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a b s t r a c t 

Population balance models (PBM) describe a wide array of physical, chemical, and biological processes 

having a distribution over some intrinsic property, and are used to model cells, viruses, aggregates, bub- 

bles, and crystals. The ubiquity of PBMs motivates generalizable and accurate approaches for their nu- 

merical solution. Typically, high-order finite difference or finite volume methods are used. We propose 

a finite difference scheme at the limit of numerical stability that results in discretization error that is 

zero for certain classes of PBMs and low enough to be acceptable in other applications. The scheme em- 

ploys specially constructed meshes and, in some cases, variable transformations. The scheme has very 

low computational cost – sometimes as low as memory reallocation with no floating point operations. 

Case studies are presented throughout that demonstrate the scheme’s performance in relation to other 

commonly employed schemes. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The spatiotemporal dynamics of populations are well described 

y population balance models (PBMs). These partial differen- 

ial equation (PDE) models are applicable to a wide variety of 

hysical, chemical, and biological processes that include cells 

 Fredrickson et al., 1967 ), viruses ( Sidorenko et al., 2008 ), aggre-

ates ( Arosio et al., 2012; Jeldres et al., 2018 ), bubbles ( Wang et al.,

005 ), droplets ( Schmidt et al., 2006 ), crystals ( Abegg et al., 1968;

oo et al., 2006; Lapidot et al., 2019; Colucci et al., 2020 ), and

recipitates ( Szilágyi et al., 2015 ). In general, a species balance for 

 spatially well-mixed system can be written as an ordinary differ- 

ntial equation (ODE) of the form 

df (t) 

dt 
= h (t, f ) , (1) 

here f is the species density (e.g., concentration), t is time, and h 

s a forcing function that can be a function of f and t . For multiple

pecies, the f and h are vectors, with each element corresponding 

o a single species. For the purposes of analyzing finite difference 

ethods, f and h can be treated as scalars, as the extension to the 

ector case is straightforward. 

When a species has an additional intrinsic variable such as size 

r age, the PDE model corresponding to the ODE can be written as 

∂ f (t, a ) + 

∂(G f (t, a )) = h (t, a, f ) , (2) 

∂t ∂a 

∗ Corresponding author. 
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here a is an intrinsic variable and G = d a/d t is its rate of change

f a with respect to time. The G is usually referred to as the 

growth rate” in the PBM literature, irrespective of whether the G 

s a true growth rate (e.g., the growth of a crystal) or not (e.g., the

ging of a cell), and that nomenclature is used here. The general- 

zation of (2) to multiple intrinsic variables is 

∂ f (t, a 1 , . . . , a m 

) 

∂t 
+ 

m ∑ 

i =1 

∂(G i f (t, a 1 , . . . , a m 

)) 

∂a i 
=h (t, a 1 , . . . , a m 

, f ) , 

(3) 

here m is the number of intrinsic variables. The PBM and associ- 

ted results can be further extended to a steady-state slug or plug 

ow through a tube by replacing the time t with the residence 

ime τ , or to dynamic slug or plug flow through a tube by includ- 

ng both derivatives with respect to time and residence time, 

∂ f (t, a 1 , . . . , a m 

) 

∂t 
+ 

∂ f (t, a 1 , . . . , a m 

) 

∂τ
+ 

m ∑ 

i =1 

∂(G i f (t, a 1 , . . . , a m 

)) 

∂a i 

= h (t, a 1 , . . . , a m 

, f ) , (4) 

here τ = z/u , with z being the axial position along the tube and 

 being the mean flow velocity. 

A large literature derives finite difference and finite volume 

ethods for the numerical solution of PBMs as well as for more 

eneral PDEs, with the focus being to minimize discretization er- 

ors (e.g., see Gunawan et al., 2004; Qamar et al., 2006; Woo et al., 

006; Gunawan et al., 2008; Mesbah et al., 2009 and citations 

herein). It is especially important that the numerical solution of 

his class of hyperbolic PDEs strive to reduce numerical diffusion 

https://doi.org/10.1016/j.compchemeng.2022.107808
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107808&domain=pdf
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1 This analytical solution can also be derived using the method of characteristics. 
i.e., smearing of the numerical solution compared to the true so- 

ution) and numerical dispersion (i.e., aphysical oscillations in the 

umerical solution compared to the true solution). The classic up- 

ind scheme is most commonly used in pedagogical settings to in- 

roduce numerical methods (e.g., see LeVeque, 2002; Inguva et al., 

021 ), but is rarely used by practitioners because it is regarded as 

rst-order accurate only and is prone to significant numerical dif- 

usion. However, this article shows that, when applied in a very 

articular and unexpected way, the upwind scheme gives highly 

ccurate solutions to a range of PBMs, while having very low com- 

utational cost. Along the way, the analysis dispels the misconcep- 

ion that a numerical method should not operate at the limit of 

umerical stability. 

. Theory and methods 

To demonstrate the formulation of the upwind scheme to vari- 

us classes of PBMs, this section is structured as a series of cases 

hereby each case outlines the numerical solution of a class of 

BMs. Two other higher order schemes are also considered, the 

ax–Wendroff and leapfrog schemes. 

.1. PBMs with constant growth rate 

Consider the homogeneous population balance model, 

∂ f (t, a ) 

∂t 
+ g 

∂ f (t, a ) 

∂a 
= 0 , f (0 , a ) = f 0 (a ) , (5)

ith a single intrinsic variable a in which G = g and is constant, 

ver the real domains t, a ≥ 0 . This PBM arises when the driving

orce for growth is constant, which occurs for example in crystal- 

ization where a is the crystal size and the supersaturation that 

ppears in the growth rate is held constant by a control system to 

rovide high purity while suppressing nucleation (e.g., see Abegg 

t al., 1968; Dalas et al., 1991; Schall et al., 1996; Grön et al., 

003; Westin and Rasmuson, 2005; Ward et al., 2006; Woo et al., 

011 and citations therein). The case of g = 1 is of particular rele-

ance for cell populations where a is the cell age and is defined to

ave the same units as the time t ( Kurtz et al., 1998 ). 

The upwind method can be applied to (5) to yield 

f j 
i +1 

− f j 
i 

�t 
+ g 

f j 
i 

− f j−1 
i 

�a 
= 0 , (6) 

here i is the time index and j is the index for the intrinsic vari-

ble. This equation can be further rearranged to obtain the update 

quation, 

f j 
i +1 

= f j 
i 

− g�t 

�a 
( f j 

i 
− f j−1 

i 
) . (7) 

imilarly, the Lax–Wendroff and leapfrog schemes can be imple- 

ented as 

Lax–Wendroff: 

f j 
i +1 

= f j 
i 

− 1 

2 

g�t 

�a 

(
f j+1 
i 

− f j−1 
i 

)
+ 

1 

2 

(
g�t 

�a 

)2 (
f j+1 
i 

− 2 f j 
i 

+ f j−1 
i 

)
(8)

eapfrog: 

f j 
i +1 

= f j 
i −1 

− g�t 

�a 
( f j+1 

i 
− f j−1 

i 
) , 

f j 
1 

= f j 
0 

− g�t 

�a 
( f j 

0 
− f j−1 

0 
) , (9) 

ith the first timestep for the leapfrog scheme computed using the 

pwind scheme. By setting g�t 
�a 

= 1 , both the Lax–Wendroff and 

pwind schemes simplify to 

f j 
i +1 

= f j−1 
i 

. (10) 
2 
his difference equation is an analytical solution to (5) . Expressing 

his equation in terms of the original variables gives 

f (t i + �t, a ) = f (t i , a − g�t) . (11) 

pplying (11) for t = 0 and i = 1 gives 

f (t 1 , a ) = f (t 0 , a − gt 1 ) = f 0 (a − gt 1 ) , (12)

hich is equivalent to 

f (t, a ) = f 0 (a − gt) , (13) 

or t = t 1 which is the exact analytical solution to (5) and is exact

or any value of �t . 1 This result is also evident from considering 

he local truncation error of the upwind scheme; 

rror = 

∞ ∑ 

n =2 

1 

n ! 

(
(�t) n −1 − (�a ) n −1 

g n −1 

)
∂ n f 

∂t n 

∣∣∣
t,a 

. (14) 

s can be seen from (14) , by setting g�t 
�a 

= 1 . 0 , the discretization

rror given by the local truncation error becomes zero. Impos- 

ng such a condition on either �a or �t is equivalent to solving 

he problem at the limit of numerical stability for a finite differ- 

nce method solution to (5) given by the Courant-Friedrichs-Lewy 

CFL) condition ( Courant et al., 1928 ). This analysis applies inde- 

endently of the boundary condition and holds for any physically 

eaningful boundary condition e.g., for the birth of cells at a = 0 . 

The implementation of this algorithm is especially efficient 

ince only memory reallocation is required to obtain an exact so- 

ution. 

.2. PBMs with growth rate G (t, a ) 

.2.1. PBMs with growth rate G (a ) 

Consider a homogeneous PBM with a growth rate expression 

ependent on the intrinsic variable expressed in conservative form, 

∂ f (t, a ) 

∂t 
+ 

∂(G (a ) f (t, a )) 

∂a 
= 0 , f (0 , a ) = f 0 (a ) , (15)

ith G (a ) continuous in a , bounded, and G (a ) > 0 , ∀ a (similar re-

ults can be derived for the case where G (a ) < 0 , ∀ a with a small

hange in the discretization scheme). The expression G (a ) is typi- 

ally used to model size-dependent growth which has been heavily 

tudied in the literature on precipitation and crystallization ( Abegg 

t al., 1968; Hounslow, 1990; Aamir et al., 2009; Iggland and Maz- 

otti, 2012; Colucci et al., 2020 ) and citations therein. When a is 

he age of a growing cell, then G (a ) � = 0 models age-dependent

rowth. 

An exact scheme can be constructed in two steps. First, a new 

ariable ˆ f = G (a ) f (t, a ) is defined, which transforms (15) to 

∂ ˆ f 

∂t 
+ G (a ) 

∂ ˆ f 

∂a 
= 0 , ˆ f (0 , a ) = 

ˆ f 0 (a ) . (16)

he second step is to define a change of variable, 

˜ 
 = 

∫ a 

0 

1 

G (a ′ ) da ′ . (17) 

he function ˜ a (a ) computed using (17) is always invertible. The 

ondition G (a ) > 0 implies that ˜ a (a ) is strictly monotonically in-

reasing and correspondingly is one-to-one (injective). In addition, 

˜  (a ) is surjective which follows from the intermediate value the- 

rem by recognizing that G (a ) is bounded and lim a →∞ 

˜ a (a ) = ∞ .

ince ˜ a (a ) is bijective, it is invertible. Reparameterizing ˆ f in terms 

f ˜ a , 

˜ f (t, ̃  a ) = 

ˆ f (t, a ) , (18) 
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∂t ∂a 
 

2 Solving (19) exactly using finite differencing on a uniform mesh in ˜ a may result 

in some slight error since the value of �t may not be a simple fraction that allows 
here ˜ f denotes that ˆ f has been reparameterized, simplifies 

16) to 

∂ ˜ f 

∂t 
+ 

∂ ˜ f 

∂ ̃  a 
= 0 , ˜ f (0 , ̃  a ) = 

˜ f 0 ( ̃  a ) . (19) 

his equation can be solved exactly as demonstrated in the first 

ase. We consider four approaches for solving this class of PBMs: 

1. Apply finite differences directly to (15) on a uniform mesh 

(“Con-Uniform”), 

2. Apply finite differences directly to (15) on a non-uniform mesh 

to locally enforce CFL = 1 (“Con-Nonuniform”), 

3. Apply finite differences to (16) on a non-uniform mesh to lo- 

cally enforce CFL = 1 (“Trans-Nonuniform”), 

4. Employ the exact method developed in this article (“Exact”). 

The upwind, Lax–Wendroff, and leapfrog schemes for the first 

pproach can be written as 

Upwind: 

f j 
i +1 

= f j 
i 

− �t 

�a 
(G (a j ) f j 

i 
− G (a j−1 ) f j−1 

i 
) , (20)

ax–Wendroff: 

f j 
i +1 

= f j 
i 

+ 

(
(�t) 2 

2 

dG 

da 
(a j ) − �t 

)G (a j+1 ) f j+1 
i 

− G (a j−1 ) f j−1 
i 

2�a 

+ 

(�t) 2 

2 

G (a j ) 
G (a j+1 ) f j+1 

i 
− 2 G (a j ) f j 

i 
+ G (a j−1 ) f j−1 

i 

�a 2 
, 

(21) 

eapfrog: 

f j 
i +1 

= f j 
i −1 

− �t 

�a 
(G (a j+1 ) f j+1 

i 
− G (a j−1 ) f j−1 

i 
) , 

f j 
1 

= f j 
0 

− �t 

�a 
(G (a j ) f j 

0 
− G (a j−1 ) f j−1 

0 
) . (22) 

he value of �t is computed using the maximum value of G (a ) to

nforce CFL ≤ 1 , 

t = 

�a 

max G (a ) 
. (23) 

For the second and third approaches, the non-uniform grid is 

onstructed identically using the CFL condition, 

 

j−1 = a j − G (a j )�t. (24) 

t is more convenient to start from the end of the mesh and com- 

ute backwards. Starting from the other direction would poten- 

ially require solving a nonlinear equation. The mesh generation 

tep can be done offline prior to the main computation. The vari- 

us schemes for the second approach can be implemented as 

Upwind: 

f j 
i +1 

= f j 
i 

− �t 
G (a j ) f j 

i 
− G (a j−1 ) f j−1 

i 

a j − a j−1 
, (25) 

ax–Wendroff: 

f j 
i +1 

= f j 
i 

+ 

(
(�t) 2 

2 

dG 

da 
(a j ) − �t 

)G (a j+1 ) f j+1 
i 

− G (a j−1 ) f j−1 
i 

a j+1 − a j−1 

+ 

(�t) 2 

2 

G (a j ) 
G (a j+1 ) f j+1 

i 
− 2 G (a j ) f j 

i 
+ G (a j−1 ) f j−1 

i 

(a j+1 − a j )(a j − a j−1 ) 
(26) 

eapfrog: 

f j 
i +1 

= f j 
i −1 

− 2�t 

a j+1 − a j−1 
(G (a j+1 ) f j+1 

i 
− G (a j ) f j+1 

i 
) 

f j 
1 

= f j 
0 

− �t 

a j − a j−1 
(G (a j ) f j 

0 
− G (a j−1 ) f j−1 

0 
) (27) 
t

3 
The third approach requires performing the variable transfor- 

ation before and after the timestepping, i.e., compute ˆ f 0 (a ) = 

 (a ) f 0 (a ) at the beginning and compute f (t, a ) = 

ˆ f (t, a ) /G (a ) at

he end. These steps can be performed offline. If the mesh is suit- 

bly constructed as described, the upwind scheme can be effi- 

iently implemented as an algorithm with memory reallocation 

nly. The various schemes for the third approach are implemented 

s 

Upwind: 

ˆ f j 
i +1 

= 

ˆ f j 
i 

− G (a j )�t 

a j − a j−1 
( ̂  f j 

i 
− ˆ f j−1 

i 
) , (28) 

ax–Wendroff: 

ˆ f j 
i +1 

= 

ˆ f j 
i 

+ 

(
(�t) 2 

2 

G (a j ) 
dG 

da 
(a j ) − �t G (a j ) 

) ˆ f j+1 
i 

− ˆ f j−1 
i 

a j+1 − a j−1 

+ 

(�t) 2 

2 

(G (a j )) 2 
ˆ f j+1 
i 

− 2 ̂

 f j 
i 

+ 

ˆ f j−1 
i 

(a j+1 − a j )(a j − a j−1 ) 
, (29) 

eapfrog: 

ˆ f j 
i +1 

= 

ˆ f j 
i −1 

− 2 G (a j )�t 

a j+1 − a j−1 
( ̂  f j+1 

i 
− ˆ f j−1 

i 
) 

ˆ f j 
1 

= 

ˆ f j 
0 

− G (a j )�t 

a j − a j−1 
( ̂  f j 

0 
− ˆ f j−1 

0 
) (30) 

The second and third approaches do not result in zero error 

ven though CFL = 1 is enforced by virtue of the mesh construc- 

ion. The local truncation error for the upwind scheme using the 

hird approach is given by 

rror = 

∞ ∑ 

n =2 

(−1) n (G (a j )) n −1 (�t) n −1 

n ! 

[ 
1 

(G (a j )) n −2 

∂ n ˆ f 

∂ t n −1 ∂ a 

+ (−1) n −1 
(

∂ n ˆ f 

∂ t∂ a n −1 
+ 

n −1 ∑ 

k =1 

c n k 

d k G 

da k 
∂ n −k ˆ f 

∂a n −k 

)] 
, (31) 

here c k n is the binomial coefficient, 

 

n 
k = 

(n − 1)! 

(n − k − 1)! k ! 
, ∀ k = 1 , 2 , . . . , n − 1 . (32)

As can be seen from (31) , the discretization error is first order 

ith the first-order term proportional to d G/d a , which is consis- 

ent with the zero error observed for constant G . The error expres- 

ion also demonstrates that the discretization error continuously 

ransitions from first-order accurate to zero error as d n G/da n de- 

reases, which suggests that the third approach is well suited for 

roblems where G (a ) is only weakly dependent on a . 

The fourth approach is slightly more mathematically involved. 

fter performing the first variable transformation used in the third 

pproach, ˜ a (a ) is computed using (17) . Subsequently, ˜ a (a ) can be 

nverted either analytically or numerically to construct a ( ̃  a ) which 

an be inserted into ˆ f 0 (a ) to yield ˜ f 0 ( ̃  a ) . One possible method of 

erforming the inversion numerically is to plot ˜ a (a ) to obtain pairs 

 ̃  a i , a i ) at each point which can then be reordered to give (a i , ̃  a i ) . 
2 

.2.2. PBMs with growth rate G (t) 

Consider a homogeneous PBM with a time-varying growth rate 

n conservative form, 

∂ f (t, a ) + 

∂(G (t) f (t, a )) = 0 , f (0 , a ) = f 0 (a ) . (33)
he user to obtain a solution at the final time of t end = 1 . 0 exactly for example. 
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eing only a function of t , G (t ) can be pulled out of the partial

erivative to give 

∂ f (t, a ) 

∂t 
+ G (t) 

∂ f (t, a ) 

∂a 
= 0 , f (0 , a ) = f 0 (a ) , (34)

ver the real domains t, a ≥ 0 with G (t) continuous in t and G (t) is

ositive and bounded from below, i.e., G (t) ≥ M > 0 , ∀ t . This PBM

s applicable to populations with time-varying driving forces such 

s growing crystals or precipitates under the condition of vary- 

ng supersaturation ( Gunawan et al., 2004 ) or growing cells in 

ioreactors with varying substrate concentrations ( Zhu et al., 20 0 0; 

uedeville et al., 2018 ). Introducing the variable transformation 

˜ 
 = 

∫ t 

0 

G (t ′ ) dt ′ (35) 

nd reparameterization 

˜ f ( ̃ t , a ) = f (t, a ) (36) 

implifies (34) to 

∂ ˜ f ( ̃ t , a ) 

∂ ̃  t 
+ 

∂ ˜ f ( ̃ t , a ) 

∂a 
= 0 , ˜ f (0 , a ) = 

˜ f 0 (a ) , (37) 

hich again can be solved exactly as above. The function 

˜ t (t) is 

nvertible following the same arguments outlined in Section 2.2.1 . 

imilar to the case of G = G (a ) , this model can be solved by three

ifferent approaches: 

1. Apply finite differences directly on (34) with a fixed �t . 

2. Apply finite differences on (34) while either reconstructing the 

mesh (selecting a new �a ) or selecting a new value of �t at 

each timestep to enforce CFL = 1 . 

3. Employ the exact method developed. 

The first approach is the most straightforward, but can result 

n significant numerical error and numerical instability during the 

imulation. The second approach is also comparatively straightfor- 

ard to implement if non-uniform timestepping is used, as the 

uitable value of �t at each timestep can be computed using the 

FL condition and applied accordingly. 

For the second approach, the upwind scheme results in first- 

rder accuracy , with local truncation error 

rror = 

∞ ∑ 

n =2 

− (�t) n −1 

n ! 

[ ( n −1 ∑ 

k =0 

c n k 

d k G 

dt k 
∂ n −1 f 

∂ t n −k −1 ∂ a 

)

+ (−1) n −1 (G (t )) n −1 ∂ n f 

∂t ∂a n −1 

] 
. (38) 

.2.3. PBMs with G (t, a ) = G t (t) G a (a ) 

Consider a homogeneous PBM with a separable time- and size- 

ependent growth rate in conservative form, 

∂ f (t, a ) 

∂t 
= 

∂(G t (t) G a (a ) f (t, a )) 

∂a 
= 0 , f (0 , a ) = f 0 (a ) . (39)

any systems are described by this model, as the growth rate can 

ypically be split into an “environmental” component which would 

e a function of t and a component that is only a function of the

ntrinsic variable a ( Hulburt and Katz, 1964 ). This model can be 

olved exactly by employing the variable transformations devel- 

ped in the previous two cases. By factoring out G t (t) from the 

artial derivative with respect to a and defining ˜ t = 

∫ t 
0 G t (t ′ ) dt ′ as 

n Section 2.2.2 , (39) is first transformed to 

∂ ˜ f ( ̃ t , a ) 

∂ ̃  t 
+ 

∂(G a (a ) ̃  f ( ̃ t , a )) 

∂a 
= 0 , ˜ f (0 , a ) = 

˜ f 0 (a ) , (40) 

hich is now identical in form to (15) . The model equation can 

e further transformed by defining ˆ f ( ̃ t , a ) = G a (a ) ̃  f ( ̃ t , a ) and ˜ a =
4 
 a 
0 G a (a ′ ) da ′ as in Section 2.2.1 which gives 

∂ f̄ ( ̃ t , ̃  a ) 

∂ ̃  t 
+ 

∂ f̄ ( ̃ t , ̃  a ) 

∂ ̃  a 
= 0 , f̄ (0 , ̃  a ) = f̄ 0 ( ̃  a ) , (41) 

here f̄ denotes that ˆ f has been reparametrized in terms of ˜ a . 

q. (41) now can easily be solved exactly. In principle, the ap- 

roaches that can be employed for the above cases can similarly 

e used here. The error analysis is not derived here as the results 

ook like the concatenation of the results from the previous two 

ections. 

.3. Nonhomogeneous PBMs with constant growth 

Consider the nonhomogeneous PBM, 

∂ f (t, a ) 

∂t 
+ g 

∂ f (t, a ) 

∂a 
= h (t, a ) , f (0 , a ) = f 0 (a ) . (42)

While it is not possible to generically employ a variable trans- 

ormation to (42) to transform it into a form that can be numer- 

cally solved exactly, the numerical accuracy can be significantly 

mproved by enforcing CFL = 1 . The local truncation error for the 

pwind scheme is 

rror = 

∞ ∑ 

n =2 

[ 
1 

n ! 

(
(�t ) n −1 −

(
�a 

g 

)n −1 )∂ n f 

∂t n 

+ 

(�a ) n −1 

n ! 

( n −1 ∑ 

k =0 

(−1) k 

g k 
∂ n −1 h 

∂ t k ∂ a n −k −1 

)] 
. (43) 

y enforcing g�t 
�a 

= 1 , this error expression simplifies to 

rror = 

∞ ∑ 

n =2 

(�a ) n −1 

n ! 

( n −1 ∑ 

k =0 

(−1) k 

g k 
∂ n −1 h 

∂ t k ∂ a n −k −1 

)
. (44) 

he remaining terms depend on successively higher order deriva- 

ives of h (t, a ) , which results in the error approaching zero as the

ependency of h on t and a decreases, similarly as outlined in 

ection 2.2.1 . The three schemes for this class of PBMs are 

Upwind: 

f j 
i +1 

= f j 
i 

− g�a 

�t 
( f j 

i 
− f j−1 

i 
) + �t h (t i , a 

j ) . (45)

ax–Wendroff: 

f j 
i +1 

= f j 
i 

− 1 
2 

g�t 
�a 

(
f j+1 
i 

− f j−1 
i 

)
+ 

1 
2 

(
g�t 
�a 

)2 (
f j+1 
i 

− 2 f j 
i 

+ f j−1 
i 

)
+ �t h 

(
t i , a 

j 
)

− ( �t ) 
2 

2 

(
g ∂h 

∂t 

(
t i , a 

j 
)

− ∂h 
∂a 

(
t i , a 

j 
))

. 
(46) 

eapfrog: 

f j 
i +1 

= f j 
i −1 

− g�t 

�a 
( f j+1 

i 
− f j−1 

i 
) + 2�t h (t i , a 

j ) , 

f j 
1 

= f j 
0 

− g�t 

�a 
( f j 

0 
− f j−1 

0 
) + �t h (t 0 , a 

j ) . (47) 

When CFL = 1 is enforced, the upwind scheme can be imple- 

ented efficiently and at low cost, requiring one function evalua- 

ion and one multiplication in addition to the memory reallocation 

t each node: 

f j 
i +1 

= f j−1 
i 

+ �t h (t i , a 
j ) . (48) 

.4. PBMs with a linear nonhomogeneous term 

A large number of PBMs have a linear nonhomogeneous term 

uch as the von Foerster’s equation ( Trucco, 1965 ), 

∂ f (t, a ) + 

∂ f (t, a ) = −λ(t, a ) f (t, a ) , f (0 , a ) = f 0 (a ) . (49)

∂t ∂a 
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Table 1 

Summary of functional forms of μ. 

Form of λ Form of μ Functional form of μ

Constant μ(a ) ∨ μ(t) e λa ∨ e λt 

λ(a ) μ(a ) exp 
(∫ a 

0 λ(a ′ ) da ′ 
)

λ(t) μ(t) exp 
(∫ t 

0 λ(t ′ ) dt ′ 
)

λ(t, a ) μ(t, a ) exp 
(∫ t 

0 λ(t ′ , t ′ + a 0 ) dt ′ 
)
, a 0 = a − t
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r
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e
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f

t

p

3

p

 

T

F

3

w

 

w

p

c

c

T

s

e seek a variable transform of the form 

ˆ f (t, a ) = μ f (t, a ) which

ransforms (49) into 

∂ ˆ f 

∂t 
+ 

∂ ˆ f 

∂a 
= 0 , (50) 

hich can be solved exactly. Eq. (50) can be expanded to yields a 

DE for μ, 

1 

μ

(
∂μ

∂t 
+ 

∂μ

∂a 

)
= λ. (51) 

 general expression for μ can be derived from (51) by simplifying 

o an ODE or by using the method of characteristics. A summary 

f the functional forms of μ can be found in Table 1 . Additional 

etails are in the Appendix (Section A5.1). 

Three finite difference schemes for this class of PBMs (49) are 

Upwind: 

f j 
i +1 

= f j 
i 

− �t 

�a 
( f j 

i 
− f j−1 

i 
) − �t λ(t i , a 

j ) f j 
i 
. (52)

ax–Wendroff: 

f j 
i +1 

= f j 
i 

− 1 
2 

�t 
�a 

(
f j+1 
i 

− f j−1 
i 

)
− �t λ

(
t i , a 

j 
)

f j 
i 

+ 

1 
2 

(
�t 
�a 

)2 (
f j+1 
i 

− 2 f j 
i 

+ f j−1 
i 

)
+ 

1 
2 ( �t ) 

2 
(

∂λ
∂a 

(
t i , a 

j 
)

− ∂λ
∂t 

(
t i , a 

j 
))

f j 
i 

+ 

1 
2 

( �t ) 
2 

�a 
λ
(
t i , a 

j 
)(

f j+1 
i 

− f j−1 
i 

)
+ 

( �t ) 
2 

2 

(
λ
(
t i , a 

j 
))2 

f j 
i 
. 

(53) 

eapfrog: 

f j 
i +1 

= f j 
i −1 

− �t 

�a 
( f j+1 

i 
− f j−1 

i 
) − 2�t λ(t i , a 

j ) f j 
i 
, 

f j 
1 

= f j 
0 

− �t 

�a 
( f j 

0 
− f j−1 

0 
) − �t λ(0 , a j ) f j 

0 
. (54) 

The exact scheme first computes ˆ f (0 , a ) = μ(0 , a ) f 0 (a ) , solves

he transformed PDE exactly, and then recovers the true solu- 

ion f (t, a ) by computing f (t, a ) = 

ˆ f (t , a ) /μ(t , a ) . The first and last

teps can be computed offline. 

. Results 

This section is also structured as a series of cases whereby each 

ase presents a numerical example for a class of PBMs. The error 

f various schemes is compared via the Root Mean Square Error, 

MSE = 

√ ∑ n 
i =1 (y i − y analytical ,i ) 2 

n 

. (55) 

.1. Case 1: PBMs with constant growth rate 

Consider a PBM adapted from Gunawan et al. (2004) , 

∂ f 

∂t 
+ 0 . 1 

∂ f 

∂a 
= 0 , f 0 (a ) = 100 exp 

( −a 

0 . 01 

)
. (56)

 no-flux boundary condition is applied at the right-end of the do- 

ain and a modified Dirichlet boundary condition at the left-end 

f the domain which assumes that values of f at the ghost nodes 

re zero ( Gunawan et al., 2004 ). Exemplar simulation results and 

he convergence analysis can be seen in Fig. 1 . 
5 
.2. Case 2: PBMs with growth rate G (t, a ) 

Consider the PBM adapted from Gunawan et al. (2008) , 

∂ f 

∂t 
+ 

∂(G (a ) f ) 

∂a 
= 0 , f 0 (a ) = 50 exp 

(
−(a − 0 . 2) 2 

0 . 0 0 05 

)
, (57) 

ith G (a ) = 0 . 434 + 0 . 2604 a . 

Naive finite differencing (“Con-Uniform” in Fig. 2 ) results in the 

owest accuracy, with the upwind scheme and leapfrog schemes 

emonstrating sub-first-order convergence. The RMSE from the 

eapfrog scheme plateaus as a result of numerical dispersion at the 

ight end of the domain, which persists with increasing mesh res- 

lution. It is interesting that enforcing ∂(G (a ) f ) 
∂a 

= 0 as the bound- 

ry condition ( Novy et al., 1991 ) instead of ∂ f 
∂a 

= 0 at the right end

f the domain removes the numerical dispersion, resulting in the 

eapfrog scheme performing similarly to the Lax–Wendroff scheme 

see Figure A3 in the Appendix). 

The second and third approaches (“Con-Nonuniform” and 

Trans-Nonuniform”) result in nearly identical convergence prop- 

rties for all the three schemes and is able to perform much better 

han the naive finite differencing. Typically, it is prudent to formu- 

ate and solve the model equation in a way that preserves the un- 

erlying physics of the equation instead of transforming the model 

quation ( Ford Versypt and Braatz, 2014 ). For this particular prob- 

em, employing the variable transformation does not impact the 

ccuracy. Interestingly, the Lax–Wendroff scheme performs compa- 

ably to the upwind scheme and demonstrates first-order conver- 

ence. These results are consistent with a recent study that showed 

hat the Lax–Wendroff scheme for nonuniform grids has first-order 

r worse performance ( Liska et al., 2021 ). The leapfrog scheme per- 

orms the best, displaying second-order convergence. Most notably, 

he last approach (“Exact”) is able to solve the problem to machine 

recision, demonstrating the capability of the proposed scheme. 

.3. Case 3: Nonhomogeneous PBMs with constant growth 

Consider the PBM with a nonhomogeneous term that only de- 

ends on a , 

∂ f 

∂t 
+ 0 . 1 

∂ f 

∂a 
= 1 + 0 . 1 a + 0 . 1 a 2 , f 0 (a ) = 100 exp 

( −a 

100 

)
. (58)

he higher accuracy obtained by enforcing CFL = 1 is shown in 

ig. 3 . 

.4. Case 4: PBMs with a linear nonhomogeneous term 

Consider an example of the von Foerster equation, 

∂ f 

∂t 
+ 

∂ f 

∂a 
= −a f, f 0 (a ) = 50 exp 

(−(a − 0 . 2) 2 

0 . 0 0 05 

)
(59) 

ith the boundary condition 

f (t, a = 0) = 

∫ ∞ 

0 

β(a ) f (t, a ) da ≡ B (t) , (60)

here β(a ) can be understood as the “rate of birth.” For the pur- 

oses of this example, β(a ) = 0 is assumed. A Neumann boundary 

ondition is enforced at the other end of the domain. The analyti- 

al solution is given by Chou and Greenman (2016) 

f (t, a ) = 

{
f 0 (a − t) exp (− 2 at −t 2 

2 
) , a ≥ t, 

0 , a < t. 
(61) 

he proposed numerical scheme solves the PBM to machine preci- 

ion, whereas the other schemes do not ( Fig. 4 ). 
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Fig. 1. Simulation results for Case 1 with CFL = 1 and N cells = 200 at time t = 4 . 0 . The ability for all three schemes to solve the problem with CFL = 1 to machine pre- 

cision is indicated by the RMSE plot. Any other CFL value results in significantly higher numerical errors. Numerical results at other CFL numbers can be found in the 

Appendix (Section A1.2). 

Fig. 2. Simulation results for Case 2. N cells = 200 for “Con-Uniform and N cells = 181 for “Con-Nonuniform” and “Trans-Nonuniform”. The first three approaches result in 

significantly larger errors than the “Exact” scheme. However, when a non-uniform mesh is applied, even with a comparatively small number of cells, the numerical results 

have good qualitative agreement with the true solution. Additional results employing the different numerical schemes can be found in the Appendix (Section A2.2). 
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. Discussion 

The proposed approach of employing the upwind scheme with 

 combination of variable transformations and solving the equa- 

ion at the limit of numerical stability ( CFL = 1 for the 1D case

ith the upwind scheme) is able to effectively solve a few classes 

f PBMs to machine precision or significantly reduce numerical er- 

or in other cases. Even where the variable transformation step is 

voided, by simply enforcing CFL = 1 as demonstrated by the var- 

ous case studies, qualitatively satisfactory results can be obtained 

t low mesh resolutions such as in Case 3. This result is remark- 

ble, as conventional wisdom advises choosing simulation param- 

ters away from the stability limit, e.g., CFL < 1 LeVeque (2002) . 

The proposed numerical scheme has two noteworthy benefits. 

irstly, highly efficient numerical algorithms can be constructed 
6 
asily as demonstrated in the Methods section. Where the PBM can 

e transformed into a form such as (19) , the solution process sim- 

ly requires memory reallocation as steps such as the mesh con- 

truction and variable transformation can be computed offline. In 

ther cases, as in the third example, the algorithm would only in- 

olve other comparatively cheap steps such as a simple function 

valuation and a multiplication. The second benefit is that the pro- 

osed scheme can be extended to higher dimensional problems. 

hile not demonstrated in the present work, the construction of 

n appropriate n-dimensional mesh to solve the problem at CFL max 

nd the definitions for the variable transforms can be carried out 

sing the strategy described in this article. 

While not explicitly outlined, the numerical schemes can be ex- 

ended to varying �t such as in adaptive timestepping which is 

seful for the solution of models where the PBM is coupled with 
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Fig. 3. Simulation results for Case 3. N cells = 200 for all cases. For any fixed CFL value, all the schemes result in comparable numerical error, with all the schemes demon- 

strating first-order error at CFL = 1 and sub-first-order error for lower values. Even at a low mesh resolution of 200 cells, employing CFL = 1 enables all the schemes to 

qualitatively match the “analytical” solution. 

Fig. 4. Simulation results for Case 4. N cells = 200 with CFL = 1 . The upwind and Lax–Wendroff schemes demonstrate the expected first- and second-order convergence re- 

spectively and the proposed exact scheme is able to solve the problem to machine precision. The leapfrog scheme demonstrates severe numerical instability which results 

in non-monotonically decreasing error and is omitted in (a) for clarity. Additional results including results using the leapfrog scheme can be found in the Appendix (Sec- 

tion A5.2). 

o

t

m

d

w

e

c

b

s

o

a

d

2

c

f

t

t

e

c

p

ther equations. The exact schemes can be implemented as func- 

ion calls to provide the solution to the PBM at any arbitrary time, 

aking the integration of the exact scheme into a solution proce- 

ure straightforward. The non-exact schemes can be implemented 

ith varying �t . The adaptive timestepping should be set up to 

nforce the CFL condition at each time step to ensure numeri- 

al stability. Numerical diffusion and/or dispersion can be reduced 

y regenerating the mesh 

3 at each timestep to keep CFL = 1 . The 

trategies can also be extended to finite volumes. For some classes 

f population balance models, the error is zero, that is, the cell- 

veraged values are exact. 
3 Which may involve interpolation. 

5

s

7 
In practice, PBM model predictions deviate from experimental 

ata (e.g., see Liu et al., 2020; Lapidot et al., 2019; Zhan et al., 

017 ). While discretization error from the solution of the PBM can 

ontribute to the overall error, it is often overshadowed by other 

actors such as parameter uncertainty and inherent limitations of 

he PBM to fully describe the physics of a system. As such, even in 

he case where the proposed scheme is unable to solve the model 

quation to machine precision, the numerical accuracy even with a 

omparatively low mesh resolution can be satisfactory for the pur- 

oses of employing PBMs to describe the process of interest. 

. Conclusions 

The upwind scheme, when applied suitably, can be used to 

olve a variety of PBMs either to machine precision or with suf- 
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ciently high accuracy even at low mesh resolutions for most ap- 

lications. The use of variable transformations and specially con- 

tructed meshes in conjunction with solving the problem at the 

imit of numerical stability is what enables the efficacy of the pro- 

osed numerical scheme. Even where only parts of the proposed 

cheme are used such as constructing a non-uniform mesh to lo- 

ally enforce CFL = 1 , significant improvements in the convergence 

roperties of the numerical solution can be observed. Conveniently, 

he proposed scheme can be implemented very efficiently, requir- 

ng memory reallocation and in some cases, a minimal number of 

oating point operations and function calls only. 
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