteries [72]. The cells are
characterized by a nominal capacity of 1.1 A/h, and a charge cutoff
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Fig. 4. Comparison of MPET-generated, nominal and noise-corrupted discharge curves
at a C-rate of 4C.

voltage of 3.6 V. Further details of the case study can be found in [17].
Details regarding the corresponding MPET model are given in the
reminder of this section. A schematic of the MPET model is shown in
Fig. 1.

Anode, cathode and separator thicknesses are set to 38, 79, and
25 μm, respectively. Volume loading percents of active material for
anode and cathode are 0.9 and 0.84, respectively. The anode, cathode
and separator have porosities of 0.377, 0.421, and 0.304, respectively,
and the associated Bruggeman exponents are −1.341, −1.8125, and
−2.3435. The anode and cathode have a bulk conductivity of 0.04 S and
2.077 S.

Anode, cathode, and separator are discretized in 10 volumes, and
10 representative particles are used for each volume. Graphite particles
in the anode are modeled as cylindrical, with radii drawn from a
lognormal distribution with mean of 273 nm and standard deviation
of 10.73 μm. The cylinder height is set to 20 nm; a Cahn–Hilliard
Reaction model [61] is assumed for the anode particles [36,56,57].
Moreover, anode particles are characterized by a conductance value
drawn from a lognormal distribution, with mean of 114.7 nS and
standard deviation of 0.1 nS. Particles in the cathode are modeled as
rectangular (approximating platelet in shape), with thickness of 20 nm
and main dimension drawn from a lognormal distribution with mean
and standard deviation of 11.01 and 10.13 nm; an Allen–Cahn Reaction
model [61] is assumed for the cathode particles [36,50–53]. Moreover,
cathode particles are characterized by a conductance value drawn from
a lognormal distribution, with mean of 9.23 nS and standard deviation
of 0.1 nS. Butler–Volmer kinetics with an associate film resistance is
considered for both electrodes. The functional forms defining the chem-
ical potential of anode and cathode active materials (LiC6 and LiFePO4)
are reported in Appendix. The electrolyte follows a dilute solution
model, with an initial concentration of 1.077 kmol∕m3. The values of
parameters subject to identifiability analysis are reported in Table 1.
The MPET model parameters were obtained by combining values from
the literature and results of a parameter estimation procedure based
on experimental charge and discharge curves in the range [1, 10]C. The
parameters were selected to closely fit a specific 4C discharge curve
from [17], as depicted in Fig. 3. This last step ensures the existence of
a set of parameters that closely fit real experimental data, and allows
to study identifiability in absence of model bias. Then, a 4C discharge
is simulated with the MPET model, and corrupted with zero mean,
white measurement noise, characterized by a standard deviation of
𝜎𝜖 = 10 mV. Fig. 4 depicts both the original and the noise-corrupted
discharge curves. In this work, the parameter identifiability analysis is
based on a set of 364 samples from the noise-corrupted 4C discharge
curve.
6

Table 2
Cumulative absolute sensitivities of voltage 𝑉 to parameter variations of
0.1%, 0.5%, and 1% of the logarithm of the nominal parameter values
ln𝜽∗

𝑖 .

Cumulative absolute sensitivity

Parameter 0.1% 0.5% 1%

𝛺𝑎
𝑎 7.3311 7.4186 7.7352

𝛺𝑎
𝑏 154.7781 155.4275 157.664

𝜅𝑎 0.044269 0.014853 0.011143
𝐷𝑎 0.93224 0.93628 0.9466
𝑘𝑎0 15.6501 15.7321 15.7675
𝑅𝑎

film 147.3171 147.255 147.3863

𝛺𝑐
𝑎 376.7667 373.6268 392.181

𝜅𝑐 1.8067 1.809 1.8197
𝐵𝑐 0.36738 0.37295 0.41549
𝐷𝑐 0 0 0
𝑘𝑐0 14.0113 14.2264 14.1967
𝑅𝑐

film 1.2465 1.143 1.1449

𝐷𝑒
+ 373.9655 376.8729 397.9823

𝐷𝑒
− 0.89063 0.89653 0.90167

The analysis focuses on a set of 14 parameters, whose true value 𝜽∗
is reported in Table 1. The parameters pertaining to the anode are the
regular solution parameters 𝛺𝑎

𝑎 [J] and 𝛺𝑎
𝑏 [J], the interfacial gradient

penalty 𝜅𝑎 [J∕m], the Li solid transport coefficient 𝐷𝑎 [m2∕s], the BV
reaction rate 𝑘𝑎0 [A∕m2], and the BV film resistance 𝑅𝑎

film [m𝛺∕m2].
For the cathode, the associated parameters are the regular solution
parameters 𝛺𝑐

𝑎 [J], the interfacial gradient penalty 𝜅𝑐 [J∕m], the stress
coefficient 𝐵𝑐 [Pa], the Li solid transport coefficient 𝐷𝑐 [m2∕s], the BV
reaction rate 𝑘𝑐0 [A∕m2], and the BV film resistance 𝑅𝑐

film [m𝛺∕m2].
For the dilute electrolyte, the two transport coefficients 𝐷𝑒

+ [m2∕s] and
𝐷𝑒
− [m2∕s] are considered. Table 1 reports the intervals of the parameter

values considered as being physically meaningful in this work.
The analysis is performed for the logarithm of the parameters 𝜽,

which is a standard approach in parameter estimation procedures to
improve numerical convergence for parameters that can vary by many
orders of magnitude.

3.2. Linearized sensitivity analysis

We first consider a linearized sensitivity analysis performed around
the true parameter values 𝜽∗. Sensitivities are computed by the central
finite difference method, relying on three different step sizes (0.1%,
0.5%, and 1% of the nominal parameter value) for sake of comparison.
Results are quantified in term of CAS, as defined in (19), and reported
in Table 2. To ease comparison and ranking of CAS values, Fig. 5
depicts normalized CAS values (rescaled between 0 and 1) for each
finite difference differentiation step size. The analysis of sensitivities,
both in terms of absolute and normalized CAS, indicate that the three
step sizes produce consistent results. In particular, the cathode regular
solution parameter 𝛺𝑐

𝑎 and the electrolyte diffusivity coefficient 𝐷𝑒
+

are associated with the highest CAS values, followed by the anode
regular solution parameter 𝛺𝑎

𝑏 and anode film resistance 𝑅𝑎
film, which

exhibit about 40% of the maximum 𝐶𝐴𝑆. The two reaction rates,
𝑘𝑎0 and 𝑘𝑐0, follow in the ranking with about 5% of the maximum
CAS. About 2% of the maximum CAS is associated with the anode
regular solution parameter 𝛺𝑎

𝑎. All other parameters are associated
with lower sensitivity values. In particular, the parameter sensitivity
for the cathode solid transport coefficient 𝐷𝑐 is zero. Variations of this
parameter in a neighborhood of the nominal value does not affect the
measured output voltage for the specific experimental design.

3.3. Linearized identifiability analysis

One way to estimate the uncertainty associated with the parameter
estimates employs the linearized sensitivities, as discussed in Sec-
tion 2.3.1. In particular, (16) allows computing the parameter esti-

−1
mate precision matrix 𝐕𝜽 , the inverse of the parameter covariance
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Fig. 5. Normalized cumulative absolute sensitivities of voltage 𝑉 to parameter variations of 0.1% (blue bar), 0.5% (orange bar), and 1% (yellow bar) of the logarithm of the
nominal parameter value 𝜽∗. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Standard deviations of the logarithm of the parameter estimates 𝜽𝑖 for
the reduced parameter set (𝐷𝑐 excluded from the original set).

𝜎𝜽
Parameter ln𝜽∗

𝑖 0.1% 0.5% 1%

𝛺𝑎
𝑎 −20.4765 0.32081 0.33129 0.31307

𝛺𝑎
𝑏 −20.0393 0.12389 0.12969 0.10558

𝜅𝑎 −6.3979 2.1751 4.311 4.8909
𝐷𝑎 −11.9031 0.99492 0.98197 0.97152
𝑘𝑎0 2.0932 0.21754 0.2137 0.21462
𝑅𝑎

film −2.0181 0.078945 0.074576 0.070038

𝛺𝑐
𝑎 −19.7314 0.10134 0.10317 0.08932

𝜅𝑐 −9.2997 0.85785 0.83467 0.82232
𝐵𝑐 8.2824 1.3795 1.2836 1.0626
𝑘𝑐0 −0.53328 0.25663 0.26287 0.23977
𝑅𝑐

film −2.0019 0.90989 1.0055 0.87714

𝐷𝑒
+ −9.4688 0.087459 0.080101 0.076816

𝐷𝑒
− −8.5319 0.41912 0.41728 0.42227

matrix. Due to the zero sensitivity of voltage to the cathode stress
coefficient 𝐵𝑐 , 𝐕−1

𝜽 has a zero row and column corresponding to this
parameter, and the identifiability condition for the linearized model
(rank(∑𝑁𝑑

𝑗=1 𝐅
⊤
𝑗 𝐅𝑗 ) = min {𝑁𝑑 , 𝑁𝑝}) is not fulfilled. Consequently, the

minimum of the (linearized) ML cost function is not unique, and lies on
a manifold of the parameter space, aligned with the 𝐷𝑐 direction. Such
a parameter can be excluded from a parameter estimation procedure
by, for example, fixing its value to a constant from the literature.
Moreover, when possible, a more informative experimental design may
be sought, to improve parameter identifiability properties.

Consider now a reduced parameter set, obtained by the cathode
stress coefficient 𝐷𝑐 from the original set. Based on the sensitivities, it is
now possible to compute the parameter covariance matrix 𝐕𝜽. Table 3
summarizes the standard deviation associated with each parameter in
the reduced set, for the three finite difference steps. In this case, all
the standard deviations have finite values. As expected from the anal-
ysis of sensitivities, some parameters are associated to high standard
deviations. Specifically, the standard deviations for 𝜅𝑎, 𝑘𝑐0, 𝐵𝑐 , 𝑅𝑐

film,
are the same order of magnitude of the true parameter value; for other
parameters, the standard deviations assume values which are typically
one or two order of magnitude smaller than the corresponding true
parameter value.

3.4. Nonlinear confidence regions

While the linearized analysis performed in the previous section is
a common approach in the literature, its results can be misleading
for a highly nonlinear system such as a lithium-ion battery. When
possible, a more detailed analysis based on the full nonlinear model
7

is advised. As discussed in 2.3.2, nonlinear confidence regions can be
visually inspected by explicitly computing the chi-squared difference
𝜒2(𝜽) − 𝜒2(�̂�𝑀𝐿) over a sufficiently fine grid in the parameter space,
and plotting the results as contour plots. While this analysis can be
performed in two or three dimensions only, it provides an extremely
detailed knowledge of the confidence regions and, in turn, is able to
provide detailed insight about local identifiability properties of cou-
ples/triplets of parameters. In the subsequent analysis, 𝜒2(�̂�𝑀𝐿) is taken
as the chi-squared minimum over the considered grid in the parameter
space.

3.4.1. 2D nonlinear confidence regions
The analysis starts by considering all possible combinations of two

parameters. Parameters not belonging to the couple were set to their
true values. For each combination, the chi-squared difference is com-
puted over the parameter space defined by bounds reported in Table 1.
The chi-squared limit value, defining the boundary of confidence re-
gions, is given by 𝜒2

2 (0.95) = 5.99. Fig. 6 depicts examples of 2D
chi-squared difference plots and confidence regions. Inspection of such
plots allows the classification of couples of parameters in terms of local
identifiability in a neighborhood of the true parameter values. Table 4
summarizes the classification. The analysis of Table 4 highlights that a
group of parameters always appears as locally identifiable, regardless
of the other parameter in the couple:

𝜣𝑰
𝟐𝑫 = {𝛺𝑎

𝑎 , 𝛺
𝑎
𝑏 , 𝑘

𝑎
0, 𝑅

𝑎
film, 𝛺𝑐

𝑎, 𝑘
𝑐
0, 𝐷

𝑒
+}. (20)

The cathode interfacial gradient penalty, 𝜅𝑐 , only appears as locally
unidentifiable in combination with the anode solid transport coefficient
𝐷𝑎, while being locally identifiable in all other combinations. A group
of parameters always appears as locally unidentifiable, regardless of the
other parameter in the couple:

𝜣𝑼
𝟐𝑫 = {𝑘𝑎, 𝐵𝑐 , 𝐷𝑐 , 𝑅𝑐

film, 𝐷𝑒
−}. (21)

Finally, the anode solid transport coefficient 𝐷𝑎 is locally identifiable
only in combination with the cathode film resistance 𝑅𝑐

film or the
electrolyte diffusivity coefficient 𝐷𝑒

+, while being locally unidentifiable
in all other cases. A comparison with the results of the linearized
sensitivity analysis highlights that all the parameters associated to high
sensitivity values now appear in 𝜣𝑰

𝟐𝑫 , while parameters associated
with lower values appear in 𝜣𝑼

𝟐𝑫 . The unidentifiability of the cathode
solid transport coefficient 𝐷𝑐 , which is characterized by zero linearized
sensitivity, is confirmed by this nonlinear analysis. As an example,
Fig. 6(c) shows the chi-squared difference plot for a couple of param-
eters including 𝐷𝑐 . The chi-squared minimum lies on a line in the 𝐷𝑐

direction, as expected from the linearized analysis.
For the majority of parameters, the results of the 2D nonlinear

analysis are aligned with those from the linearized sensitivity and
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Table 4
Results of nonlinear identifiability analysis with 2D contour plots. The following notation is used for each
table entry (row,column): I = Identifiable parameter (green); U = Unidentifiable parameter (red).
Parameter 𝛺𝑎

𝑎 𝛺𝑎
𝑏 𝜅𝑎 𝐷𝑎 𝑘𝑎0 𝑅𝑎

film 𝛺𝑐
𝑎 𝜅𝑐 𝐵𝑐 𝐷𝑐 𝑘𝑐0 𝑅𝑐

film 𝐷𝑒
+ 𝐷𝑒

−

𝛺𝑎
𝑎 – I,I I,U I,U I,I I,I I,I I,I I,U I,U I,I I,U I,I I,U

𝛺𝑎
𝑏 I,I – I,U I,U I,I I,I I,I I,I I,U I,U I,I I,U I,I I,U

𝜅𝑎 U,I U,I – U,U U,I U,I U,I U,I U,U U,U U,I U,U U,I U,U
𝐷𝑎 U,I U,I U,U – U,I U,I U,I U,U U,U U,U U,I I,U I,I U,U
𝑘𝑎0 I,I I,I I,U I,U – I,I I,I I,I I,U I,U I,I I,U I,I I,U
𝑅𝑎

film I,I I,I I,U I,U I,I – I,I I,I I,U I,U I,I I,U I,I I,U

𝛺𝑐
𝑎 I,I I,I I,U I,U I,I I,I – I,I I,U I,U I,I I,U I,I I,U

𝜅𝑐 I,I I,I I,U U,U I,I I,I I,I – I,U I,U I,I I,U I,I I,U
𝐵𝑐 U,I U,I U,U U,U U,I U,I U,I U,I – U,U U,I U,U U,I U,U
𝐷𝑐 U,I U,I U,U U,U U,I U,I U,I U,I U,U – U,I U,U U,I U,U
𝑘𝑐0 I,I I,I I,U I,U I,I I,I I,I I,I I,U I,U – I,U I,I I,U
𝑅𝑐

film U,I U,I U,U U,I U,I U,I U,I U,I U,U U,U U,I – U,I U,U

𝐷𝑒
+ I,I I,I I,U I,I I,I I,I I,I I,I I,U I,U I,I I,U – I,U

𝐷𝑒
− U,I U,I U,U U,U U,I U,I U,I U,I U,U U,U U,I U,U U,I –
Fig. 6. Local confidence regions for sets of two parameters in 𝜽, where the parameters excluded from each plot are set to their true value. The chi-squared limit value, defining
the boundary of the confidence regions, is given by 𝜒2

2 (0.95) = 5.99. The results are presented in terms of the logarithmic of each parameter in 𝜽.
identifiability analyses. Parameters associated with rather low uncer-
tainty (high sensitivity) by the linearized analysis appear as locally
identifiable also with the two-dimensional nonlinear analysis, and vice
versa, with few exceptions. Specifically, the cathode reaction rate 𝑘𝑐0,
whose standard deviation from the linearized analysis is rather high,
appears as locally identifiable in the 2D nonlinear analysis. In contrast,
the electrolyte diffusivity coefficient 𝐷𝑒

− is associated with a reasonable
standard deviation for the linearized analysis, but appears as locally
unidentifiable in the 2D nonlinear analysis. It is also interesting to note
that, for the finitely bounded, two-dimensional nonlinear regions in
8

Fig. 6(c)a, the shape of the region can be reasonably approximated by
an ellipsoid.1

3.4.2. 3D nonlinear confidence regions
This section constructs nonlinear confidence regions for triplets of

parameters. Due to the high number of possible combinations, the

1 Local confidence regions obtained by nonlinear analysis are not
necessarily ellipsoids in general.
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Fig. 7. Local confidence regions for sets of three parameters in 𝜽, where the parameters excluded from each plot are set to their true value. The chi-squared limit value, defining

the boundary of the confidence regions, is given by 𝜒2

3 (0.95) = 7.82. The results are presented for the logarithm of each parameter in 𝜽.
Table 5
Results of nonlinear identifiability analysis with 3D
contour plots. The following notation is used for each
table entry (row,column): I=Identifiable parameter
(green); U=Unidentifiable parameter (red).
Parameter triplet Identifiability

(𝛺𝑎
𝑎 , 𝜅

𝑐 , 𝑘𝑐0) (I,U,I)
(𝛺𝑐

𝑎 , 𝜅
𝑐 , 𝑘𝑐0) (I,U,I)

(𝜅𝑐 , 𝑘𝑐0 , 𝐷
𝑒
+) (U,I,I)

analysis focuses on the parameters belonging to 𝜣𝑰
𝟐𝑫 , as well as on the

cathode interfacial gradient penalty, 𝜅𝑐 , with the aim of verifying their
local identifiability in a higher dimensional setting. Parameters not
belonging to the triplet under investigation were set to their true values.
Again, the chi-squared difference is computed over a three-dimensional
grid in the parameter space, and confidence regions are computed
based on the chi-squared limiting value 𝜒2

3 (0.95) = 7.82. Fig. 7 plots
3D confidence regions. For the majority of combinations, all parameters
are locally identifiable. As in the two-dimensional case, when the three-
dimensional nonlinear confidence regions are bounded, their shape are
reasonably approximated by a hyperellipsoid. On the other hand, three
parameter combinations result in one parameter being locally non-
identifiable, as reported in Table 5 and depicted in Fig. 8. Specifically,
the cathode interfacial gradient penalty, 𝜅𝑐 , shows identifiability issues
when estimated in combination with regular solution parameters 𝛺𝑎

𝑎
or 𝛺𝑐

𝑎, cathode reaction rate 𝑘𝑐0, or electrolyte diffusivity coefficient
𝐷𝑒
+. It is interesting that, in all three combinations, the confidence

region is composed of a bounded, nearly ellipsoidal-shaped component,
and another tube-shaped, unbounded component, which is completely
detached from the former. In this scenario, the interfacial gradient
9

penalty 𝜅𝑐 is locally identifiable for some values of the other two
parameters in the triplet, while being locally unidentifiable for other
values. Again, this stresses the importance of a full nonlinear anal-
ysis of practical identifiability. To sum up, the 3D analysis confirms
local identifiability for all parameters already local identifiable in 2D,
and highlights further cases of local unidentifiability for the cathode
interfacial gradient penalty 𝜅𝑐 :

𝜣𝑰
𝟑𝑫 = {𝛺𝑎

𝑎 , 𝛺
𝑎
𝑏 , 𝑘

𝑎
0, 𝑅

𝑎
film, 𝛺𝑐

𝑎, 𝑘
𝑐
0, 𝐷

𝑒
+}. (22)

4. Discussion

Several works in the PET literature [20,29,31] show that the kinetic
and transport parameters are not fully identifiable when only using
data from discharge curves under standard operations. For instance,
discharge data for a reaction-limited cell cannot yield identifiable
diffusion parameters. Similar considerations can be drawn for MPET
models, whose parameter identifiability is investigated for the first time
in this work. Even in a neighborhood of the true value, some of these
parameters are unidentifiable at the 4C discharge rate analyzed in this
work. In this case, identifiability could be improved by gathering data
at C-rates ≪ 1C, which better approximates the open-circuit voltage
and probes the equilibrium materials properties rather than transport
properties. Identifiability could presumably be further improved by
including additional transient data, such as the nonlinear response
to voltage or current pulses, charging data, and data collected at a
variety of different temperatures and C-rates [67,68]. On the other
hand, the identifiability analysis also suggests that a group of param-
eters is locally identifiable, regardless of the other parameters on the
couple/triplet. These parameters are

𝜣𝑰 = {𝛺𝑎, 𝛺𝑎, 𝑘𝑎, 𝑅𝑎 , 𝛺𝑐 , 𝑘𝑐 , 𝐷𝑒}. (23)
𝑎 𝑏 0 film 𝑎 0 +
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Fig. 8. Local confidence regions for sets of three parameters in 𝜽, where the parameters excluded from each plot are set to their true value. The chi-squared limit value, defining
boundary of confidence regions, is given by 𝜒2

3 (0.95) = 7.82. The results are presented for the logarithm of each parameter in 𝜽.
It is interesting that all three regular solution parameters 𝛺𝑎
𝑎, 𝛺

𝑎
𝑏 , and

𝛺𝑐
𝑎 are identifiable, whereas the other parameters defining the free en-

ergy and chemical potential of active materials may not be identifiable
with the available dataset. Physically, the regular solution parameters
𝛺𝑎

𝑎, 𝛺𝑎
𝑏 , and 𝛺𝑐

𝑎 control phase separation in the active materials, so
their robust identifiability underscores the importance of correctly
modeling multiphase thermodynamics in MPET (which is neglected in
PET). This result is also aligned with the preliminary findings discussed
in [19], which highlighted possible lack of identifiability for the group
of chemical potential parameters. That preliminary analysis was carried
out considering a single particle per volume, and discharge currents
in the range [0.1;4]C. The identifiability of the reaction kinetics pa-
rameters (𝑘𝑐0, 𝑘

𝑎
0, 𝑅

𝑎
film) and non-identifiability of the solid diffusivities

(𝐷𝑎, 𝐷𝑐) for both electrodes supports the hypothesis that multi-phase
active materials in Li-ion batteries tend to be reaction-limited [38,
49,50,54,58–60], until electrolyte diffusion becomes rate-limiting in
porous electrodes at high currents [36,37], as further indicated by the
identifiability of the electrolyte Li+ diffusivity 𝐷𝑒

+. It is also important
to highlight that, while this work mainly focuses on a detailed local
analysis of parameter confidence regions, it would be interesting to
extend the results by assessing global practical identifiability properties
of the parameter set. This goal could be achieved with the application
of an MCMC approach [31]. The combination of global results from
MCMC and local results from the nonlinear confidence region mapping
would give a complete overview of parameter identifiability issues for
the considered MPET model.
10
4.1. Removing practical unidentifiability

As discussed in this article, identifiability analyses can highlight that
some parameter cannot be unequivocally identified from the available
experimental data. Moreover, the visual analysis of the chi-squared
function suggests that, in presence of practically unidentifiable parame-
ters, the optimization algorithms adopted for parameter estimation may
not converge to the neighborhood of the true parameter value. While
it is well-known that local minima often arise in nonlinear models, the
presence of wide, nearly flat areas of the chi-squared function may even
result in failure of the optimization algorithm to converge to any point
in the parameter space. For these reasons, the knowledge of possible
identifiability issues can greatly ease the task of parameter estimation.
Specifically, practically unidentifiable parameters can be dealt with by

1. setting such parameters to constant values;
2. using informative priors in the parameter estimation setup (MAP

estimation);
3. applying model reduction;
4. collecting more informative data.

Fixing parameters to constant values is the simplest way to re-
move identifiability problems. Unidentifiable parameter values can be
set according to the literature, estimated from computational chem-
istry calculations, or estimated with a separate parameter estimation
procedure and an ad-hoc experimental dataset. The choice of fixing
unidentifiable parameters to constant values also reduces the degrees
of freedom of the parameter estimation problem, as well as the compu-
tational complexity of the associated optimization. Care must be taken
to choose parameter values that fall within the parameter confidence
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regions. While such choices are straightforward for globally uniden-
tifiable parameters due to unboundedness of the confidence regions,
for locally unidentifiable parameters, the detailed knowledge of such
regions is required to avoid issues. The methodology discussed in this
work for the computation of nonlinear confidence regions is therefore
particularly important for this task. Moreover, when dealing with prac-
tical identifiability problems, fixing parameter values to constant values
may deteriorate the fitting performance of the overall model. Finally,
estimates for parameters may widely vary from source to source: this
approach unavoidably introduces arbitrariness in the overall parameter
estimation procedure.

The use of a MAP estimation methodology with informative priors
can greatly reduce identifiability problems, while avoiding the issues
caused by fixing the values of parameters to constants. MAP estimation
explicitly accounts for the level of uncertainties in the prior estimates
of the parameters and allows for more flexibility in the parameter
estimation optimization compared to the above procedure of setting
unidentifiable parameters to constants. As an example, consider the
MAP approach introduced in Section 2.2. Assume parameter priors
follow normal distributions with mean 𝝁𝑝 and covariance matrix 𝐕𝑝.

hen [33]

̂𝑀𝐴𝑃 = argmax
𝜽

𝑃 (𝜽|𝐘) (24)

= argmin
𝜽

−2 ln𝑃 (𝜽|𝐘) (25)

= argmin
𝜽

𝐽𝑀𝐿(𝜽) + (𝜽 − 𝝁𝑝)⊤𝐕−1
𝑝 (𝜽 − 𝝁𝑝) (26)

=∶ argmin
𝜽

𝐽𝑀𝐿(𝜽) + 𝐽 𝑝(𝜽) (27)

Under the above assumptions, the objective function for MAP estima-
tion coincides with that of ML estimation, 𝐽𝑀𝐿(𝜽), plus the regulariza-
tion term 𝐽 𝑝(𝜽) that accounts for prior information. Moreover, 𝐽 𝑝(𝜽)
is a quadratic function of the parameters, with the effect of adding
a convex term to the original ML objective function. The smaller the
prior covariance, the stronger the convexity introduced around the
prior mean 𝝁𝑝. As 𝐕𝑝 represents the confidence in the prior mean value,
his approach properly biases the estimation procedure towards 𝝁𝑝. The
esult of the estimation, �̂�𝑀𝐴𝑃 , is therefore a balance between prior
nowledge and information from the available experimental dataset.
s discussed earlier in this article, lack of parameter identifiability is
ssociated with the presence of flat regions in the objective function.
he introduction of the prior term allows then to convexify such regions
nd, in turn, can result in bounded confidence regions. The increased
onvexity also improves the numerical convergence of the associated
ptimization.

Another method for alleviating practical unidentifiabilities is model
eduction. Particular care should be taken while removing equations
ssociated to unidentifiable parameters from the model: in closed sys-
ems such as batteries, the conservation equations must be satisfied
hroughout the control volume. If properly carried out, model reduc-
ion reduces the degrees of freedom in the model, thus making the
arameter estimation task easier. Finally, simulation of a simpler model
ypically requires less time or computational power.

Finally, identifiability issues can be faced by increasing the in-
ormativity of the dataset used for parameter estimation. Practical
dentifiability is a property of model and training data, jointly. Iden-
ifiability of the same set of model parameters may vary, depending
n the experimental data chosen for the model training. As such, the
arameter identifiability is strictly associated with the design of the
xperiments used to collect data. For example, collecting data over
wider range of operating conditions (e.g., including charge and/or

ischarge data, possibly at different C-rates) is a possible way of
ncreasing the information available in the dataset. This is particularly
mportant when dealing with higher nonlinear systems such as lithium-
on batteries, whose dynamics can strongly depend on the operating
11

oint. e
. Conclusions

This work considers linearized and nonlinear local parameter iden-
ifiability analyses for a Multiphase Porous Electrode Theory model
f commercially available Lithium Iron Phosphate batteries. The anal-
sis focuses on parameters defining the chemical potential of active
aterials, as well as on conventional solid particle and electrolyte
iffusivity and reaction kinetics parameters. Specifically, the dataset
or the analysis consists of a single 4C synthetic discharge curve.
he linearized approach suggests that the cathode’s solid transport
arameter is unidentifiable given the available dataset, consistent with
b initio predictions of fast 𝑏-axis diffusion in LFP nanoparticles [74,75].
ll the other parameters appear to be identifiable, even though some
re characterized by relatively high uncertainty. Local identifiability of
arameters is further investigated by visualization of 2D confidence
egions. The visualization indicates that five parameters are always
ocally unidentifiable, while seven are always locally identifiable. Fur-
hermore, identifiability of these seven parameters is confirmed also in

three-dimensional identification framework. The identifiable MPET
arameters for these LFP/graphite cells govern phase separation in the
ctive materials (regular solution parameters), lithium intercalation re-
ction kinetics (exchange currents and film resistance), and electrolyte
ransport (lithium ion diffusivity), while solid diffusion parameters are
ot identifiable. These findings are consistent with the hypothesis that
i-ion batteries with multiphase active materials tend to be reaction
imited [38,49,50,54,58–60], until electrolyte diffusion becomes rate
imiting at high currents [36,37]. These findings also suggest that, in
ase of low or moderate currents, models can be therefore simplified by
ssuming infinitely fast solid diffusion and removing the corresponding
overning equations from the set of DAEs. In both 2D and 3D, the shape
f the nonlinear confidence regions of identifiable parameters was
easonably approximated by hyperellipsoids. This work also highlights
hat some the parameters defining chemical potentials may not be
dentifiable from the available data. Finally, this work suggests possible
ethods to reduce identifiability issues, such as fixing parameters,

dding priors, removing equations from the model or gathering a more
nformative dataset (e.g., considering different operating conditions of
he battery). Future developments of this work can therefore include
urther identifiability analysis of MPET, in case of charge data or data
ollected at different C-rates, as well as a full nonlinear identifiability
nalysis via Monte Carlo methods.
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Appendix. Chemical potential functions

This section describes the chemical potential functions adopted in
this work to model the thermodynamics of graphite and lithium iron
phosphate. Let 𝜇𝑅 denote the chemical potentials, 𝑐 = 𝑐∕𝑐max the dimen-
ionless concentration in the electrode, 𝑐 the average filling fraction in a
article, 𝑇 the absolute temperature, and 𝑘𝐵 the Boltzmann’s constant.

Moreover, let the step down and step up functions, 𝑑 and 𝑢, be defined
y

𝑑 (𝑥, 𝑥𝑐 , 𝛿) =
1
2

(

−ℎ
(𝑥 − 𝑥𝑐

𝛿

)

+ 1
)

𝑢(𝑥, 𝑥𝑐 , 𝛿) =
1
2

(

ℎ
(𝑥 − 𝑥𝑐

𝛿

)

+ 1
)

(A.1)

where ℎ denotes the hyperbolic tangent function.

.1. Graphite

The graphite chemical potential is given by

𝜇𝑅 = −0.12 𝑒
𝑘𝐵𝑇

+ 𝜇𝑅ℎ
+ 𝜇𝑅𝑛ℎ

+ 𝜇𝑅ref (A.2)

with (A.3)

𝑅𝑛ℎ
= −2𝑘𝑎

𝑐𝑎max
∇2 ̃̃𝑐

𝜇𝑅ℎ
= 𝜇𝐿𝑚 + 𝜇𝐿𝑡 + 𝜇𝑅𝑡 + 𝜇𝐿𝑙 + 𝜇𝑅𝑙 − 0.02 (A.4)

where (A.5)

𝜇𝐿𝑡 =
−5 ⋅ 10−2

𝑐0.85
𝜇𝑅𝑡 = 10𝑢(𝑐, 1.0, 0.015)

𝜇𝐿𝑙 = 1.8𝛺𝑎
𝑎(0.40 − 𝑐0.98)𝑑 (𝑐, 0.7, 4.5 ⋅ 10−2)𝑢(𝑐, 0.5, 5 ⋅ 10−2)

𝜇𝑅𝑙 =
(

0.4𝛺𝑎
𝑎(0.74 − 𝑐) + 0.90𝛺𝑎

𝑏 − 2(1 − 𝑐)
)

𝑢(𝑐, 0.4, 2 ⋅ 10−2)

𝜇𝐿𝑚 =
[ (

40(−𝑒
−𝑐

0.025 ) − 2(1 − 𝑐)
)

𝑑 (𝑐, 0.05, 5 ⋅ 10−2)

+ (ℎ(
𝑐−0.37
0.075 ) − 1)

+
(

ℎ
( 𝑐−0.2

0.06

)

− 1
)

+ 0.1
(

ℎ
( 𝑐−0.16

0.015 − 1
))

]

𝑑 (𝑐, 0.5, 5 ⋅ 10−2)

A.2. Lithium iron phosphate

The lithium iron phosphate chemical potential is given by

𝜇𝑅 = −3.422 𝑒
𝑘𝐵𝑇

+ 𝜇𝑅ℎ
+ 𝜇𝑅𝑛ℎ

+ 𝜇𝑅𝑟𝑒𝑓
(A.6)

with

𝜇𝑅ℎ
= 𝑘𝐵𝑇 ln

( 𝑐
1 − 𝑐

)

+𝛺𝑐
𝑎(1 − 2𝑐)

𝑅 = 𝐵𝑐

𝑐 (𝑐 − 𝑐)
12

𝑛ℎ 𝑐max
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