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A B S T R A C T   

The product quality for biopharmaceutical production processes is characterized in terms of critical quality at-
tributes. Some quality attributes, however, cannot be easily measured in a timely fashion to support effective 
intervention and mitigation, particularly for assays that are time-consuming and/or late in the purification 
process. This article describes the application of predictive modeling techniques to industrial end-to-end bio-
manufacturing datasets for two monoclonal antibodies to predict critical quality attributes. Methods are pro-
posed for combining time series and batch data that significantly improve the accuracy of the model predictions. 
These tools are able to take batch-to-batch correlations into account to construct more accurate predictive 
models from biomanufacturing datasets.   

1. Introduction 

Prescription drug sales are predicted to continue strong growth, 
reaching $1.4 trillion in 2026 worldwide. Biopharmaceuticals – prod-
ucts derived from biological organisms for the purpose of treating or 
preventing diseases – are expected to grow even further from the current 
52% to 57% of pharmaceutical sales by 2026 (Evaluate, 2021; Hong 
et al., 2018). One of the fastest-growing classes of biopharmaceuticals is 
monoclonal antibodies (mAbs), which may be used to treat a variety of 
diseases including those associated with cardiovascular, respiratory, 
immunology, and oncology (Singh et al., 2018). Currently, mAbs ac-
count for the second largest type of drugs in the pipeline, surpassed only 
by small molecules (Lloyd, 2021). 

A challenge of mAbs, and biopharmaceuticals more generally, is 
their high production cost, which is associated with the high doses and 
quality standards needed to achieve the desired effects (Farid, 2007). 
These quality requirements are achieved in part by using process 
analytical technology (PAT), which is a system developed to design, 

analyze, and control manufacturing in a timely fashion while moni-
toring critical quality, performance, and process parameters. Critical 
quality attributes (CQAs) are measured throughout the process to inform 
the operators about the quality of the products (FDA, 2004). Besides 
ensuring quality, PAT seeks to improve manufacturing efficiency and 
success metrics via earlier identification and mitigation of deviations in 
process parameters and CQAs. 

For many CQAs, however, the attribute cannot be easily measured in 
a timely fashion to support effective intervention and mitigation, 
particularly for assays that are time-consuming and/or late in the pu-
rification process. Instead, CQAs may be predicted via data-driven 
methods based on process parameters and performance indicator mea-
surements (Severson et al., 2015, 2018; Maruthamuthu et al., 2020). 
Such papers have demonstrated the application of both traditional 
multivariable statistical methods (e.g., partial least squares) and more 
modern machine learning methods to industrial data for mAb produc-
tion. Some of these models include raw material properties and cell 
culture process variables as model inputs (Rathore et al., 2015). 
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To build these models, the data are first collected into a matrix (aka, 
a two-dimensional tensor), with batch number along one ordinate and 
the process variables along the other (batch × process variable). Time 
can be treated as an additional dimension, to create a third-order tensor 
(batch × process variable × timestep). A common practice is to unfold 
the third-order tensor or to use different timesteps as different features 
to create a matrix for which standard matrix-based multivariate data 
analytics (e.g., partial least squares) can be applied (Stubbs et al., 2018). 
In biopharmaceutical manufacturing, some process variables are 
measured at multiple time points during the production process whereas 
other variables are only measured once or significantly less frequently 
(Rathore et al., 2015). Methods have been developed for each type of 
order, but methods are not available for datasets of multiple orders. This 
practice raises the question of how to effectively combine datasets with 
different tensorial orders to guarantee accurate CQA predictions for 
quality control of mAb production. 

Tensorial analytical methods have been applied to process moni-
toring and CQA prediction for the fed-batch fermentation of penicillin 
(Hu and Yuan, 2009; Luo et al., 2013, 2014, 2015). The latter two 
publications consider how to address data of varying sizes in one 
dimension of the tensor. The most common approach is to use data 
alignment techniques such as dynamic time warping, but there are also 
generalized tensorial methods capable of handling uneven lengths in 
one mode (Luo et al., 2014, 2015). Various tensorial methods exist in the 
literature, such as multiway principal component analysis (PCA), mul-
tiway partial least squares (PLS), higher order PLS models (HOPLS), 
TUCKER decomposition, and parallel factor analysis (PARAFAC) (Luo 
et al., 2014, 2016). Simpler methods such as multiway PLS are much 
more computationally efficient than the more complicated methods, and 
have been reported to produce model predictions of similar accuracy 
(Luo et al., 2016). In contrast to handling varying mode lengths, this 
article addresses datasets consisting of tensors with different numbers of 
modes. 

As cited above, methods are available for building models from data 
of a single order, such as second- or third-order tensorial data, but not on 
building models from datasets that contain multiple orders. We propose 
several distinct approaches for combining second- and third-order ten-
sorial data to build models, which were motivated by our efforts to build 
data-driven models for predicting CQAs for mAb production processes. 
Additionally, the ability of tensorial approaches to improve CQA pre-
dictions by accounting for batch-to-batch correlations is demonstrated. 
Overall, the full utilization of datasets of different orders and have 
batch-to-batch correlations is shown to significantly improve the pre-
diction accuracy compared to the widely used approach of only utilizing 
second-order data. To our knowledge, this article is the first to apply 
third-order tensorial data analytics to mAb production. 

The next section describes tensorial prediction methods and the 
proposed ways to combine tensors of different orders as model inputs. 
Then the biomanufacturing case studies are introduced. Subsequently, 
the results of different methods are assessed, and prescriptive ap-
proaches are identified based on data characteristics. 

2. Tensorial prediction methods 

A common scenario for model building is that a vector of inputs is 
used to predict a single output. A vector is a first-order tensor. Another 
common scenario is where a vector of output variables is predicted 
based on a vector of input variables. In this scenario, the vectors are 
related by a matrix, which is a second-order tensor. For either scenario, a 
variety of methods are available for building a predictive model, 
including Partial Least Squares (PLS), Elastic Net, and Random Forest 
(Severson et al., 2015; Nikita et al., 2022). A more complicated situation 
occurs when the input data are also measured over multiple time in-
stances. In this case, the data matrix forms a third-order tensor con-
sisting of the input measurements, predicted variables, and time steps as 
respective dimensions (Fig. 1). 

While industrial practice is to unwrap higher-order tensors to form 
second-order tensors which are amenable to PLS and other standard 
methods, existing data analytics literature describes techniques to 
directly utilize third- and higher-order tensors. Wu et al. (2020) reviews 
tensorial methods with respect to third- and higher order models applied 
to chemical processes. Tensorial methods include parallel factor analysis 
(PARAFAC), the Tucker3 model, bilinear decomposition-based multi-
variate curve resolution (MCR), and multiway extensions of latent var-
iable methods such as multiway PLS (N-PLS). These methods have had 
wide application in the chemical industries including to absorbance and 
Raman spectra and electrochemical data (Wu et al., 2020; Bro et al., 
2005). Lopez-Fornieles et al. (2022) discuss the application of N-PLS to 
time series images of spectral data. Similar to the mAb dataset, the third 
dimension is introduced by considering time series data and not just 
spectral data itself. As mentioned in the Introduction, Rathore et al. 
(2015) analyze an input dataset equivalent to a third-order tensor to 
predict CQAs of monoclonal antibodies. They apply the well-established 
method of unfolding to produce a matrix for which PLS can be applied. 
In this case, the third-order tensor is separated into many second- order 
tensors that are aligned next to each other to form a larger second-order 
tensor (aka matrix) (Rathore et al., 2015). While this approach allows 
the application of all methods capable of dealing with second-order 
tensors, the downside is that some dependencies between the different 
dimensions are lost and cannot be exploited when building the predic-
tion models. 

The remainder of this section summarizes the widely used partial 
least squares (PLS), the higher order tensorial PLS used in this article, 
and proposed strategies for dealing with tensorial datasets of multiple 
orders. 

2.1. Partial least squares (PLS) 

When dealing with second-order tensors for the prediction of CQAs, 
the industry-standard method is PLS. Examples for the application of 
PLS include the use of near- or mid-infrared spectroscopy for real-time 
prediction of CQAs (Rosas et al., 2012; Wasalathanthri et al., 2020). 
PLS is a dimensionality reduction technique that is capable of dealing 
with high collinearity between the variables. PLS maximizes the 
covariance between the predictor and predicted variables for each 
component of the reduced space (Jiao et al., 2015; Chiang et al., 2000). 
Consider a matrix of input data X with N measurements and m variables, 
and a matrix of output data Y with N measurements and l variables, 

X =

⎡
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∈ RN×l (1)  

xi ∈ Rm, yi ∈ Rl, i = 1,⋯,N.

Fig. 1. Visualization of a second-order tensor (aka matrix) and a third-order 
tensor (3D cube). Figure adapted from Wu et al. (2020). 
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In a subsequent step, the variables are projected onto an uncorrelated 
latent factor space T with G latent factors as 

T = XW = [t1⋯tG] ∈ RN×G (2)  

X = TP⊤ + X̃ (3)  

Y = TQ⊤ + Ỹ (4)  

where X̃ and Ỹ are residuals, P ∈ Rm×G and Q ∈ Rl×G are the loading 
matrices of X and Y, and W ∈ Rm×G is the projection matrix from the 
inputs to the lower dimensional subspace, and the vector ti is called the 
score of the ith measurement. Maximizing the covariance between the 
predictor variables and the predicted variables leads to the objective 
function 

max
wi ,qi

w⊤
i X⊤

i Yiqi (5)  

s.t. w⊤
i wi = q⊤

i qi = 1  

for each of the K latent factors. Once the matrices Q and W are deter-
mined by the optimization, the matrix T can be constructed and the 
predictions for X and Y, X̂ and Ŷ, can be calculated. 

2.2. Multiway partial least squares (N-PLS) 

When dealing with third- or higher-order tensors as inputs for CQA 
prediction, the basic PLS algorithm can only be used in combination 
with the aforementioned unfolding methods. Instead, higher-order ex-
tensions of PLS have been developed, such as the multiway PLS algo-
rithm introduced by Bro Bro (1996). While multiway PLS can handle 
arbitrarily high orders, here the method is presented only for third-order 
tensors due to its simplicity and sufficiency for this analysis. 

Before tackling the third-order case, consider that, in the second- 
order case, the predictions for the data matrix X can be constructed 
from the weight vector W as 

x̂i,j = tiwj, i ∈ 1,⋯,N, j ∈ 1,⋯,m, (6)  

where wj is the jth weight, which is the jth row of W. This second-order 
case can be extended to the trilinear case by utilizing one score vector 
and two different weight vectors wJ and wK. The predictions for the data 
matrix X can be constructed from 

x̂i,j,k = tiwJ
j wK

k , i ∈ 1,⋯,N,

j ∈ 1,⋯,m,

k ∈ 1,⋯, n.

(7)  

The desired weights are defined by the optimization 

max
wJ

i ,w
K
i ,q

J
i ,q

K
i

wJ
i
⊤wK

i
⊤X⊤

i YiqJ
i qK

i (8)  

s.t. wJ
i
⊤wJ

i = wK
i
⊤wK

i = qJ
i
⊤qJ

i = qK
i
⊤qK

i = 1.

Similar to the bilinear case, the matrices QJ, QK, WJ, and WK can be used 
to calculate the predictions for X and Y. This article uses the Matlab 
implementation of N-PLS of Andersson and Bro (2000). 

2.3. Proposed approaches for combined handling of second- and third- 
order tensorial datasets 

When thinking about whether to use basic PLS or a higher-order 
tensorial method such as N-PLS, it is important to understand the 
dataset and its characteristics. For example, dynamic effects within the 
predicted variables should also be considered by analyzing the 

autocorrelation of the predicted variables. Autocorrelation is defined as 
the correlation between a time series and the same time series shifted by 
an integer number of lags. If there are batch-to-batch correlations in the 
CQAs, third-order tensor methods are more suitable than second-order 
tensor methods. Third-order tensor methods are capable of capturing 
the batch-to-batch effects better by also considering the timestep 
dimension that contains additional information across the time order of 
the batch (Bro, 1996). 

If there is autocorrelation in the predicted variables, we will also 
introduce autoregressive or lagged elements. Autoregressive models 
consider a lagged version of the predicted variable as an additional 
input. The predicted variable at a time instance t with a lag order of h can 
be described in the linear case by Shibata (1976). 

yt = α1yt− 1 + α2yt− 2 + ⋯ + αhyt− h (9) 

During the production of monoclonal antibodies, it is common that 
some parameters are measured at several time points during the pro-
duction process whereas others are only measured once. Examples of 
such datasets are given in Section 3.2. The quality of a whole batch is 
defined by the CQAs. Consequently, the input data consist of second- 
order tensors (batches × variables) and third-order tensors (batches ×
variables × timesteps). One way to deal with tensors of different order is 
to convert one order into the other., such as the use of the time average 
of a time series to reduce the dimension of the third-order tensor to 
second order. Alternatively, the different timesteps can be considered 
different features, which can be reasonable for variables measured once 
a day, but results in gigantic matrices if there are frequent measure-
ments. Additionally, there will be very high multicollinearity between 
the variables. 

Methods have been developed for each type of order, but methods 
are not available for datasets of multiple orders. Here several approaches 
are proposed to combine datasets of different orders, which are 
compared in the next section to provide guidance as to which strategy is 
more suitable. In this article, second-order tensors are denoted with a 
bold capital letter while third-order tensors are denoted by a bold capital 
letter with an underbar. For the analyzed biomanufacturing process, the 
input data are in the form of second- and third-order tensors. The 
available second-order tensor inputs are denoted by Xbatch, which are 
only measured once for each batch, whereas the available third-order 
tensor inputs are denoted by Xtime series, which are time series of mea-
surements for each variable and batch. 

Understanding the various methods requires a more detailed 
description of the process of unfolding. Fig. 2 shows an overview of the 
two different unfolding methods, where I is the number of batches, J is 
the number of variables, and K is the number of timesteps. The objective 
is to predict the CQAs for each batch, so only unfolding methods that 
have I as one of the dimensions are considered. The first unfolding 
method aligns K matrices with the variables for each batch next to each 
other as shown in Fig. 2, which results in a second-order tensor with 
dimensions I× KJ. The second method aligns J matrices with the 
timesteps for each batch next to each other, which results in a second- 
order tensor with dimensions I × JK (Westerhuis et al., 1999). The 
only difference between the resulting second-order tensors is the order 
of the column vectors. When using PLS, the order of column vectors does 
not influence the result. Consequently, either unfolding method can be 
used. 

Combining these unfolding methods with the aforementioned ten-
sorial analytics applied in the biopharmaceutical and chemical industry 
Hu and Yuan (2009); Luo et al. (2013, 2014, 2015) led us to propose six 
approaches of combining tensors of second and third order for CQA 
prediction:  

1. Unfold the third-order tensor Xtime series to obtain the second-order 
tensor Xtime series, append to the other second-order tensor Xbatch to 
form X = [Xbatch, Xtime series], and apply basic PLS. 
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2. Duplicate values for each of the entries in the matrix Xbatch for each 
timestep K to create the third-order tensor Xbatch, append to the other 
third-order tensor Xtime series to form X = [Xtime series, Xbatch], and 
apply N-PLS.  

3. Duplicate values for each of the entries in the matrix Xbatch for each 
timestep K to create the third-order tensor Xbatch, append to the other 
third-order tensor Xtime series to create the third-order tensor X =
[Xtime series, Xbatch], unfold the resulting third-order tensor X to form 
the second-order tensor X, and apply PLS.  

4. Only use the third-order tensor and apply N-PLS to X = Xtime series.  
5. Only use the third-order tensor Xtime series, but unfold to obtain the 

second-order tensor Xtime series and apply basic PLS.  
6. This approach employs two steps. In the first step, only the time 

series data Xtime series are used to predict the CQAs. In the second 
step, the CQA predictions, or the difference of the predictions to the 
real values, are fed to the Smart Data Analytics approach for pre-
dictive modeling (SPA) Sun and Braatz (2021) as an additional 
feature appended to the second-order batch tensor. This step results 
in the second-order tensor X = [Xbatch, CQA prediction] as input to 
SPA. This approach has four variations:  
6.1 Use N-way PLS to create CQA predictions from Xtime series, and 

use CQA predictions directly as an additional input for SPA.  
6.2 Use PLS to create CQA predictions from the unfolded time series 

tensor Xtime series, and use CQA predictions directly as an addi-
tional input for SPA.  

6.3 Use N-way PLS to create CQA predictions from Xtime series, and 
use the difference between the CQA predictions and the real 
values as an additional input for SPA.  

6.4 Use PLS to create CQA predictions from the unfolded time series 
tensor Xtime series, and use the difference between the CQA pre-
dictions and the real values as an additional input for SPA. 

The first three approaches directly combine the second-order tensor 
with the third-order tensor in some way, and then data analytics 
developed for either a second- or third-order tensor are applied 
depending on the dimensions of the final tensor. Approaches 4 and 5 
only use the third-order tensor, and data analytics methods are applied 
in the same fashion. The motivation for these approaches is the expec-
tation that the time series and batch data contain different information 
that can be combined to achieve a better model overall. Approach 6 is 
different as it first uses the information from the third-order, time series 
tensor to predict the CQAs, and then this prediction or the prediction 
difference is incorporated as an additional feature for the SPA software. 
Using the difference in CQA predictions would be expected to perform 
better if the datasets contain similar information resulting in similar 
predictions. The prediction difference can be interpreted as a correction 
term in the second model. A similar concept is used by the dynamic 
matrix control algorithm (Cutler and Ramaker, 1980). All of these 
methods can be combined with the autoregressive approach by intro-
ducing a lagged form of the predicted variable as an additional input 
according to Eq. (9). 

The next section describes the datasets used as case studies for the 
proposed approaches. 

3. Biopharmaceutical manufacturing datasets 

The proposed approaches have been applied to the monoclonal an-
tibodies mAb#1 and mAb#2. 

3.1. Monoclonal antibody#1 (mAb#1) 

The mAb#1 production process starts with a series of scale-up and 
expansion steps within shake flasks, culture bags, and seed bioreactors 
to achieve the desired viable cell density and inoculum volume for the 
production bioreactor. After centrifugation and depth filtration harvest, 
a sequence of purification steps including column 1 chromatography, 
viral inactivation, column 2 chromatography, column 3 chromatog-
raphy, virus filtration, and ultrafiltration/diafiltration yields the final 
drug substance. The predicted CQA for mAb#1 is the Column 2 basic 
peaks %. Basic peaks contain different types of impurities which can be 
influenced by both the production bioreactor and downstream process 
steps (Hong et al., 2023). The mAb#1 dataset consists of 169 input 
variables for 75 batches which form a second-order tensor Xbatch. 

Additionally, time series data for this process includes parameters 
such as agitation, pH, dissolved oxygen, O2 flow, different temperature 
measurements, pressures, and volumes at 15 minute timesteps. The time 
series data are used from the point of inoculation until the end of culture. 
Batch culture durations varied slightly lot-to-lot and consequently each 
batch has a different number of timesteps. However, third-order tensor 
methods require the same number of timesteps for each variable and 
batch, so the dynamic time warping (DTW) approach is used. This 
method finds a warping path V = [v1,⋯, vK] between two different time 
series and minimizes the overall distance norm while matching the ith 
element of the first time series to the jth element of the second time 
series described by the warp path elements vk Salvador and Chan 
(2007). Given two time series q with its ith timestep qi and c with its jth 
timestep cj, the algorithm can be expressed as 

DTW(q, c) = min
{v1 ,⋯,vk ,⋯,vK}

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

k=1,vk=(i,j)

(
qi − cj

)2
√

(10)  

DTW determines the minimum distance by using an optimal warping 
path. By choosing the longest time series with K timesteps and matching 
all the other time series to it according to the calculated warping path, 
the same length can be achieved for all of the batches. Overall, this re-
sults in a third-order tensor with 75 batches, 18 variables, and 1150 
timesteps. 

3.2. Monoclonal antibody#2 (mAb#2) 

The production process of mAb#2 is overall similar to mAb#1 with 
minor differences in the downstream unit operations. The predicted 

Fig. 2. Visualization of the two relevant unfolding techniques to reduce a third-order tensor to a second-order tensor.  
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CQA for mAb#2 is the drug substance pre-monomer %, where the pre- 
monomer is an impurity composed of an intact mAb#2 bound to a 
mAb#2 fragment. This impurity is undesirable, and the process requires 
the pre-monomer % to be under a certain threshold, and accurate pre-
dictions of the CQA are crucial to assure product quality. This CQA is 
impacted by different process steps, including both upstream and 
downstream processes (Hong et al., 2023). For the mAb#2 case study, 
the second-order tensor Xbatch consists of 118 input variables for 94 
batches. mAb#2 has the same time series parameters available as for 
mAb#1, and DTW is similarly used to align the lengths of the time series 
data. Overall, this results in a third-order tensor with 94 batches, 18 
variables, and 1224 timesteps. In this case, the time series data are 
available for the same batches as for the batch data. Consequently, a 
direct comparison of method performance is possible in this case. 

4. Results and discussion 

4.1. Predicted variable autocorrelation analysis 

An important factor when building a model for prediction of CQAs 
from process variables is to understand the dataset and its characteristics 
such as the autocorrelation behavior. Additionally, it is also important to 
analyze how the predicted variables develop over time to detect possible 
shifts in operating conditions. Fig. 3 shows the predicted variables for 
both mAbs for each of the batches. mAb#1 has two distinct regimes with 
respect to the predicted CQA. 

Fig. 4 shows the autocorrelation for both monoclonal antibodies 
considering all available batches. The blue envelope shows the confi-
dence bounds based on a 95% confidence level. If this threshold is 
crossed, autocorrelation is detected at the confidence level of 95%. 
Significant autocorrelation can be detected for mAb#1 for the first ten 
lags and significant autocorrelation is detected for mAb#2 for the first 
three lags. 

An important consideration is whether the strong autocorrelation for 
mAb#1 is an artefact of the apparent shift in CQA response. Autocor-
relation is defined as the correlation between a time series and the same 
time series shifted by an integer number of lags. Thus, a shift in the mean 
response will result in high autocorrelations even if the autocorrelation 
of data is small before or after the shift, respectively. The autocorrelation 
for the mAb#1 dataset has also been analyzed before and after the shift 
in CQA response (Fig. 5). From this figure, it is apparent that the 
observed autocorrelation over all batches is actually just a result of 
having the shift in the response, so there is no statistically significant 
autocorrelation for mAb#1. However, given the significant autocorre-
lation for a lag of up to three for mAb#2, tensorial methods are expected 
to perform better for mAb#2 and we can also include an additional 
autoregressive term as shown in equation 9. 

In our case, the lagged predicted variables are considered as addi-
tional inputs to the aforementioned approaches, allowing the direct 
consideration of autocorrelation effects. The lag order h can be deter-
mined based on the autocorrelation. In our case, only lag orders up to 3 
are considered as only the first 3 lags show significant autocorrelation. 
There are some later lags that are slightly above the significance 
threshold, but the effect is weaker than for the first 3 lags. When 
determining the order of an autoregressive model, the Akaike Informa-
tion Criterion (AIC) or Bayesian Information Criterion (BIC) are often-
times considered. Both lead to worse performance if additional 
irrelevant variables are included and a simpler model only considering 
strongly statistically significant inputs is preferred Tsay (1984). 

4.2. Application of approaches 1 through 6 on mAb#1 

In the previous section, the autocorrelation behavior of mAb#1 is 
analyzed in detail. Strong autocorrelation can be detected when looking 
at all available batches for mAb#1; however, this result is an artefact of 
the shift in the response variable. When the data before and after the 
shift are analyzed separately, no significant autocorrelation can be 
detected. While tensorial methods are known to perform well when 
there is autocorrelation or batch-to-batch effects in the data, it is not 
surprising that this method does not lead to improved predictiveness for 
mAb#1 due to a lack of autocorrelation. 

To facilitate discussion and comparisons between the approaches, 
the analyses were grouped within four strategies. The relationship to the 
relevant approaches is shown in Table 1. 

The base case only using the second-order tensorial data (Xbatch) in 
combination with a smart data analytics approach Sun and Braatz 
(2021) has been applied to the mAb#1 dataset (Strategy A). Subse-
quently, Approaches 1 through 5 have been applied to the mAb#1 
dataset (Strategy B). While Approaches 1 through 3 contain both batch 
data and time-series data, Approaches 4 and 5 only utilize time series 
data. Similarly a model can be built based only on batch data. For this 
purpose, a smart data analytics approach is used that first analyzes the 
characteristics of the dataset and subsequently applies the most suitable 
subset of algorithms Sun and Braatz (2021). In particular, the algorithms 
Algebraic Learning Via Elastic Net (ALVEN), Support Vector Regression 
(SVR), Random Forest (RF), Partial Least Squares (PLS), Sparse PLS 
(SPLS), and Elastic Net (EN) are applied as these algorithms handle the 
present multicollinearity and nonlinearity in the dataset well Sun and 
Braatz (2021). Additionally, a log transformation has been applied to the 
predicted variable. To enable a statistically robust comparison of the 
results, 15 outer folds, 5 inner folds, and 10 repetitions are chosen in 
combination with a 70-30 train-test split ratio for all different ap-
proaches. The results of the batch-only base case compared to the ten-
sorial Approaches 1–5 are shown in Fig. 6 in the form of a violin plot. 

Fig. 3. Overview of the z-scored predicted variables for both monoclonal antibodies. mAb#1 on the left shows a distinct shift in the predicted variable while mAb#2 
on the right does not. This results in two different regimes for mAb#1, which are a result of two different sets of operating conditions. 

F. Mohr et al.                                                                                                                                                                                                                                    



Computers and Chemical Engineering 182 (2024) 108557

6

Each black bar in the violins represents one of the 15 different outer 
folds. The blue left side of each violin represents the training data re-
sults, and the orange right side shows the results for the testing data. 

The best performing method when using only batch data (Strategy A) 
was identified to be PLS, since it yields the lowest values for the testing 
mean and variance of the RMSE, of 0.408 and 0.00612 respectively. RF 
achieves the next best mean RMSE for the testing data; however, the 
significant difference in training versus test RMSE suggests overfitting. 
Among the tensorial methods (Strategy B), Approach 2 is best with a 
mean RMSE of 0.449 and a variance of 0.00689. Whereas the mean and 
the variance of Approach 2 are worse for this prediction compared to 
just using batch data with PLS, the performance of the testing data is 
more similar to the performance of the training data using tensorial 
approaches. 

Despite the tensorial Approaches 1–3 using more information via 
both the batch and time series data, they do not yield better results for 

mAb#1 than using only the batch data. One possible reason is that the 
multiway PLS algorithm has trouble picking the most predictive batch 
features as they are greatly multiplicated for some of the approaches. 
This hypothesis seems reasonable since Approaches 4 and 5, which use 
only time series data, perform almost as well as Approaches 1–3. If so, 
the prediction may be improved by reducing the batch feature matrix to 
the most predictive features right away (Strategy C). In order to deter-
mine a predictive subset of the batch features, we can use the models 
built when using only batch data. Of these models, two are sparse linear 
prediction methods utilizing only a reduced feature set: SPLS and EN. 
Three different reduced batch matrix models have been investigated and 
they are based on the most predictive features suggested by either EN or 
SPLS. An overview of the mean prediction errors and the variances of 
each of the reduced models compared to the full model is shown in 
Table 2. An example set of results for the reduced model, which includes 
only batch features 2, 4, 5, 6, 7, 18, and 45, is shown in Fig. 7a. The 
performance is overall very comparable between the different reduced 
models, and no significant improvements are noted in terms of testing 
RMSEs. However, the training and testing performance is more similar2. 

Finally, Approach 6 can be applied by first using the time series data 
to predict the CQA either by using multiway PLS or PLS on the unfolded 
data (Strategy D), and subsequently using either the predictions directly 
or the difference to the real values as an additional input to the smart 
process analytics software by Sun and Braatz (2021). Approach 6 results 
in a very similar prediction problem as the base comparison case that 
only uses batch data. In this case, just one additional input variable is 
derived from the time series data. For the mAb#1 dataset, each of the 

Fig. 4. Autocorrelation function for the predicted variables for mAb#1 on the left and mAb#2 on the right, when applied to the entire datasets. Both plots seem to 
indicate significant autocorrelation. 

Fig. 5. Autocorrelation function for the predicted variables for mAb#1. The left plot and right plots show the autocorrelations before and after the shift in CQA 
response variable, respectively. 

Table 1 
Overview of Strategies A–D and their relationship to prior introduced 
approaches.  

Strategy Strategy Description Relationship 
Approach 

A Base case for comparison using only second-order 
tensorial data (Xbatch)

None 

B Approaches 1–5 applied to all second- and third- 
order tensorial data (Xbatch,Xtime series) 

Approaches 1–5 

C Approaches 1–5 applied to reduced second-order 
tensorial data and the full third-order tensorial 
data. The reduced feature set is based on the most 
predictive features (Xbatch,red,Xtime series) 

Approaches 1–5 

D Approaches 6.1–6.4 applied to all second- and 
third-order tensorial data (Xbatch ,Xtime series) 

Approaches 
6.1–6.4  

2 If we only use the reduced batch data, performance does not vary signifi-
cantly from the base case. 
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different Approaches 6.1–6.4 perform similarly because the additional 
feature created from the time series data is assigned a weight that is 
either 0 or very close to 0. One example for Approach 6, specifically 
Approach 6.3, is shown in Fig. 7b. 

In this case, smart process analytics software is again used to make 
the final prediction, and the algorithms ALVEN, SVR, RF, PLS, SPLS, and 
EN are applied. The best performing algorithm is PLS with an average 
RMSE of 0.407 and a variance of 0.00609. This result is comparable to 
the result achieved when only using the batch dataset but shows 
somewhat higher variance. An overview of the results achieved by using 
the different approaches is shown in Table 3. 

For the mAb#1 dataset, tensorial methods combining both batch and 
time series data, i.e., second- and third-order tensors, do not improve the 
predictions significantly compared to just using the batch data. A likely 
explanation is that batch-to-batch correlation is negligible, as evidenced 
by autocorrelation assessment, resulting in a lower potential benefit of 
using tensorial approaches. 

4.3. Application of approaches 1 through 6 on mAb#2 

The autocorrelation behavior of mAb#2 is analyzed in Section 4.1. In 
contrast to mAb#1, significant batch-to-batch autocorrelation was 
detected for mAb#2. Consequently, the tensorial approaches are ex-
pected to use these batch-to-batch effects for mAb#2 to yield better 
predictions. As a result, we also analyze additional strategies exploring 
the effects of autoregressive terms and reduced batch matrices (Strate-
gies E and F). The six strategies assessed for mAb#2 and their rela-
tionship to the approaches are described in Table 4. 

Similar to mAb#1, a baseline case using only batch data with the 

algorithms ALVEN, SVR, RF, PLS, SPLS, and EN are analyzed (Strategy 
A). Approaches 1 through 5 are also applied to the mAb#2 dataset 
containing both batch data and time series data (Strategy B). The same 
cross-validation procedure with 15 outer folds, 5 inter folds, and 10 
repeats and a log transformation on the output variables is applied. 
These results compared to the base case are shown in Fig. 8 in the form 
of a violin plot. 

The best performing method when using only batch data was iden-
tified to be RF based on yield and variance, with an RMSE mean and 
variance of 0.0407 and 1.63× 10− 5, respectively (Strategy A). However, 
the training performance of the RF model is significantly better than the 
testing performance, suggesting some overfitting. Similar to mAb#1, the 
tensorial methods for mAb#2 show different performances. The 
methods utilizing only time series data (Approaches 4 and 5) do not 
perform well but show similar performance for training and testing data. 
Approaches 1–3 show significant overfitting but achieve lower testing 
RMSEs. The best performing method based on testing RMSEs is 
Approach 3 with a mean RMSE of 0.0499 and a variance of 6.09 × 10− 5 

(Strategy B). Both the mean and especially the variance are worse for 
this prediction when compared to using only batch data, and this 
observation could be due to a larger number of variables in the batch 
matrix. 

Similar to mAb#1, reduced models which consider only the most 
predictive batch features are evaluated (Strategy C). The most important 
features for the batch data are shown in Table 5 and have been deter-
mined by applying an SPLS approach to the batch data. The results of a 
new approach using a reduced batch matrix containing only the features 
shown in Table 5 are illustrated in Fig. 9. 

For the mAb#2 dataset, better prediction performance is obtained 
using the tensorial methods with the reduced batch matrix. The best 
performing method is Approach 3 with a mean RMSE of 0.0356 and a 
variance of 4.07 × 10− 5 (Strategy C). This result is significantly better 
than the basic tensorial approaches and even shows a lower RMSE than 
the SPA approach using only batch data. Approach 2 also performs well, 
but results in a slightly higher mean RMSE and variance. Both Ap-
proaches 2 and 3 show significantly reduced overfitting compared to the 
basic tensorial Approaches 1–5 without a reduced batch data matrix3. 

For mAb#2, Approach 6 can be applied by first using the time series 
data to predict the CQA and then using this prediction or the difference 
of the predictions as inputs to the smart process analytics software for 
predictive modeling (Strategy D). The results from Approaches 6.1 and 
6.3 are shown in the left and right plots, respectively, in Fig. 10. 

Fig. 6. For the mAb#1 dataset, RMSE results utilizing only batch data are shown in the left plot (Strategy A) as compared against tensorial Approaches 1–5 using 
both batch and time series datasets in the right plot (Strategy B). The results are shown for 15 outer folds in the form of a violin plot for training and testing 
data separately. 

Table 2 
Overview of the results of the model performance when using a reduced batch 
matrix in combination with time series data (Strategy C) compared to the model 
using all batch features (Strategy B) and the SPA model using only batch data 
without time series data (Strategy A) in terms of mean RMSE and variance (Var).  

Included batch feature numbers Approach RMSE Train/ 
Test 

Var Train/Test 

Batch data only (Strategy A) PLS 0.441/0.408 0.00085/ 
0.00612 

All batch features (Strategy B) 2 0.403/0.442 0.00099/ 
0.00491 

2, 4–7, 18, 45 (Strategy C1) 2 0.461/0.461 0.00204/ 
0.00897 

2, 4–8, 18, 21, 45, 145 (Strategy 
C2) 

2 0.440/0.467 0.00404/ 
0.00837 

4, 5, 7 (Strategy C3) 2 0.461/0.461 0.0203/ 
0.00897  

3 If we only use the reduced batch data, performance does not vary signifi-
cantly from the base case. 
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Approach 6.2 performs very similarly to Approach 6.1, while Approach 
6.4 performs very similarly to 6.3. 

Approach 6.1 performs almost identically to the baseline which only 
considers batch data. The best algorithm is also RF, with mean RMSE 
and variance of 0.0407 and 1.63× 10− 5, respectively. The reason for the 
similarity is that the newly added feature is assigned a weight that is 

either 0 or very close to 0, so has negligible influence on the results for 
RF. This observation is similar for the other algorithms. 

Approach 6.3 shows a different performance, particularly for the 
ALVEN algorithm. In this case, six folds have similar RMSEs to the other 
algorithms, whereas 9 out of 15 folds show a greatly improved predic-
tion performance. Overall, a mean RMSE of 0.0194 and a variance of 
2.64 × 10− 4 are achieved, demonstrating that the prediction difference 
is a feature that can be leveraged by the ALVEN algorithm (Strategy D). 
This case can occur, for example, if the information contained by the 
batch and the time series data yield similar prediction models. Knowing 
the error of the first model can help improve the second model signifi-
cantly. Additionally, ALVEN has a unique way of introducing non-
linearities, which explains why other algorithms cannot utilize the 
additional prediction difference feature as well. Referencing the violin 
plot, one notices that the violin for Approach 6.3 with ALVEN goes lower 
than 0. Referencing the violin plot, one notices that the violin for 
Approach 6.3 with ALVEN goes lower than 0, which is an artefact of the 
statistics-based violin plot applied to non-negative, high-variance RMSE 
values near zero. However, negative RMSE values are infeasible and all 
real values are larger than 0. Lastly, when comparing the similar training 
and the testing performance for Approach 6.3 with ALVEN, there is less 
overfitting when compared to the approach using only batch data. 

Better results can be achieved for mAb#2 when using a reduced batch 
dataset, as shown in Fig. 9. This technique can also be combined with 
Approach 6 by only using a reduced batch data matrix in addition to the 
CQA predictions or prediction differences (Strategy E). Fig. 11a shows the 
prediction results when using a reduced batch matrix. For this method, 
we note a low RMSE of 0.0394 and a low variance of 1.55 × 10− 5 for PLS. 
However, the best performing method is still ALVEN, which achieved an 
even lower mean RMSE of 0.0181 and a variance of 1.44 × 10− 4 (Strategy 
E). Both PLS and ALVEN also show similar behavior for training and 
testing, indicating no overfitting. 

Since significant autocorrelation was discovered for the predicted 
variable of mAb#2, a different approach can be applied that further 
leverages the autocorrelation for prediction. For this approach, past 
values of the predicted variable are appended as additional inputs to the 
batch matrix. This method is called an autoregressive (AR) model and 
allows the user to account for past realizations of the predicted variable 
Lewis and Reinsel (1985); Wei (2013). Since the AR model adds another 
input to the batch matrix and the tensorial methods did not perform well 
when handling too many batch variables, this feature is combined with 
the reduced batch data matrix (Strategy F). The results of this are shown 
in Fig. 11b. 

For this approach, PLS does not perform as well as it did in the prior 

Fig. 7. Comparison of the RMSE results utilizing Approaches 1–5 when using a reduced batch data matrix (Strategy C) as an input on the left and using the prediction 
methods ALVEN, SVR, RF, PLS, SPLS, and EN for Approach 6.3 on the right side (Strategy D). The results are shown for 15 outer folds in the form of a violin plot for 
training and testing data separately. 

Table 3 
Summary of the prediction performance of the different models compared to the 
base case using only batch data for mAb#1. The Method column highlights the 
best approach (App.) or Algorithm.  

Strategies Method RMSE Train/ 
Test 

Var Train/Test 

Batch only (Strategy A) PLS 0.441/0.408 0.00085/ 
0.00612 

Tensorial 1–5 (Strategy B) App. 2 0.403/0.442 0.00099/ 
0.00491 

Tensorial 1–5 Red. 
(Strategy C) 

Red. based on 
EN 

0.461/0.461 0.00204/ 
0.00897 

Tensorial 6 (Strategy D) App. 6.3 PLS 0.441/0.407 0.00083/ 
0.00609  

Table 4 
Overview of Strategies A–D and their relationship to prior introduced 
approaches.  

Strategy Strategy Description Relationship 
Approach 

A Base case for comparison using only second-order 
tensorial data (Xbatch)

None 

B Approaches 1–5 applied to all second- and third- 
order tensorial data (Xbatch,Xtime series) 

Approaches 1–5 

C Approaches 1–5 applied to reduced second-order 
tensorial data and the full third-order tensorial 
data. The reduced feature set is based on the most 
predictive features (Xbatch,red,Xtime series) 

Approaches 1–5 

D Approaches 6.1–6.4 applied to all second- and 
third-order tensorial data (Xbatch ,Xtime series) 

Approaches 
6.1–6.4 

E Approaches 6.1–6.4 applied to reduced second- 
order tensorial data and the full third-order 
tensorial data (Xbatch,red,Xtime series) 

Approaches 
6.1–6.4 

F Approaches 6.1–6.4 applied to reduced second- 
order tensorial data and the full third-order 
tensorial data; additionally, an autoregressive term 
is added to the second-order tensorial data to better 
capture batch-to-batch effects (Xbatch,red ,Xtime series) 

Approaches 
6.1–6.4  
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model that did not have the autoregressive term, but the performance of 
the best method ALVEN further improves. A mean RMSE of 0.0168 and a 
variance of 6.43 × 10− 5 can be achieved for the testing data, with 
similar results for the training data (Strategy F). This model performance 
is the best, and significantly improves upon the models using only batch 
or only time series data, without significant overfitting. 

An overview of the different approaches used for the CQA prediction 
for mAb#2 and their results is shown in Table 6 and Fig. 12. The RMSEs 
improve significantly from Strategy A-D1 to D2-F. Additionally, the 
variance is also significantly reduced from D2-F, making Strategy F the 
best outcome. 

To further understand why ALVEN shows such a good performance, 
we analyzed the weights assigned by the ALVEN algorithm to the 
different input features or nonlinear transformations of the nonlinear 
features. Overall, we only have 6 basic input features for this model, 
consisting of features x7, x58, x81, x115 (see Table 5), the autoregressive 
term, and the prediction difference variable. These weights differ for all 
of the 15 different folds, but the average weight assigned to the features 
or their nonlinear transformation can be analyzed. Additionally, 4 folds 
yield higher testing errors (RMSEs between 0.022 and 0.040) and 11 
folds yield lower testing errors (RMSEs between 0.008 and 0.018). 
Consequently, these folds are analyzed separately to see whether there 
are any obvious differences between the variables. An overview of the 
average weights for each of the considered features is in Table 7. 

When looking at the CQADiff feature as constructed for Approaches 
6.3 and 6.4, the nonlinear transformation 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CQADiff

√
has a low average 

weight. However, the variable itself xCQADiff is assigned an average 
weight of − 0.836. If the tensorial prediction model and the batch 
prediction model were identical, a weight of − 1 would be the ideal 
solution. Assume that the prediction of the first time series model is off 
by an average value of a. In this case, the variable xCQADiff would average 
the value a. If the second model performed identically to the first model, 
but with the additional input term xCQADiff with a weight of − 1, the 
second model would now yield an average error of a+ ( − 1)× a = 0. As 
such, a weight near − 1 suggests that the time series and the subsequent 
batch model contain similar information and consequently show similar 
performance. 

The assigned weight between the high and the low RMSE cases differ. 
For the high RMSE cases, the weight is only − 0.360, whereas the weight 
is − 1.009 for the low RMSE cases. This further shows that a weight 
closer to − 1 yields better performances because the time series and the 
batch data contain similar information and result in similarly perform-
ing models. 

The second variable with high weights for its nonlinear trans-
formations and its basic form is the Column 2 Volume x115. Here big 
differences are seen between the low and the high RMSE case. In the 
high RMSE case, x115 and its nonlinear transformations ̅̅̅̅̅̅̅̅̅x115

√ and lnx115 

show lower weights, with x115 being the main factor with a weight of −
0.891. For the low RMSE case, lnx115 shows an average weight of −
2.520, ̅̅̅̅̅̅̅̅̅x115

√ has an average weight of 0.575, and x115 has an average 
weight of 1.968. In this case, the basic feature and the nonlinear 
transformations seem to achieve an equilibrium with high positive and 
negative weights of the Column 2 Volume. This balance of linear and 
nonlinear capabilities can only be achieved when using ALVEN. Among 
the other algorithms, PLS, SPLS, and EN do not consider nonlinearities at 
all; meanwhile, SVR and RF have limited nonlinear capabilities and 

Fig. 8. For the mAb#2 dataset, RMSE results utilizing only batch data are shown in the left plot (Strategy A) as compared against tensorial Approaches 1–5 using 
both batch and time-series datasets in the right plot (Strategy B). The results are shown for 15 outer folds in the form of a violin plot for training and testing 
data separately. 

Table 5 
Overview of the most predictive features from the batch data for mAb#2. The 
feature number describes the number assigned to them in the initial feature set 
and is used as a reference.  

Feature Number Feature description 

x81 Production Bioreactor Day 4 Osmolality 
x100 Column 1 Product Monomer % 
x115 Column 2 Pool Volume 
x117 Column 2 Product High-Molecular Weight %  

Fig. 9. RMSE results of Approaches 1–5 when using a reduced batch data 
matrix as an input for mAb#2 (Strategy C). The results are shown for 15 outer 
folds in the form of a violin plot for training and testing data separately. 
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cannot simultaneously consider different linear and nonlinear 
transformations. 

The best results are achieved for mAb#2 when using Approach 6.4 in 
combination with a reduced batch data matrix and an additional 

Fig. 10. RMSE results for using Approach 6.1 on the left and 6.3 on the right for mAb#2 (Strategy D). The results are shown for 15 outer folds in the form of a violin 
plot for training and testing data separately. 

Fig. 11. Comparison of the RMSE results utilizing Approach 6.4 when using a reduced batch data matrix on the left (Strategy E) and when using an additional 
autoregressive term on the right (Strategy F). The results are shown for 15 outer folds in the form of a violin plot for training and testing data separately. 

Table 6 
Summary of the prediction performance of the different models compared to the 
base case only utilizing batch data for mAb#2. The Method column highlights 
the best approach (App.) or Algorithm.  

Strategies Method RMSE Train/ 
Test 

Var Train/Test 

Batch only (Strategy A) RF 0.0297/ 
0.0407 

6.29× 10− 6/1.63×

10− 5 

Tensorial 1–5 (Strategy B) App. 3 0.0352/ 
0.0499 

5.89× 10− 6/6.09×

10− 5 

Tensorial 1–5 Red. (Strategy 
C) 

App. 3 0.0305/ 
0.0356 

6.62× 10− 6/4.07×

10− 5 

Tensorial 6.1 (Strategy D1) RF 0.0296/ 
0.0405 

6.67× 10− 6/1.68×

10− 5 

Tensorial 6.3 (Strategy D2) ALVEN 0.0159/ 
0.0194 

1.54× 10− 4/2.64×

10− 4 

Tensorial 6.4 Red. (Strategy 
E) 

ALVEN 0.0159/ 
0.0181 

9.16× 10− 5/1.44×

10− 4 

Tensorial 6.4 Red. Auto 
(Strategy F) 

ALVEN 0.0168/ 
0.0168 

1.08× 10− 4/6.43×

10− 5  

Fig. 12. Summary of the prediction performance of the different strategies 
compared to the base case only using batch data for mAb#2. Strategy F is the 
best performing strategy with a mean RMSE of 0.0168 and a variance of 
6.43× 10− 5. 
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autoregressive term to capture the dynamic effects in mAb#2. Approach 
6.4 first uses tensorial methods based only on time series data to predict 
the CQA, and then applies different second-order tensor methods to the 
batch data and the prediction difference that are suitable given the 
present characteristics of multicollinearity and nonlinearity in the 
dataset. From these second-order tensor methods, ALVEN performed 
best by leveraging the prediction difference and allowing for the 
consideration of different types of linear and nonlinear transformations 
of key features. 

In summary, different strategies and approaches to combine second- 
and third-order tensorial data are proposed and evaluated based on the 
application to two monoclonal antibody production processes. Incor-
porating thid-order tensorial or timeseries data into the model-building 
process can result in significant improvement in prediction accuracy if 
the predicted variable shows strong batch-to-batch correlations as 
shown in the case of mAb#2. However, the effect is significantly smaller 
if those batch-to-batch correlations are insignificant as for mAb#1. In 
this case, the additional time dimension does not improve the pre-
dictions significantly as the additional time resolution adds less value. 

5. Conclusions 

For the objective of model prediction, multiple tensorial approaches 
are proposed to handle combinations of both second- and third-order 
tensorial data. Subsequently, these different approaches are applied to 
two different monoclonal antibody production processes in order to 
predict the relevant CQAs. The mAb#1 CQA shows no significant batch- 
to-batch correlation whereas the mAb#2 CQA shows significant batch- 
to-batch correlation for up to 3 lags as quantified by autocorrelation. 
Comparing the performance of the proposed approaches to a base case 
considering only batch data modeled using a smart process analytics 
prediction software, applying autocorrelation in the predicted variables 
was a useful guide as to whether to use third-order tensorial methods. 
mAb#1 did not benefit from the proposed approaches due to its lack of 
significant batch-to-batch correlation. Consequently, no significant im-
provements can be observed compared to the base case. However, the 
prediction for mAb#2, which shows significant batch-to-batch correla-
tion, can be substantially improved, yielding a mean RMSE of 0.0168 
compared to 0.0405 in the base case. This improvement shows the 
strong potential of using third-order tensorial methods for data that have 
significant batch-to-batch correlation. Consequently, autocorrelation 
analysis is a useful prior analysis to apply before applying third-order 
tensorial methods, as well as the proposed methods that combine sec-
ond- and third-order tensorial data. Additionally, we recommend 
considering the inclusion of an autoregressive term to further extract 
information from the batch-to-batch effects for datasets in which the 

autocorrelation is observed for the predicted variable. 
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