Weighing the DNA Content of Adeno-Associated Virus Vectors with Zeptogram Precision Using Nanomechanical Resonators

ABSTRACT: Quantifying the composition of viral vectors used in vaccine development and gene therapy is critical for assessing their functionality. Adeno-associated virus (AAV) vectors, which are the most widely used viral vectors for in vivo gene therapy, are typically characterized using PCR, ELISA, and analytical ultracentrifugation which require laborious protocols or hours of turnaround time. Emerging methods such as charge-detection mass spectrometry, static light scattering, and mass photometry offer turnaround times of minutes for measuring AAV mass using optical or charge properties of AAV. Here, we demonstrate an orthogonal method where suspended nanomechanical resonators (SNR) are used to directly measure both AAV mass and aggregation from a few microliters of sample within minutes. We achieve a precision near 10 zeptograms which corresponds to 1% of the genome holding capacity of the AAV capsid. Our results show the potential of our method for providing real-time quality control of viral vectors during biomanufacturing.

KEYWORDS: nanofluidics, mechanical resonators, gene therapy, nanoparticles, viral vectors, AAV

Adeno-associated viruses (AAV) are the most widely used viral vectors for in vivo gene therapy due to their nonpathogenicity, low immunogenicity, and long-term gene expression. However, AAV biomanufacturing is inefficient, producing only a small percentage (5–30%) of capsids containing the therapeutic gene; the majority of the produced capsids are empty which decreases the efficacy of gene therapy, increases its cost, and has safety considerations. To increase the efficiency of AAV biomanufacturing, it is critical to provide real-time quality control to the process. As quality control is limited when using traditional molecular biology methods PCR and ELISA, in part due to their long turnaround times, emerging methods based on mass measurement provide faster readouts for assessing the ratio of full (or “heavy”) to empty (or “light”) AAV capsids. In particular, mass spectrometers have been enhanced to independently measure mass through charge detection, achieving attogram (or pDa) resolution. Multitube static light scattering detectors optically measure mass with subattogram (or kDa) resolution. More recently, microscopy-based methods correlating interferometric contrast and mass have also achieved kDa mass resolution. These methods offer potential for real-time quality control and, although they depend on the optical or charge properties of a given AAV sample, this dependence is addressed by using standard protein calibrants with corrections for nucleic acids. Here, we directly measured AAV mass using mechanical resonators (SNR) to weigh AAVs in solution by measuring their buoyant mass, referred to from this point on as “mass” (Figure 1a). The SNR is a hollow cantilever driven to vibrate at its resonant frequency \(f_r \); when a single particle, such as a virus, flows through the cantilever, the resonant frequency of the cantilever transiently changes by \(\Delta f_r \) in proportion to the particle’s mass. Notably, the optical or charge properties of the virus do not affect the readout signal \(\Delta f_r \), thus the resonators are routinely calibrated with a solution of particles with reference mass.

We previously used this approach to measure the mass of gold nanoparticles down to 10 nm in diameter corresponding to a mass of 10 ag. However, a single AAV has a mass of 1–2 ag (molecular weight of MW_{AAV} = 3.8–5.4 MDa), thus the frequency change \(\Delta f_r \) from a single AAV is occluded by noise. Although nanomechanical resonators have the potential to weigh single AAVs in a vacuum environment, weighing AAVs in aqueous solution would enable rapid turnaround times which are ultimately required for real-time quality control.

Received: October 25, 2021
Revised: February 3, 2022
Published: February 11, 2022
To circumvent the noise limit for weighing single AAVs in solution, we flowed AAV samples at concentrations of $10^{12} - 10^{13}$ particles/ml such that tens to hundreds of AAVs simultaneously flow through the resonator (Figure 1a). This results in a complex time-series signal of frequency change $\Delta f(t)$ which contains information about the average mass of the particles as well as the characteristics of the flow. This concept has previously been used in microchannel resonators to measure the mass of polystyrene and gold nanoparticles weighing 20 ag, which are an order of magnitude heavier than AAVs. In addition, the signal $\Delta f(t)$ also measures the volume of the particles in an approach similar to dynamic light scattering. Here, we scaled down the resonators from the micro- to nanoscale and used spectral denoising to enable mass measurement of AAVs in the concentration range of $10^{12} - 10^{13}$ particles/mL achieving a precision near 10 zeptograms (zg) in a 10 min sampling window.

To enable measurement of AAV mass, we first theoretically characterized the root-mean-square Δf_{rms} of signal $\Delta f(t)$ as a function of the properties of the resonator in the form of a vibrating cantilever. It has been shown that Δf_{rms} (equivalent to the variance σ^2 when the mean is $\mu = 0$) is proportional to the product cm_{np}^2 of average concentration c and average mass m_{np} of nanoparticles. Here, we derived $\Delta f_{rms} = Scm_{AAV}^2$ where m_{AAV} is the average mass of AAV nanoparticles, and the sensitivity $S = f^2a_VV/(4m_{eff}^2)$ depends on the resonance frequency f, the volume V of the fluid channel, the effective mass m_{eff} of the cantilever, and the volume utilization factor a_V related to the resonant mode n_m and the dimensions of the cantilever (Figure 1b, Supporting Information S2, S3, S4). The sensitivity, S, for a length scale, L, of the cantilever scales as $S \sim L^{-5}$ (Figure 1b, Supporting Information S2) indicating that the smaller the cantilever, the greater the Δf_{rms}. On the basis of the scaling of S and the availability of previously characterized cantilevers, we used the one with the smallest length $L = 17.5 \mu m$ that vibrates at first resonant mode with frequency f. Inside the cantilever, we flowed solutions of AAVs with different DNA content or genetic constructs (denoted by orange color). (b) Sensitivity S of root-mean-square Δf_{rms} of signal $\Delta f(t)$ versus length scale L of cantilever. Sensitivity is in units of Hz2 per nanoparticles of 1 ag buoyant mass at a concentration of 10^{13} particles/ml. Dashed line and triangle denote theoretical scaling with length $S \sim L^{-5}$, and black points represent experimental designs (Supporting Information S4). (c) Experimental time-series signals of change $\Delta f(t)$ of resonant frequency exclusively due to noise in the absence of AAVs (gray) and due to flowing AAVs with distinct genetic constructs, having nominal number n_{DNA} of DNA kilobases (kb), $n_{DNA} = 0, 3.3, 4.9$ kb (from top to bottom in orange). (d) Measured mass m_{AAV} of AAVs calculated from time-series data of panel c versus n_{DNA}. Each point represents an analyzed time-series trace of 30 sec. The central marks and black squares respectively indicate the median and mean. The bottom and top edges of the boxes respectively indicate the 25th and 75th percentiles. The bottom and top whiskers indicate the 5th and 95th percentiles. Percentiles are defined by assuming points follow normal distributions.
μm, a fluid channel with a cross-sectional area 700 × 700 nm², and a baseline resonant frequency \(f \approx 4.5 \text{ MHz} \) (Supporting Information S4).

Next, we measured AAV solutions with distinct genetic constructs, having nominal number \(n_{\text{DNA}} \) of DNA kilobases (kb), \(n_{\text{DNA}} = 0, 3.3, \) and 4.9 kb (Supporting Information S5). In the context of this study, we characterized the AAV5 serotype which is less prone to aggregation than AAV2 which is most commonly used in gene therapy.26 Prior to testing, our AAV solutions were filtered and their purity was verified with SDS-PAGE and InstantBlue Staining (Supporting Information S5). When flowing these AAV samples in the SNR, we measured signals of frequency change \(\Delta f(t) \) which were visually distinct from the baseline noise (Figure 1c). Furthermore, we calculated the mass \(m_{\text{AAV}} \) from the signals \(\Delta f(t) \) and found that the measured mass for each AAV sample is distinguishable from one another (Figure 1d).

To validate our measurements, we performed experiments with nanoparticles of known mass as a reference standard for calibration. In particular, we used gold nanoparticles of nominal diameter \(d_{\text{Au,nom}} = 5 \text{ nm} \) (Supporting Information S5). Using dynamic light scattering (DLS) we measured their mean hydrodynamic diameter and converted it to reference mass of \(m_{\text{Au,ref}} = 1.51 \text{ ag} \) which is similar to that of AAV (Supporting Information S6). Furthermore, to gain insight into the experimental measurements, we developed a computational model based on the advection and diffusion of nanoparticles as they transit through the cantilever via a laminar flow, determined by a low Reynolds number29 (Supporting Information S7, Video S1). However, when we flowed gold nanoparticles in the cantilever, we found that calculating \(\Delta f_{\text{rms}} \) in the presence of noise overpredicts the nanoparticle mass (\(m_{\text{Au}} > 2 \text{ ag} \)) in both the experiments and simulations (Figure 2, gray).

To correct for the overprediction of nanoparticle mass, we first simulated the “pure” signal \(\Delta f(t) \) caused by the flow of nanoparticles inside the cantilever in the absence of noise. We found that \(\Delta f(t) \) in the frequency domain is well-represented by a canonical Gaussian form \(e^{-\xi^2} \), and when we calculated \(\Delta f_{\text{rms}} \) using a Gaussian fit in the frequency domain we correctly predicted the nanoparticle mass (Supporting Information S8). We then experimentally characterized the noise in our system in the frequency domain and identified a canonical form \(1/\xi^2 \) of colored noise where \(\xi \) represents the spectral frequency, and the decay factor \(a \) lies in the range \(a = 1−2 \) (Supporting Information S9). Combining the canonical forms for “pure” signal and noise, we developed a spectral denoising method that calculates \(\Delta f_{\text{rms}} \) in the frequency domain while neutralizing the effect of noise (Supporting Information S9). By applying spectral denoising to experiments and simulations of gold nanoparticles, we obtained results which are consistent with those obtained from dynamic light scattering (Figure 2, blue and red). Remarkably, the spectral denoising method applied to data from both the experiments and simulations leads to a measurement precision of 10−100 zg (1 zg = 10⁻³ ag), defined here as the standard error calculated over a 10 min sampling window for concentrations of \(\epsilon = 5−20 \times 10^{12} \text{ particles/ml} \) (Supporting Information S10).

To obtain a validation of our AAV measurements with the SNR, we first used established methods for characterizing AAVs27−30 (Supporting Information S5). Specifically, we characterized an AAV sample encompassing a genetic construct of green fluorescent protein (GFP) with a nominal number \(n_{\text{DNA}} = 3.3 \text{ kb} \) using alkaline agarose gel electrophoresis (AAGE) and analytical ultracentrifugation (AUC) (Figure 3a,b). AAGE revealed the presence of two distinct DNA bands; the “heavy” (2.8 kb) is close to the nominal number of the construct, and the “heavy cs” (4.7 kb) likely corresponds to a maximum-size construct that can be packaged inside the capsid as a result of an unintended formation of a self-complementary (cs) DNA sequence31 (Figure 3a), AUC and AAGE consistently revealed the presence of these two constructs. In addition, AUC identified residual DNA, “light” (~0 kb) and “intermediate” (<3.3 kb) capsids as well as aggregates (Figure 3b, Supporting Information S11).

We found that \(\Delta f_{\text{rms}} \) from SNR method (Figure 3d) measures AAV mass that is consistent with the results from AAGE and AUC. By using spectral denoising (Supporting Information S9), simulations (Supporting Information S7) and conversions of measured AAV mass to DNA content (Supporting Information S1), our measurements are within the margin specified by AUC (Figure 3d). In addition, our results are consistent with static light scattering (SLS) measurements, an orthogonal method recently used for characterizing AAVs28−30 (Figure 3d, Supporting Information S12). Overall, we found that our SNR measurements are reliable down to a concentration limit of \(\epsilon \approx 5 \times 10^{12} \text{ particles/ml} \) (Figure 3d). Below that limit, the contribution of noise to \(\Delta f_{\text{rms}} \) is higher than that of the AAV signal (Supporting Information S13). Notably, the precision of AAV mass measurements, similar to that of gold nanoparticles (Figure 2), is maintained at a near 10 zg level at the upper
concentration range of \(c = 2 \times 10^{13}\) particles/mL (Supporting Information S10).

Simultaneously with measuring AAV mass, we determined the mass \(m_a\) of single aggregates, each of which manifests as a transient decrease in resonant frequency (Figure 3c, \(\Delta f_s < 0\)) as each aggregate passes through the cantilever. As a basis for comparison, we confirmed the presence of soluble aggregates in our AAV sample using DLS although DLS cannot in principle resolve the heterogeneity of aggregates (Supporting Information S6). The presence of aggregates was not only evident in analytical ultracentrifugation (Figure 3b) but also in chromatographic methods. In particular, anion exchange chromatography analysis (AEX)\(^{32}\) exhibited long tailing at higher elution times (Supporting Information S14) while size exclusion chromatography (SEC) showed long tailing at the lower elution times (Supporting Information S15). Using SNR, we directly measured the mass of these single aggregates and characterized their heterogeneity (Figure 3e). Importantly, the detection limit for weighing single aggregates by our method depends on the baseline frequency noise of \(\Delta f_{\text{rms}}\) being dependent on \(c\).

We leveraged the measurement of AAV mass to convert our readout to a ratio of full to empty or “heavy to light” capsids which, along with aggregation, is a critical quality attribute of a given AAV product.\(^5\) We thus measured the mass of AAV mixtures with different volume ratios of AAV heavy as AAV-GFP (\(n_{\text{DNA}} = 3.3\) kb) and AAV light as AAV-empty without a nominal DNA construct (\(n_{\text{DNA}} = 0\) kb). We observed that our experimental results are consistent with our simulations with a trend of increasing mass for mixtures of higher percentage of heavy-to-light capsids (Figure 4a). In addition, given the theoretical mass values for AAVs based on their DNA content, (Supporting Information S1), we converted the mass \(m_{\text{AAV}}\) to percentage of heavy AAV capsids, obtaining consistent percentages with those determined by static light scattering for the same mixture ratios (Figure 4b).
success of AAV characterization will rely on a synergistic pipeline of multiple orthogonal methods that provide different signal detection readouts. Preceding this downstream characterization, upstream purification is equally important to minimize biases due to the presence of impurities. In particular, chromatography-based methods, such as size exclusion or anion exchange chromatography remain indispensable elements of the overall pipeline of AAV characterization despite their limitations in resolving capsid heterogeneity. Such characterization coupled with molecular engineering, process development, as well as mathematical modeling/simulation of the AAV biomanufacturing process may lead to new paradigms for scaling up production of viral vectors. Although our approach is showcased here for AAV, we envision it is also applicable to a broader context of viral vectors, thereby paving the ground for increasing the efficacy of gene therapy treatments while maintaining their affordability and clinical safety.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04092.

Detailed information on supporting figures, theory, and methods (PDF)

Video S1 showing simulation of adeno-associated viruses flowing through suspended nanochannel resonator (top) with resulting signal of change in resonant frequency $\Delta f(t)$ as viruses are flowing through the resonator (bottom) (MP4)

AUTHOR INFORMATION

Corresponding Authors
Georgios Katsikis – Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0003-3239-4924; Email: geokats@mit.edu, katsikis.g@gmail.com
Scott R. Manalis – Koch Institute for Integrative Cancer Research, Department of Mechanical Engineering, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0001-5223-9433; Email: srm@mit.edu

Authors
Iris E. Hwang – Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Present Address: Pioneer Natural Resources, Irving, Texas 75038, United States; orcid.org/0000-0001-9223-8187
Wade Wang – BioMarin Pharmaceutical, Inc., Novato, California 94949, United States; orcid.org/0000-0002-7639-2122
Vikas S. Bhat – BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
Nicole L. McIntosh – BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
Omair A. Karim – BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
Bartlomiej J. Blus — BioMarin Pharmaceutical, Inc., San Rafael, California 94901, United States; orcid.org/0000-0002-6979-0851
Sha Sha — Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Present Address: Ultragenyx, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0002-4514-5671
Vincent Agache — Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France; orcid.org/0000-0001-7796-9467
Jacqueline M. Wolfrum — Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Stacy L. Springs — Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0003-2133-5689
Anthony J. Sinskey — Center for Biomedical Innovation and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0002-1015-1270
Paul W. Barone — Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0001-6802-6846
Richard D. Braatz — Center for Biomedical Innovation and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0003-4304-3484

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.1c04092

Author Contributions

Funding
This study is supported by a grant from the U.S. Food and Drug Administration (Grant ID 1R01FD006584-02, Continuous Viral Vector Manufacturing based on Mechanistic Modeling and Novel Process Analytics). This study is also supported by a grant from the Massachusetts Life Science Center as part of the Building Breakthroughs program. S.R.M. and G.K. acknowledge support from the Virginia and D.K. Ludwig Fund for Cancer Research.

Notes
The authors declare the following competing financial interest(s): S.R.M. is a co-founder of Travera and Afinity Biosensors, which develops technologies relevant to the research presented in this work.

ACKNOWLEDGMENTS
We acknowledge Julie Sutton for discussion on noise characterization and help with experimental configurations of the suspended nanochannel resonator. We acknowledge Betsy Skrip from MIT Center for Biomedical Innovation for supporting the design of the figures.

REFERENCES