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A B S T R A C T   

For many modern biopharmaceutical processes, manufacturers develop data-driven models using data analytics/ 
machine learning (DA/ML) methods. The challenge is how to select the best methods for a specific dataset to 
construct the most accurate and reliable model. This article describes the application of smart process data 
analytics software to industrial end-to-end biomanufacturing datasets for monoclonal antibody production to 
automate the determination of the best DA/ML tools for model construction and process understanding. The 
application demonstrates that smart process data analytics software captures product- and process-specific 
characteristics for two different monoclonal antibody productions. This study provides tools that can be 
widely applied to biomanufacturing processes for root cause analysis, prediction, and control.   

1. Introduction 

Biopharmaceuticals, which are drug products derived from biolog-
ical organisms for treating or preventing diseases, are continuously 
growing in terms of both global sales and pipeline due to many advan-
tages such as high specificity and activity (Hong et al., 2018). As the 
worldwide pharmaceutical sales continue to grow and forecast to top $1 
trillion by 2026, biopharmaceuticals will account for 37 % of sales in 
2026, up from 30 % in 2020 (Evaluate Pharma, 2021). By 2026, more 
than half of the 100 top-selling medicines will be biopharmaceuticals, 
generating 57 % of the sales from this group (Evaluate Pharma, 2021). 
The percentage of the biopharmaceuticals in the total pipeline also 
gradually increased for over 20 years, reaching more than 40 % in 2020 
(Lloyd, 2021). Monoclonal antibodies (mAbs) are the second largest 
category of drugs in the current pipeline, which is after the general class 
of small molecules produced via traditional synthetic chemistry tech-
niques (Lloyd, 2021). 

The continued evolution of biologics manufacturing and quality 

expectations has led to the application of process analytical technology 
(PAT), which is defined by the Food and Drug Administration (FDA) as 
“a system for designing, analyzing, and controlling manufacturing 
through timely measurements (i.e., during processing) of critical quality 
and performance attributes of raw and in-process materials and pro-
cesses, with the goal of ensuring final product quality” (FDA, 2004). 
Measurements of critical quality attributes (CQAs) through PAT allow 
deeper understanding and model construction of biopharmaceutical 
manufacturing processes. Depending on the degree of process under-
standing, the process models range from data-driven to mechanistic 
(WHO, 2008). 

For many biopharmaceutical manufacturing processes, mechanistic 
models are not available due to the lack of complete biological process 
understanding and analytical quantification (Hong et al., 2018; Hong 
et al., 2020; Narayanan et al., 2020). This situation has required man-
ufacturers to develop data-driven models using data analytics (DA)/m-
achine learning (ML) methods (Hong et al., 2020; Jiang et al., 2017; 
Steinwandter et al., 2019; Smiatek et al., 2020; Banner et al., 2021; 
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Maruthamuthu et al., 2020). Past studies have already demonstrated 
that DA/ML methods can construct accurate and reliable models for 
industrial biomanufacturing processes by identifying and building re-
lationships between critical process parameters (CPPs) and CQAs 
(Maruthamuthu et al., 2020; Abu-Absi et al., 2010; Rathore et al., 2015; 
Severson et al., 2018; Severson et al., 2015). These studies have used 
conventional multivariable statistical approaches in conjunction with 
contemporary machine learning techniques. Some of the studies incor-
porated model inputs such as raw material properties and cell culture 
process variables (Abu-Absi et al., 2010; Rathore et al., 2015). Tools and 
software packages that leverage DA/ML are rapidly increasing in 
availability; therefore, the challenge today is how to select the best 
methods and tools for a specific biomanufacturing dataset to ensure that 
most accurate and reliable model is constructed (Hong et al., 2020; 
Maruthamuthu et al., 2020). The optimal selection of DA/ML tools re-
quires a substantial level of expertise due to the diverse nature of bio-
manufacturing data in terms of both quantity and quality. In the absence 
of this expertise, the inadvertent selection of suboptimal DA/ML tools 
can result in less accurate predictions and lower quality decisions made 
based on those predictions. 

This challenge motivated the development of a smart process ana-
lytics (SPA) software, which automates the selection of methods and 
construction of models (Severson et al., 2018; Severson et al., 2015; Sun 
and Braatz, 2021). This article describes the first application of smart 
process data analytics software to industrial end-to-end bio-
manufacturing datasets for monoclonal antibody production to deter-
mine the best DA/ML tools for model construction and process 
understanding. The application analyzes the specific data characteristics 
present in biomanufacturing datasets and proposes software enhance-
ments based on the discovered insights. Section 2 briefly describes the 
overall structure of smart process data analytics. Section 3 describes the 
industrial biomanufacturing datasets used in the case studies. Section 4 
discusses the application procedure and results through comparison 
between different methods, followed by the conclusions in Section 5. 

2. Smart process analytics (SPA) 

Smart process analytics (SPA) is a software which automatically se-
lects DA/ML tools for manufacturing data based on specific character-
istics of the data and expert domain knowledge of the process (Hong 
et al., 2020; Sun and Braatz, 2021). This Python-based software has a 
user-friendly interface that requests datasets and the modeling objective 
from the user and then provides the final model with its performance. 

Based on the data characteristics and whether the objective is for the 
model to be interpretable, SPA selects the most suitable DA/ML tool by 
following a decision tree which can be represented in the form of a 
triangle (Fig. 1). This data analytics triangle was developed from liter-
ature review, theoretical analyses, and case studies to provide modeling 

techniques that are most suitable for data with the specific character-
istics (Sun and Braatz, 2021). In terms of interpretability, the user can 
specify whether predictive accuracy is the only modeling objective or 
the model should also be sparse. Sparse models, which identify a subset 
of predictors, are more interpretable and robust when the number of 
samples is limited. On the other hand, dense models which use all of the 
predictors produce highly accurate predictions but can be prone to 
overfitting when the number of samples are limited. 

With the given datasets, SPA first assesses the specific data charac-
teristics based on nonlinearity, multicollinearity, and dynamics (Fig. 1). 
These characteristics violate the assumptions of the Gauss-Markov the-
orem, which states conditions for which ordinary least squares produces 
the best linear unbiased estimation. Nonlinearity is judged to be sig-
nificant if the bilinear correlation test, quadratic test, or maximal cor-
relation analysis show statistically significant nonlinearity (Sun and 
Braatz, 2021). Multicollinearity occurs in essentially all datasets for the 
manufacturing of drug substance (Maruthamuthu et al., 2020; Severson 
et al., 2018). This study does not consider time series data, so dynamics 
within each batch are not represented in the data. Dynamic 
batch-to-batch effects, on the other hand, can play a role in batch 
manufacturing as media lots and resin may be used for multiple batches. 

SPA constructs the final model using a rigorous cross-validation 
procedure for optimal tradeoff between robustness (variance) and ac-
curacy (bias). The datasets are split into training, validation, and testing, 
where each group of datasets is used to train the model, select hyper-
parameters, and evaluate the unbiased model error. Depending on the 
time available for cross validation, the software uses a nested cross- 
validation procedure to also estimate model stability. This procedure 
splits the datasets into many different train-test sets for the model con-
struction and evaluation. 

All DA/ML tools in the data analytics triangle are well established in 
the literature, except for algebraic learning via elastic net (ALVEN) and 
its generalization to dynamic systems, dynamic ALVEN (Sun and Braatz, 
2020). ALVEN and dynamic ALVEN combine expert knowledge (bio-
logical and chemical nonlinear transformations) with machine learning 
(sparse regression to deal with a small number of batches) to construct a 
nonlinear interpretable model. The final model is selected from a large 
library of informative linear and nonlinear terms through the two-step 
sparsity-promoting technique to provide interpretability and further-
more physical/chemical insights of the system. 

3. Biopharmaceutical manufacturing datasets 

Smart process analytics was applied to manufacturing datasets for 
two monoclonal antibodies. 

3.1. Monoclonal antibody #1 (mAb#1) 

Chinese hamster ovary (CHO) cells are used to produce the mono-
clonal antibody. The cell culture process consists of a series of scale-up 
and expansion steps which generate sufficient cell mass for inocula-
tion of the production bioreactor, additional cell growth and production 
of the monoclonal antibody, and removal of cellular mass from the 
bioreactor material using centrifugation and three stages of filtration to 
obtain the clarified material, Harvested Cell Culture Fluid (HCCF) 
(Fig. 2a). The downstream purification process starts with acid precip-
itation of the HCCF and continues through chromatography column 1, 
low pH hold for viral inactivation, chromatography columns 2 and 
column 3, viral filtration, and ultrafiltration/diafiltration (UF/DF) to 
yield the Bulk Drug Substance (BDS) (Fig. 2b). 

The critical quality attribute which serves as the model output for 
this dataset is the antibody’s basic peaks percentage, measured at the 
column 2 pool (Fig. 2b). Basic peaks contain oxidized product-related 
impurities such as N- and C-terminal variants as well as high molecu-
lar weight (HMW) species. The basic peaks percentage may be impacted 
by various process steps, including operating conditions in the 

Fig. 1. The data analytics triangle for predictive modeling with a single 
response variable. The modeling techniques are mapped to three data charac-
teristics. ALVEN = algebraic learning via elastic net; CVA = canonical variate 
analysis; DALVEN = dynamic ALVEN; MOESP = multivariable output error 
state space; PLS = partial least squares; RF = random forest regression; RNN =
recurrent neural network; RR = ridge regression; SVR = support vector 
regression. Adapted from Sun and Braatz (2021). 
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production bioreactor. To model basic peaks percentage, the number of 
input variables (measurements) is 169 (136 from the bioreactors, 6 from 
the harvest, 9 from column 1, 10 from viral inactivation, and 8 from 
column 2). The number of data points (observations) is 77, collected 
over many manufacturing campaigns. 

3.2. Monoclonal antibody #2 (mAb#2) 

CHO cells are used to produce mAb#2 in a process similar to mAb#1, 
albeit with some differences in the downstream unit operations (Fig. 3). 

The model output for the mAb#2 dataset is the product’s pre- 
monomer percentage measured at the drug substance pool. The pre- 
monomer has been identified as a complex of an intact monoclonal 
antibody covalently bound to a fragment containing a light chain and a 
variant of the heavy chain. The pre-monomer percentage may be 
impacted by various process steps, particularly column 2. To model pre- 
monomer percentage, the number of input variables (measurements) is 
120 (89 from the bioreactors, 4 from the harvest, 8 from column 1, 8 
from viral inactivation, and 11 from column 2). The number of data 
points (observations) is 94, collected over many manufacturing 
campaigns. 

4. Results and discussion 

4.1. Data interrogation 

The first step is to check for linear correlation using the (Pearson) 
correlation coefficient, 

ρxi ,y = corr(xi, y) =
cov(xi, y)

σxi σy
, i = 1,…,m, (1)  

where x = [x1⋯xm]
T
∈ Rm is a vector of predictors, y is a univariate 

response variable, cov is the covariance, and σ is the standard deviation. 
The correlation coefficient ranges from − 1 to 1 with a higher absolute 
value corresponding to stronger linear correlation. For the mAb#1 and 
mAb#2 datasets, predictors that have high correlation coefficient with 
the response variable are mainly from upstream for mAb#1 (Table 1) 
and downstream for mAb#2 (Table 2). Magnitudes of high correlation 
coefficients also show that the mAb#1 dataset has more frequent strong 
linear correlations between the predictors and the response variable. 

The next step is to assess nonlinear correlations using the quadratic 
and the maximal correlation tests. The two tests are used together in SPA 
for a thorough analysis (Sun and Braatz, 2021); the maximal correlation 
is presented here since it may be unfamiliar to some readers. The 
maximal correlation (Rényi, 1959) is defined as 

ρ∗
xi ,y = sup

θ,ϕ
corr(θ(xi),ϕ(y)), i = 1,⋯,m, (2)  

where θ and ϕ run over all real-valued functions with zero mean and 
finite variances. The maximal correlation ranges from 0 to 1 and in-

cludes linear correlations. Consequently, a higher difference of the 
maximal correlation to the absolute value of the linear correlation co-
efficient corresponds to stronger nonlinear correlation. Some inputs 
with high differences between the maximal correlation measure and the 
absolute linear correlation coefficient indicate nonlinearity in the 
datasets for both mAb#1 and mAb#2 (Tables 3 and 4, respectively). 

Multicollinearity is assessed by the variable inflation factor (VIF) in 
SPA (Sun and Braatz, 2021), but is not needed for this analysis since the 
larger number of predictors than samples for both datasets implies high 
multicollinearity.2 High intercorrelation between the predictors can be 
also quantified by the correlation matrix of the predictors (Fig. 4). The 
number of predictors with correlation greater than 0.9 with each other is 
53 and 34 for the mAb#1 and mAb#2 datasets respectively, which is 
about 30 % of total number of predictors for both datasets. This large 
number of strong correlations between the predictor variables is an 
additional indicator of multicollinearity in the dataset. 

The data interrogation from SPA indicates the presence of nonline-
arity and multicollinearity in both datasets, which SPA indicates that 
ALVEN, support vector regression (SVR), or random forest regression 
(RF) should be applied (Fig. 1). ALVEN is a sparse modeling method, 
which identifies a subset of predictors, whereas SVR and RF are dense 
modeling methods which use all predictors, including predictors that are 
not useful for making predictions. The nonlinearity analysis in SPA also 
identifies nonlinearities associated with input variables whose inclusion 
in the model would not significantly increase its predictive accuracy. For 
example, a single input variable that shows a significant nonlinear 
correlation with the output will result in the nonlinearity analysis rec-
ommending application of nonlinear modeling methods, although a 
highly accurate linear model may be constructed using only the input 
variables that have a linear relationship to the model output. To evaluate 
the effectiveness of SPA in selecting the best modeling methods for these 
biopharmaceutical manufacturing datasets, as well as evaluating the 
nonlinearity analysis more broadly for datasets in which nonlinear 
input-output relationships may occur but may not significantly improve 
the predictive accuracy, we compare the methods selected by SPA to 
linear multicollinear modeling methods that have been demonstrated to 
produce very high predictive accuracy for such datasets (Sun and 
Braatz, 2021). Namely, we compare to Partial Least Squares (PLS), 
which is the most widely used dense method for building models for 
linear multicollinear data, and sparse PLS (SPLS) and Elastic Net (EN) 
which are sparse modeling methods. Sparse methods such as ALVEN, 
EN, and SPLS are more interpretable and robust when the number of 
samples is limited (Sun and Braatz, 2021). 

Fig. 2. Process overview of mAb#1 (a) upstream and (b) downstream.  

2 Data from biopharmaceutical manufacturing processes are multicollinear, 
even when there are more samples than predictors, as the variables are related 
by governing laws such as conservation of mass, conservation of energy, and 
kinetic reaction equations (Ferreira et al., 2018). 
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4.2. Model construction 

The model construction procedures were conducted for both datasets 
for the aforementioned 6 models: ALVEN, SVR, RF, PLS, SPLS, and EN. 
For the ALVEN models, the complexity of the nonlinear transformation 
was limited to degree 1 to only consider basic transformations for 

simplicity and interpretability of the model (Sun and Braatz, 2020). 
Higher degrees allow for the multiplication of different features which 
might be predictive but are not easily interpreted.3 Nested 
cross-validation with repeated k-fold cross-validation for the inner loop 
is implemented for model construction. Five-fold cross-validation was 
repeated 10 times for the inner loop, and the outer loop is repeated for 
15 train-test splits to ensure a comparison of the models that is statis-
tically reliable. There is an inherent tradeoff of error metric mean and 
variance between the size of training and test data. Commonly used 
train-test ratios are 80–20, 70–30 or 67–33. To guarantee an accurate 
estimation of the error variances in the smaller testing data set, it is 
recommended to have at least 20 to 30 samples in this set (Murphy, 
2012). Based on this, we use a 70–30 train-test split for the outer loop. 
The model construction procedures were repeated for the logarithm of 
the response variable to consider broader forms of nonlinear models 
(Sun and Braatz, 2021; Severson et al., 2019). 

The results for the mAb#1 dataset are shown in Table 5 and Fig. 5. 
For this dataset, the linear models (PLS, SPLS, and EN) are overall better 
than nonlinear models (ALVEN, SVR, and RF) in terms of model accu-
racy of the testing dataset. The linear models show consistent means of 
training and test errors, while the nonlinear models perform much worse 
for testing dataset indicating significant overfitting by the nonlinear 
methods. This result shows that nonlinearity is not significant enough in 
the mAb#1 dataset to justify the usage of nonlinear models like ALVEN. 
PLS is the best performing algorithm for prediction without interpret-
ability and SPLS is the best candidate considering interpretability for 
root cause analysis. Comparing the models utilizing a log transformation 
or no log transformation, both models have similar accuracies; however, 
the models for the logarithm of output are slightly better than the 
models for the output without transformation. 

Among linear models, coefficients of the SPLS model provide inter-
pretable information of the model (Table 6). Predictors included in a 
greater number of splits with larger coefficients are likely to be included 
in the final model formulation depending on the modeling purpose. As 
seen from the data interrogation (Table 1), predictors from the upstream 
with high correlation coefficients with the response variable are 
frequently included into the SPLS model. 

The impact of the N Production Bioreactor Mass on the basic peak 
percentage is consistent with the cell biology. This mass is the product of 
two parameters:  

(1) The N Production Bioreactor Volume. The CHO cells tend to 
experience the same conditions (e.g., temperature, pH, culture 
duration, nutrient concentrations) regardless of production 
bioreactor volume. When the bioreactor volume increases, such 
as due to process improvements, the rate at which gas is sparged 
to oxygenate cells changes. At the higher gas flow rates used for 

Fig. 3. Process overview of mAb#2 (a) upstream and (b) downstream.  

Table 1 
Pearson correlation coefficients for mAb#1 data (|ρ| > 0.6).  

ρ Unit Operation Parameter 

0.7565 N Production Bioreactor Product Mass 
0.7064 N Production Bioreactor Volume – Final Day 
0.6990 N Production Bioreactor Cumulative Antifoam 
0.6943 Harvest Product Mass 
0.6614 N Production Bioreactor Cumulative Acid 
0.6045 N-1 Bioreactor Viability – Final Day 
0.6044 Column 1 Product Mass  

Table 2 
Pearson correlation coefficients for mAb#2 data (|ρ| > 0.4).  

ρ Unit Operation Parameter 

− 0.7594 Column 2 Pool Volume 
0.5521 Column 2 Resin Cycle Number 
0.4841 Column 2 Product HMW% 
− 0.4221 Column 1 Resin Cycle Number  

Table 3 
Maximal correlation coefficients for mAb#1 data (ρ∗ > 0.6, |ρ| < 0.2).  

ρ∗ −

|ρ|
ρ ρ∗ − |ρ| Unit Operation Parameter 

0.7480 0.0018 0.7462 N Production Bioreactor Glucose – Day 8 
0.8145 0.1688 0.6458 Harvest Discharge Interval 
0.6279 0.0526 0.5753 Column 1 Pool Volume 
0.6279 0.0526 0.5753 Viral Inactivation Pool Volume 
0.6643 0.1697 0.4946 Viral Inactivation Mean Temperature  

Table 4 
Maximal correlation coefficients for mAb#2 data (ρ∗ > 0.6, |ρ| < 0.2).  

ρ∗ −

|ρ|
ρ ρ∗ − |ρ| Unit Operation Parameter 

0.8954 0.0712 0.8242 Column 2 Product Monomer 
0.6332 0.1002 0.5330 N Production 

Bioreactor 
Total Cell Density – Day 
0 

0.6236 0.0987 0.5249 Harvest Product Mass 
0.6091 0.1131 0.4960 Column 2 Host Cell Protein  

3 We also constructed higher order ALVEN models, but the models did not 
have higher prediction accuracy and were more prone to overfitting. 
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larger culture volumes, the gas entrance velocity increases, sub-
jecting the CHO cells to greater shear stress. This stress can 
adversely affect growth, product expression, and even cell 
viability. Cells may produce and secrete glycoproteins of different 
product quality when subjected to greater stresses, impacting 
parameters like the basic peak percentage.  

(2) The N Production Bioreactor Titer. Differences in bioreactor titer 
can be associated with changes in product quality. For example, if 
an increase in bioreactor titer is due to an increase in specific 
productivity, the CHO cells have less time to create and secrete 
individual product molecules. The product molecules travel 
faster through modifying cellular organelles like the Golgi 
apparatus, which can affect product quality parameters. 

Table 6 also lists three other parameters, likely because they have 
direct or indirect correlations to the N Production Bioreactor Mass 
parameter. For example, both the N Production Bioreactor Volume – 
Final Day and Harvest Mass directly correlate with N Production 
Bioreactor Mass. Furthermore, the amounts of Cumulative Acid tend to 
positively correlate with N Production Bioreactor Volume – Final Day, as 
larger cultures require more acid and more antifoam. 

The results for the mAb#2 dataset are shown in Table 7 and Fig. 6. 
For this dataset, the model accuracy is slightly better for the nonlinear 
models compared to the linear models except for SVR. SVR models have 
the most extreme difference between training and testing for both 
datasets, indicating that the model is strongly overfitted. Nonlinearity is 
more important for mAb#2 compared to mAb#1 and considering the 
interpretability, ALVEN is the best candidate. For prediction, RF is the 
best performing algorithm as interpretability is not necessary for models 
whose sole purpose is prediction. Models constructed for the output and 
the logarithm of output again have similar accuracies, but the ALVEN 

Fig. 4. Graphs of correlation matrices of the predictors for (a) mAb#1 and (b) mAb#2 data. Many predictors are highly correlated with each other.  

Table 5 
Model prediction results for mAb#1 data.  

Model Output without Transformation Logarithm of Output 

Train Test Train Test 

Mean SD Mean SD Mean SD Mean SD 

ALVEN 0.345 0.039 0.457 0.075 0.322 0.071 0.453 0.106 
SVR 0.245 0.014 0.485 0.074 0.235 0.014 0.467 0.093 
RF 0.330 0.029 0.436 0.069 0.332 0.028 0.447 0.118 
PLS 0.457 0.017 0.400 0.065 0.441 0.029 0.408 0.078 
SPLS 0.470 0.040 0.444 0.084 0.465 0.032 0.421 0.096 
EN 0.516 0.056 0.492 0.083 0.507 0.061 0.477 0.105  

Fig. 5. Model prediction results for mAb#1 data with logarithm of output.  

Table 6 
Coefficients of SPLS model for mAb#1 data with logarithm of output (Means are 
computed for nonzero coefficients).  

# Splits Mean Unit Operation Parameter 

15 0.5803 N Production Bioreactor Product Mass 
3 0.3460 Harvest Product Mass 
2 0.3914 N Production Bioreactor Volume – Final Day 
2 0.3813 N Production Bioreactor Cumulative Acid  
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model for the output without transformation is slightly better than that 
for the logarithm transformed output. 

Predictors that are included in the ALVEN model are mostly from 
downstream as identified in the data interrogation (Table 8). Some of 
the nonlinear predictors included in the ALVEN model are those that are 
detected in the nonlinearity test or highly correlated to those predictors. 
This is the reason why the nonlinearity became important in the mAb#2 
dataset but not in the mAb#1 dataset. 

The pre-monomer impurity is created in the N Production Bioreactor, 
and the pre-monomer percentage is affected by variations in the nutrient 
concentrations. During the manufacturing process, a key activity is the 
Day 4 nutrient feed, where nutrient variation at commercial scale has 
been theorized to cause significant variations in growth. In turn, as cell 
growth varies, so can the product quality aspects of the product mole-
cule. Osmolality – Day 4 may serve as an indicator that for some pro-
duction lots, additional feed (or additional, specific nutrients) may aid 
cell nutrition and in turn reduce pre-monomer impurity levels. 

Pre-monomer levels are also impacted by purification steps, where 
process variability can also result in differences in the amount of im-
purities being removed. For example, as Column 2 pool volume and 
therefore product mass increases, there are relatively fewer resin bind-
ing sites on the Column 2 resin. As such, the resin may preferentially 

retain the smaller monomer, while more pre-monomer species flow 
through the column. For Column 1, when more product monomer is 
retained, more pre-monomer species flow through the column. 

4.3. Modeling use cases 

For biopharmaceutical manufacturing, model decisions such as 
choice of inputs and model selection are likely to depend on the use case, 
whether root cause analysis, prediction, or control. 

For prediction, model selection is focused on high predictive accu-
racy and may be able to use dense or non-interpretable models. The 
input variables may include all potentially relevant parameters, 
including operationally dependent features. 

For root cause analysis, model interpretability is a necessity. A 
similarly broad set of input variables may be used. Note that, for data 
sets with multicollinearity, the model is picking the model parameters 
that are best correlated with the response and do not necessarily 
represent root-cause parameters. Interpreting the root cause from 
among the model parameters still requires subject matter expertise 
about the process. 

Lastly, modeling for control, whether active or offline, requires a 
specific model that relates the response to be controlled to what input 
parameters can be operationally changed. For example, models intro-
duced in Section 4.2 would not be appropriate for control as opera-
tionally dependent parameters were also included in the input variables. 
The input variables must be pared down to reflect only the parameters 
that can be controlled. Model selection will be determined based on a 
combination of predictivity and interpretability requirements. 

5. Conclusion 

Smart process data analytics software is applied to industrial end-to- 
end biomanufacturing datasets for two different monoclonal antibody 
(mAb) products to construct models based on the best data analytics/ 
machine learning tools. The dataset for mAb#1 is modeled with Partial 
Least Squares (PLS) for the logarithm of the output, and predictors from 
the upstream are mainly used for the model prediction. On the other 
hand, the model for the dataset for mAb#2 is constructed with Algebraic 
Learning Via Elastic Net (ALVEN) for the output without transformation, 
and predictors for the model prediction are heavily chosen from the 
downstream. As shown from the dataset for mAb#1, data with nonlin-
earity may be best described by a linear model if the predictors indi-
cating the nonlinearity are not included in the constructed model. The 
capability of smart process data analytics software to capture product- 
and process-specific characteristics enables wide application of the 
software to biomanufacturing processes. 
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Table 7 
Model prediction results for mAb#2 data.  

Model Output without Transformation Logarithm of Output 

Train Test Train Test 

Mean SD Mean SD Mean SD Mean SD 

ALVEN 0.0309 0.0075 0.0413 0.0076 0.0311 0.0076 0.0421 0.0070 
SVR 0.0192 0.0058 0.0476 0.0086 0.0211 0.0067 0.0470 0.0089 
RF 0.0298 0.0022 0.0403 0.0042 0.0297 0.0025 0.0407 0.0040 
PLS 0.0325 0.0056 0.0460 0.0074 0.0323 0.0056 0.0459 0.0073 
SPLS 0.0427 0.0046 0.0454 0.0061 0.0422 0.0045 0.0456 0.0059 
EN 0.0349 0.0049 0.0411 0.0064 0.0351 0.0049 0.0410 0.0064  

Fig. 6. Model prediction results for mAb#2 data.  

Table 8 
Coefficients of ALVEN model for mAb#2 data that are included at least in 8 splits 
(means are computed for nonzero coefficients).  

# Splits Mean Term Unit Operation Parameter 

12 − 0.4062 linear Column 2 Pool Volume 
11 − 0.1079 linear Column 1 Product Monomer% 
10 − 0.1088 log Harvest Yield 
9 − 0.1421 sqrt Column 2 Pool Volume 
8 − 0.3405 log Column 2 Pool Volume 
8 − 0.1512 linear N Production Bioreactor Osmolality – Day 4 
8 − 0.0652 sqrt N Production Bioreactor Osmolality – Day 4  
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Rényi, A., 1959. On measures of dependence. Acta Math. Hung. 10 (3–4), 441–451. 
Rathore, A.S., Singh, S.K, Pathak, M., Read, E.K., Brorson, K.A., Agarabi, C.D., Khan, M., 

2015. Fermentanomics: relating quality attributes of a monoclonal antibody to cell 
culture process variables and raw materials using multivariate data analysis. 
Biotechnol. Prog. 31 (6), 1586–1599. 

Severson, K., VanAntwerp, J.G., Natarajan, V., Antoniou, C., Thömmes, J., Braatz, R.D., 
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