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A B S T R A C T

The design of control systems for modular chemical systems typically requires the identification of nonlinear
dynamic models. Mechanistic models for modular chemical systems are typically of high order, which results in
high online computational cost when the models are incorporated into the nonlinear model predictive control
(NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use
of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-
inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select
which terms to include within the NARX polynomial series representation. The approach for constructing sparse
predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output
chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem,
resulting in low online computational cost.
1. Introduction

This article considers the model-based control of modular chemi-
cal systems, which have become of interest in recent years in both
academia and industry, with the potential benefits of reducing supply
chain disruptions, production times, costs, waste, and product quality
variations, while facilitating faster demand change responses (Mascia
et al., 2013; Baxendale et al., 2015; Myerson et al., 2015). Manufactur-
ing in compact modular systems provides additional flexibility in where
and when the chemical is produced (Rogers et al., 2020).

Mathematical representations of systems for model-based control
can take different forms, which span the spectrum from first-principles
and mechanistic models (white-box) to data-driven (black-box) mod-
els (von Stosch et al., 2014). Data-driven models include (nonlinear) au-
toregressive with exogenous inputs ((N)ARX), (nonlinear) autoregres-
sive moving average with exogenous inputs ((N)ARMAX), state–space
models, and recursive neural networks (RNN) (Sun and Braatz, 2020).
The construction of data-driven models require more data compared
to first-principles models, and data-driven models lack extrapolating
capabilities and are often uninterpretable. On the other hand, first-
principles models require deep knowledge of the process, and their
development often takes place over longer time scales (Pearson, 1995;
von Stosch et al., 2014). Also, real-time optimal control and model
predictive control face computational limitations when based on first-
principles models for modular chemical systems (Nikolakopoulou et al.,
2019, 2020a).
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Data-driven model identification has been widely used in the control
of manufacturing systems for decades. Linear input–output (IO) models
are typically used for the control of multivariable dynamical systems
with actuator, state, and output constraints within model predictive
control (MPC) algorithms which have low on-line computational cost.
The linearity assumption naturally imposes limitations for processes
with strong nonlinearities, especially when the system has a limited
number of manipulated variables at the upper level regulatory layer.
However, the use of nonlinear models within MPC algorithms has been
more limited, due to higher computational costs associated with solving
the resulting dynamic optimal control problems.

The main scope of nonlinear model structure selection is to con-
sider model structures that can capture the main characteristics of
the process behavior and that do not capture dynamic behavior that
the process does not exhibit (Pearson, 2003). The MATLAB System
Identification Toolbox (MATLAB System Identification Toolbox, 2019)
implements a large number of traditional methods for nonlinear IO
model construction. In contrast, Smart Process Analytics (SPA) is soft-
ware that uses modern methods for automated method selection and
model construction for manufacturing data (Sun and Braatz, 2021).
The availability of model construction techniques in SPA is informed
by expert domain knowledge on machine learning and manufacturing
processes, and the method selection is based on the manufacturing
data characteristics. The data characteristics that are assessed in SPA
vailable online 27 May 2023
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are nonlinearity (between predictors and response), multicollinearity
(between predictors), dynamics (of residuals), and heteroscedasticity
(of residuals). Process data collected in modular chemical systems are
expected to exhibit some degree of nonlinearity and dynamics. For such
data sets, SPA recommends the use of recurrent neural networks (RNN)
and dynamic algebraic learning via elastic net (DALVEN) for model
identification (Sun and Braatz, 2020).

RNNs can model complicated nonlinear dynamical systems with
high accuracy and fall into the category of non-interpretable models.
Neural-network-based NMPC has been applied in the chemical industry
for decades (Qin and Badgwell, 2003). RNNs and in general black-box
models require a large quantity of training data to avoid overfitting
which can be limiting for manufacturing data sets. Another drawback
of neural network models is that their mathematical structure makes
it challenging to derive methods for the nonconservative analysis of
closed-loop stability and performance (Nikolakopoulou et al., 2020b,
2021).

DALVEN, on the other hand, uses the form of a NARX model
(Billings, 2013). DALVEN constructs nonlinear transformations of input
variables (past inputs and outputs of the process), combines them in
a linear-in-the-parameters model, and uses elastic net (EN) to build a
sparse model, which provides interpretability (Sun and Braatz, 2020).
Interpretable models can be more reliable when the number of training
samples is limited (Sun and Braatz, 2021) which is the case, for
example, for continuous pharmaceutical manufacturing data. Several
types of nonlinear transformations are considered in DALVEN for each
input variable 𝑖, such as 𝑥𝑖,

√

𝑥𝑖, ln 𝑥𝑖, 1∕𝑥𝑖, as well as up to third-order
interactions between them.

Nonlinear dynamical systems can often be written exactly or be ap-
proximated as polynomial systems using Taylor series (Harinath et al.,
2019) and this commonly occurs in applications such as chemical reac-
tors and biological networks. As such, polynomial NARX-based models
are promising model structures for the mathematical description of
modular chemical systems. Polynomial models maintain the advantage
of higher interpretability compared to neural network models. Addi-
tionally, polynomial models have a mathematical structure that is more
amenable to the development of control systems analysis and design
algorithms. Convex but suboptimal feedback control formulations are
restricted to particular classes of polynomial systems, leaving space for
exploring MPC solutions (Harinath et al., 2019). Recent advances made
in polynomial programming for static systems have been extended
to nonlinear dynamical systems to derive nonconservative stability
analysis conditions and to formulate NMPC algorithms (Harinath et al.,
2019). In general, polynomial optimization is nonconvex and NP-hard,
but polynomial solvers can now provide solutions in polynomial time
when series of ‘‘relaxed’’ optimizations are solved instead (Henrion and
Lasserre, 2002; Prajna et al., 2002). While polynomial models for NMPC
are derived in Harinath et al. (2019) using Taylor’s theorem, polyno-
mial structures are generated in this work by focusing on nonlinear
polynomial transformations in a NARX framework.

A full expansion of a polynomial NARX structure results in a large
number of regressors, many of which are not insignificant; which
regressors are significant is not known a priori. Therefore, building a
parsimonious polynomial NARX model for control becomes a problem
of model structure selection. Machine learning methods have been
applied for this purpose. The least absolute shrinkage and selection op-
erator (lasso) has been used for the sparse identification of NAR(MA)X
models (Kukreja et al., 2006; Ribeiro and Aguirre, 2018) and high-
dimensional time series estimation (Basu and Michailidis, 2015), and a
variation called ‘‘square root lasso’’ has been implemented for the iden-
tification of multivariate posynomial models (Calafiore et al., 2015).
Elastic net has been used for the identification of nonparametric model
structures for linear time-invariant discrete-time systems (Calafiore
et al., 2017) and for the construction of sparse industrial process
2

models (Chiu and Yao, 2013; Severson et al., 2015).
The coupling of nonlinear system identification methods with pre-
dictive control has been explored in many past studies. A study on
receding horizon predictive control based on NARX models employed
a conversion to a state–space model to establish closed-loop stabil-
ity results (De Nicolao et al., 1997). An NMPC algorithm based on
polynomial ARX models was formulated in which the future output
predictions were rewritten in terms of the control inputs, thus resulting
in an objective function which was a polynomial in all of the control
inputs (Sriniwas and Arkun, 1997). Polynomial NARMAX models with
approximate predictors have been used in NMPC schemes (Bai and
Coca, 2007), where the control moves participated in the NARMAX
model and no nonlinear terms with respect to the future control moves
were assumed. ARX-based MPC in state–space form has been applied to
an evaporator model (Huusom and Jørgensen, 2014), by fitting process
data to a simple linear structure. NMPC for a distillation column has
been implemented using polynomial NARX models, which assumed
predefined polynomial model structures (Sriniwas et al., 1995).

In this work, we build on our recently published results on polyno-
mial NARX NMPC for distributed parameter systems (Nikolakopoulou
and Braatz, 2022), and demonstrate how polynomial IO NARX predic-
tive models are used in NMPC to control modular chemical systems
with multiple inputs and outputs. No prior assumptions on the poly-
nomial NARX models’ structure are made. Elastic net (EN) is used
to promote variable selection and model sparsification to increase
interpretability and reduce the model bias. The NMPC implementa-
tion results in a real-time implementable algorithm. The latter task is
challenging; NMPC formulations are expected to be nonconvex in the
general case making their solution computationally expensive limiting
their applicability.

The rest of this article is organized as follows. Section 2 presents
some background on polynomial NARX models and machine learning
algorithms useful for their identification. Sections 3 and 4 discuss
the methodologies for constructing the predictive models and imple-
menting a polynomial NARX-based NMPC respectively. A case study
that demonstrates the successful implementation of the methodology is
presented in Section 5, followed by the conclusions in Section 6.

2. Background

A single-input single-output (SISO) nonlinear dynamical system
can be represented under certain conditions by the difference equa-
tion (Billings and Voon, 1986)

𝑦(𝑘) = 𝑓 [𝑢(𝑘− 𝑑 −𝑀 + 1),… , 𝑢(𝑘− 𝑑), 𝑦(𝑘−𝑀𝑦),… , 𝑦(𝑘− 1)] + 𝜖(𝑘), (1)

here 𝑓 [⋅] is a nonlinear function of the system input 𝑢(⋅), 𝑦(⋅) is
he system output, 𝑑 is the time delay, and 𝑀 and 𝑀𝑦 are positive
ntegers that indicate the number of past inputs and outputs included
n the model. Eq. (1) describes the class of NARX systems and can
e easily extended to the multiple-input multiple-output (MIMO) case.
odels commonly used in system identification such as the Hammer-

tein, Wiener, and Volterra series models are special cases of (1).
n equivalent representation for nonlinear stochastic systems can be
erived to give the nonlinear autoregressive moving-average model
ith exogenous inputs (NARMAX) (Billings and Voon, 1986)

(𝑘) = 𝑔[𝑢(𝑘 − 𝑑 −𝑀 + 1),… , 𝑢(𝑘 − 𝑑), 𝑦(𝑘 −𝑀𝑦),… , 𝑦(𝑘 − 1),

𝜖(𝑘 −𝑀𝜖),… , 𝜖(𝑘 − 1)] + 𝜖(𝑘),
(2)

here 𝜖(𝑘) is the prediction error and 𝑔[⋅] is a nonlinear map. Restrict-
ng 𝑓 [⋅] or 𝑔[⋅] to multivariable polynomials has the advantage that
inear regression techniques can be used, since the model would be
inear-in-the-parameters.

In this work, the focus is on models of the structure (1) with
= 1, which is not limiting if 𝑀 is selected to be large enough. The

onlinear function 𝑓 is a polynomial function of order 𝑟, meaning that
he arguments of 𝑓 participate in monomials and polynomials of order
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up to and including 𝑟 in every possible combination. For example, for
he SISO model

(𝑘) = 𝑓 [𝑢(𝑘 − 3), 𝑢(𝑘 − 2), 𝑢(𝑘 − 1), 𝑦(𝑘 − 2), 𝑦(𝑘 − 1)], (3)

a polynomial order 𝑟 = 2, (3) yields

𝑦(𝑘) =𝑢(𝑘 − 3) + 𝑢(𝑘 − 2) + 𝑢(𝑘 − 1) + 𝑦(𝑘 − 2) + 𝑦(𝑘 − 1) + 𝑢(𝑘 − 3)2

+ 𝑢(𝑘 − 2)2 + 𝑢(𝑘 − 1)2 + 𝑢(𝑘 − 3)𝑢(𝑘 − 2) + 𝑢(𝑘 − 3)𝑢(𝑘 − 1)

+ 𝑢(𝑘 − 2)𝑢(𝑘 − 1) + 𝑦(𝑘 − 2)2 + 𝑦(𝑘 − 1)2 + 𝑦(𝑘 − 2)𝑦(𝑘 − 1)

+ 𝑢(𝑘 − 3)𝑦(𝑘 − 2) + 𝑢(𝑘 − 3)𝑦(𝑘 − 1) + 𝑢(𝑘 − 2)𝑦(𝑘 − 2)

+ 𝑢(𝑘 − 2)𝑦(𝑘 − 1) + 𝑢(𝑘 − 1)𝑦(𝑘 − 2) + 𝑢(𝑘 − 1)𝑦(𝑘 − 1).

(4)

It is easily seen from (4) that, even for the simple case of a SISO system
with 𝑀 = 3 and 𝑀𝑦 = 2, and 𝑟 = 2, the model has twenty regressors.
The poor scaling of the number of regressors with 𝑀 , 𝑀𝑦, and 𝑟 is one
of the reasons why such models can result in identifiability issues and
overfitting. Additionally, the regressors can be strongly intercorrelated,
implying that a sparse model that groups the correlated regressors
might be preferred to avoid overfitting.

Machine learning and especially algorithms that allow for variable
selection, grouping of correlated variables, and sparsification provide
a promising framework to address these limitations. Ridge regres-
sion (Hoerl and Kennard, 1988) is a penalization regression technique
which imposes an 𝐿2-norm bound on the regression coefficients 𝑤

min
𝑤

1
2𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑥⊤𝑖 𝑤)2 s.t.

𝑝
∑

𝑗=1
𝑤2

𝑗 ≤ 𝑐, (5)

where the 𝑦𝑖 are the observations, the 𝑥𝑖 are the regressors (or predictor
variables), 𝑁 is the number of observations, 𝑝 is the number of the
regressors, and 𝑐 is a tuning parameter. The hyperparameter 𝑐 is iden-
tified by cross-validation. Ridge regression is a continuous shrinkage
method, and since it always keeps all the predictors in the model, a
parsimonious model cannot be obtained.

The lasso is a method that imposes an 𝐿1-penalty on the regression
coefficients (Tibshirani, 1996), leading to both continuous shrinkage
and variable selection thus resulting in a sparse model

min
𝑤

1
2𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑥⊤𝑖 𝑤)2 s.t.

𝑝
∑

𝑗=1
|𝑤𝑗 | ≤ 𝑐. (6)

Cross-validation for identifying the hyperparameter 𝑐 is needed. The
lasso is ineffective for the 𝑝 ≫ 𝑁 case, because lasso can select at most
𝑁 variables out of 𝑝 regressors (Efron et al., 2004).

Another regularization method, EN,

min
𝑤

1
2𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑥⊤𝑖 𝑤)2 s.t.

𝑝
∑

𝑗=1

1 − 𝛼
2

𝑤2
𝑗 + 𝛼|𝑤𝑗 | ≤ 𝑐, 𝛼 ∈ (0, 1], (7)

roduces models that are less sensitive to perturbations in the training
ata, while having the same or better performance than lasso (Zou
nd Hastie, 2005). EN selects groups of correlated variables to include
hem in the model, when lasso would select one variable from the
roup (Zou and Hastie, 2005). Constructing a model using EN involves
wo-dimensional cross-validation to identify the hyperparameters 𝛼 and
. The EN approaches ridge regression for 𝛼 → 0, and EN becomes lasso
or 𝛼 = 1. EN performs well for models with 𝑝 ≫ 𝑁 , which arises for
xample when a polynomial NARX model with large 𝑀 , 𝑀𝑦, and 𝑟 is
onsidered, and results in sparse models.

Although the focus of this work is on building polynomial NARX
odels, the proposed approach can be implemented on other types of
odels where a large number of regressors arises, such as NARMAX or
olterra series models.

. Sparse model identification methodology

The main criteria for predictive model selection that are adopted in
his work are (Sun and Braatz, 2021; Efron et al., 2004; Zou and Hastie,
005):
3

• high future prediction accuracy, evaluated through the root-
mean-square error (RMSE) and the residual properties of the
testing data,

• model interpretability and parsimony, which favor simpler mod-
els over models with very large number of regressors.

Data interrogation prior to model identification sheds light into
he characteristics of the data and informs the selection of a model
andidate pool. The degree of nonlinearity of the input–output data,
ulticollinearity of inputs (Sun and Braatz, 2021), and the autore-

ressive order of the process outputs are assessed during the data
nterrogation phase.

The Pearson’s correlation coefficient is a measure of data pairwise
inear relationships. It can take values between −1 and 1, with higher
bsolute values indicating a stronger linear relationship between the
nput and output. However, it assumes that the observations are inde-
endent, which does not hold for time series data. For time series data,
he maximum absolute values of the cross-correlation of each IO pair
an be used as an indicator of the nonlinearity of the data. Nonlinearity
n the polynomial NARX models was considered by introducing model
andidates with polynomial orders 𝑟 > 1. The variable inflation fac-
or (James et al., 2013) is calculated to assess multicollinearity when
ore than one input is present. Lastly, the partial autocorrelation func-

ion (PACF) of the output plotted versus the lags can inform the order of
he autoregressive model. The lag at which the PACF becomes smaller
han the confidence intervals indicates the order of the autoregressive
erms that should be included in the NARX model. For example, if the
ACF cuts off after the third lag, a model 𝑀𝑦 = 3 would be considered.
ore details on statistical tests suitable for in-depth data interrogation

re discussed in Sun and Braatz (2021).
During the model candidate design phase, the autoregressive order

𝑦, which is informed by the data interrogation, was fixed while
arious input horizons (𝑀) and polynomial (𝑟) orders were included
n the model candidate pool based on domain knowledge. The final
ecision on 𝑀 and 𝑟 was made by evaluating the resulting model
haracteristics. This strategy of selecting the ‘‘best’’ model among a
mall set of models pre-selected based on the type of data and the
pplication has been shown to produce accurate models for all noise
evels (Sun and Braatz, 2021).

Due to the nature of time series data, splitting the available data
nto training, validation, and testing data must be done carefully. In
his work, the testing data were collected independently of the training
nd validation data sets, and amounted to 25% of the total available
ata. The validation data set contained 33% of the remaining data.
he training data preceded temporally the validation data. If only one
ata set is available, the validation data should also precede the testing
ata (Sun and Braatz, 2021). Implementing 𝑘-fold cross-validation with
ime series data requires additional attention. The data of the 𝑖th fold
f a 𝑘-fold cross-validation need to be a subset of the data used in the
𝑖+1)th fold and precede them temporally. Here, 3-fold cross-validation
as implemented and in each fold about 33% of the available data was

et aside for validation. The 𝑘th fold contained all available training
nd validation data points which were 75% of the available data.

The EN solution was returned for each value of the hyperparameter
= {0.1, 0.5, 0.7, 0.9, 0.95, 0.99} in (7), for various values of 𝑐 determined
y the algorithm. For each fold of the 3-fold cross-validation, the
raining data were used to obtain the EN solution for various values
f 𝑐 and the RMSE was calculated on the validation data. The value of
corresponding to the minimum of the mean RMSE across all 3 folds
as selected. This procedure was repeated for all values of 𝑎. Then the
alue of 𝛼 was selected to give the smallest mean RMSE. Lastly, the
ntire training and validation data sets were used to retrain the model
or the selected hyperparameters 𝑐 and 𝛼. The testing data RMSE was
alculated on the final model.

The training was implemented in MATLAB using the EN algorithm
f the glmnet package (Friedman et al., 2010; Qian et al., 2013) on a
orkstation with Intel Xeon Gold 6152 CPU at 2.1 GHz and 256 GB
AM. The computational time associated with training all 17 model
andidates of each case study was always below 10 min.
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4. Nonlinear model predictive control formulation

The NMPC algorithm determines the control inputs by repeatedly
solving an online optimization based on a nonlinear process model. A
widely used MPC formulation is

min
𝛥𝐮

𝑊𝑦

𝑝
∑

𝑖=1
(𝑦ref(𝑘 + 𝑖) − �̂�(𝑘 + 𝑖))2 +𝑊𝑢

𝑐−1
∑

𝑖=0
𝛥𝑢(𝑘 + 𝑖)2

s.t. 𝐲min ≤ 𝐲 ≤ 𝐲max,

𝐮min ≤ 𝐮 ≤ 𝐮max,

𝛥𝐮min ≤ 𝛥𝐮 ≤ 𝛥𝐮max,

(8)

where 𝑘 is the sampling instant, 𝑦ref(𝑘) is a reference (setpoint) of
the plant output at instant 𝑘, �̂�(𝑘) is a prediction of the future plant
output at instant 𝑘, 𝑢(𝑘) is the plant input at instant 𝑘, and 𝛥𝑢(𝑘) ∶=
𝑢(𝑘)−𝑢(𝑘−1) is the control move at instant 𝑘, 𝑝 is the prediction horizon,
𝑐 is the control horizon, 𝑊𝑦 is a weighting factor on the outputs, 𝑊𝑢
is a weighting factor on the inputs, 𝐲 is a sequence of future outputs
(controlled variables), 𝐮 is a sequence of current and future inputs
(manipulated variables), and 𝛥𝐮 is a sequence of future control moves
in the control horizon. In nonlinear MPC, a nonlinear model is used to
obtain the predictions �̂�(𝑘 + 𝑖).

The notation 𝑥(𝑖|𝑘) stands for the value of variable 𝑥 at instant 𝑖
given the information up to (and including) the instant 𝑘. Multiple-
step-ahead predictions for a NARX model with past horizon 𝑀 and
autoregressive order 𝑀𝑦 can be obtained by writing out the individual
predictions,

𝑦(𝑘|𝑘) = 𝑓 (𝑢(𝑘 −𝑀),… , 𝑢(𝑘 − 1), 𝑦(𝑘 −𝑀𝑦),… , 𝑦(𝑘 − 1)),

𝑦(𝑘 + 1|𝑘) = 𝑓 (𝑢(𝑘 −𝑀 + 1),… , 𝑢(𝑘), 𝑦(𝑘 −𝑀𝑦 + 1),… , 𝑦(𝑘)),

𝑦(𝑘 + 2|𝑘) = 𝑓 (𝑢(𝑘 −𝑀 + 2),… , 𝑢(𝑘 + 1), 𝑦(𝑘 −𝑀𝑦 + 2),… , �̂�(𝑘 + 1|𝑘)),

⋮

𝑦(𝑘 + 𝑝|𝑘) = 𝑓 (𝑢(𝑘 −𝑀 + 𝑝),… , 𝑢(𝑘 + 𝑝 − 1), 𝑦(𝑘 −𝑀𝑦 + 𝑝),… ,

�̂�(𝑘 + 𝑝 − 1|𝑘)),

(9)

where 𝑢(𝑘 − 𝑀),… , 𝑢(𝑘 − 1) are past inputs, 𝑢(𝑘) is the current input
(determined by the optimization), 𝑢(𝑘 + 1),… , 𝑢(𝑘 + 𝑝 − 1) are future
inputs, 𝑦(𝑘 − 𝑀𝑦),… , 𝑦(𝑘 − 1) are past outputs, 𝑦(𝑘) is the current
output, and �̂�(𝑘 + 𝑖|𝑘), 𝑖 positive integer, is a future output prediction
defined below. The nonlinear function 𝑓 is a linear combination of all
monomials and polynomials of at most order 𝑟, which is the polynomial
order of the polynomial NARX model. The prediction is propagated
through for the entire prediction horizon 𝑝 with 𝑢(𝑘 + 1) = 𝑢(𝑘), 𝑘 =
𝑐, 𝑐 + 1,… , 𝑝 − 1.

An integrator is included in the NMPC in the same fashion as in
DMC (Cutler and Ramaker, 1979; Garcia and Morshedi, 1986; Ikonen,
2017). An unmeasured disturbance at 𝑘, which is the difference of the
measured output from the predicted output 𝑤(𝑘|𝑘) = 𝑦(𝑘) − �̂�(𝑘) =
𝑦(𝑘) − 𝑦(𝑘|𝑘), is propagated throughout the entire prediction horizon
such that 𝑤(𝑘 + 1|𝑘) = ⋯ = 𝑤(𝑘 + 𝑝|𝑘) = 𝑤(𝑘|𝑘). Then the prediction of
the future output becomes

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(𝑘 + 1|𝑘)
�̂�(𝑘 + 2|𝑘)

⋮
�̂�(𝑘 + 𝑝|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(𝑘 + 1|𝑘)
𝑦(𝑘 + 2|𝑘)

⋮
𝑦(𝑘 + 𝑝|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑦(𝑘) − 𝑦(𝑘|𝑘). (10)

Not all output measurements are available for the prediction of 𝑦(𝑘 +
2|𝑘) and onward, so �̂�(𝑘 + 1|𝑘), �̂�(𝑘 + 2|𝑘),… , �̂�(𝑘 + 𝑝 − 1|𝑘) are used in
place of 𝑦(𝑘+1), 𝑦(𝑘+2),… , 𝑦(𝑘+𝑝−1). An estimator such as a Kalman
filter can alternatively be used to estimate the outputs.

A first-order filter is implemented in the NMPC to address noise in
the measurements,

𝑦 (𝑘) = 𝛼𝑦(𝑘) + (1 − 𝛼)𝑦 (𝑘 − 1), 𝑦 (1) = 𝑦(1). (11)
4

filt filt filt
Fig. 1. Process flow diagram and multistep reaction network for the MIMO dynamic
CSTR process.

The filtered values of the output instead of the measured values are
provided to the controller when available.

This article follows standard NMPC tuning practice, e.g., (1) the
prediction horizon was set just long enough to capture the dynamics, to
avoid wasting online computation; (2) the control horizon was set just
high enough to give good closed-loop performance, to avoid wasting
online computation; and (3) the relative values of input and output
weights chosen to weigh the relative values of the inputs and outputs.

The NMPC simulations were implemented in Julia (Bezanson et al.,
2017). The nonlinear program arising in each iteration of the NMPC
was solved by the solver NLopt (Johnson, 2020) using the JuMP
algebraic modeling language (Dunning et al., 2017). JuMP employs
automatic differentiation for the computation of gradients. The glob-
ally convergent method-of-moving-asymptotes (MMA) algorithm for
gradient-based local optimization was used (Svanberg, 2002). Only
input box constraints were implemented in the case studies presented
here, but output and control move constraints can be included as
needed, without any changes in the methodology. The nonlinear simu-
lation of the process used in place of the ‘‘true’’ plant consisting of an
ODE system was solved in the Differential Equations (Rackauckas and
Nie, 2017) package in Julia. The NMPC computations were carried out
in a laptop with Intel(R) Core(TM) i9-8950HK CPU at 2.90 GHz and
128 GB RAM.

5. Case study: Multiple-input multiple-output system

This case study considers a chemical reaction network taking place
in a dynamic continuous stirred-tank reactor (CSTR) with two inputs
and two outputs (see Fig. 1).

5.1. Process description

The multistep reaction network shown in Fig. 1(b) with second-
order, bimolecular kinetics has been studied before for processes taking
place in both a plug flow reactor (Reizman and Jensen, 2012; Shen and
Braatz, 2016) and a dynamic CSTR (von Andrian and Braatz, 2020).
Different reaction kinetics orders were assumed here which resulted
in a more nonlinear input–output relationship. The process is run in
a dynamic CSTR shown in Fig. 1(a). The concentration of the desired
product species D in the outlet and the temperature are measured. The
inlet flowrate of species A and the outlet flowrate can be manipulated,
such that the reactor operates at constant volume. Species B is supplied
at a constant flowrate and known concentration. Additionally, the
reactor has a thermal jacket where heating and cooling fluids of known
temperature are circulated. The total flow of the heating and cooling
fluids is fixed but the ratio of the heating fluid can be manipulated.

The volumetric reaction rates are described by power law kinetics
with an Arrhenius temperature dependence,

𝑟1 = 𝑘0,1exp
(−𝐸𝐴,1

𝑅𝑇

)

𝑐1∕2A 𝑐B, 𝑟2 = 𝑘0,2exp
(−𝐸𝐴,2

𝑅𝑇

)

𝑐1∕2A 𝑐B,

𝑟3 = 𝑘0,3exp
(−𝐸𝐴,3

)

𝑐2𝑐C, 𝑟4 = 𝑘0,4exp
(−𝐸𝐴,4

)

𝑐2𝑐D,
(12)
𝑅𝑇 B 𝑅𝑇 B
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Table 1
Parameter values for the process shown in Fig. 1.

Parameter Description Value Units

𝑘0,1 Pre-exponential of reaction 1 103.4 L/(mol s)
𝑘0,2 Pre-exponential of reaction 2 103.5 L/(mol s)
𝑘0,3 Pre-exponential of reaction 3 104.9 L/(mol s)
𝑘0,4 Pre-exponential of reaction 4 103 L/(mol s)
𝐸𝐴,1 Activation energy of reaction 1 27 kJ/mol
𝐸𝐴,2 Activation energy of reaction 2 32.1 kJ/mol
𝐸𝐴,3 Activation energy of reaction 3 60 kJ/mol
𝐸𝐴,4 Activation energy of reaction 4 45 kJ/mol
𝑞2 Volumetric flowrate of stream supplying B 0.125 L/s
𝑉 Reactor volume 1.25 L
𝑐A,in Feed concentration of species A 0.01 mol/L
𝑐B,in Feed concentration of species B 3.5 mol/L
𝑈 Heat transfer coefficient 1100 W/(m2 K)
𝐴 Heat transfer area 0.1 m2

𝜌 Liquid mixture density 789.5 kg/m3

𝜌𝑗 Jacket fluid density 1110 kg/m3

𝑐𝑝 Liquid mixture heat capacity 2460 J/(kg K)
𝑐𝑝,𝑗 Jacket fluid heat capacity 2360 J/(kg K)
𝑉𝑗 Jacket fluid volume 0.9375 L
𝑇in Inlet stream temperature 298 K
𝑇H Heating fluid temperature 473 K
𝑇C Cooling fluid temperature 280 K
𝐹H+C Total heating and cooling fluid flowrate 4 L/s
𝛥𝐻1 Enthalpy change of reaction 1 −10 kJ/mol
𝛥𝐻2 Enthalpy change of reaction 2 −5 kJ/mol
𝛥𝐻3 Enthalpy change of reaction 3 −20 kJ/mol
𝛥𝐻4 Enthalpy change of reaction 4 −15.5 kJ/mol

where 𝑅 is the ideal gas constant, 𝑇 is the reactor absolute temperature,
and 𝑐𝑖 refers to the concentration of the 𝑖th species. The description and
values of the kinetic parameters can be seen in Table 1.

The mass balances for each species within the reactor are described
by
d𝑐A
d𝑡 =

𝑞1
𝑉
𝑐A,in −

𝑞1 + 𝑞2
𝑉

𝑐A − 𝑟1 − 𝑟2,

d𝑐B
d𝑡 =

𝑞2
𝑉
𝑐B,in −

𝑞1 + 𝑞2
𝑉

𝑐B − 𝑟1 − 𝑟2 − 𝑟3 − 𝑟4,

d𝑐C
d𝑡 = −

𝑞1 + 𝑞2
𝑉

𝑐C − 𝑟1 − 𝑟3,

d𝑐D
d𝑡 = −

𝑞1 + 𝑞2
𝑉

𝑐D − 𝑟2 − 𝑟4,

(13)

where 𝑞1 is the volumetric flowrate of the stream supplying species A
to the reactor and 𝑉 is the reactor volume. The values and descriptions
of all other parameters are provided in Table 1.

The energy balances within the reactor and jacket are described by

d𝑇
d𝑡 = 𝑈𝐴

𝜌𝑐𝑝𝑉
(𝑇𝑗 − 𝑇 ) −

∑

𝑖 𝛥𝐻𝑖𝑟𝑖
𝜌𝑐𝑝

+
𝑞1 + 𝑞2

𝑉
(𝑇in − 𝑇 ) and

d𝑇𝑗
d𝑡 = 𝑈𝐴

𝜌𝑗𝑐𝑝,𝑗𝑉𝑗
(𝑇 − 𝑇𝑗 ) +

1
𝑉𝑗

(

𝑟HC𝐹H+C𝑇H + (1 − 𝑟HC)𝐹H+C𝑇C − 𝐹H+C𝑇𝑗
)

(14)

respectively, where 𝑇𝑗 is the jacket temperature, 𝑟HC = 𝐹H∕𝐹H+C,
𝐹H+C = 𝐹H + 𝐹C, 𝐹H is the heating fluid flowrate, and 𝐹C is the cooling
fluid flowrate.

5.2. System identification

For the system identification, (12)–(14) were solved simultaneously,
while sampling the process inputs 𝑞1 ∼  (0, 0.625) and 𝑟H+C ∼  (0, 1).
The input signal was repeated for 50 sampling instants. The measured
values of the process outputs 𝑐D and 𝑇 were recorded every 2 s of
operation. The sampling was selected to be five times faster than
the largest process time scale which is about 10 s. Normal random
oise acted on the true values resulting in the ‘‘measurements’’. The
5

concentration measurement is 𝑐D,𝑚 = 𝑐D + 𝜖𝑐D , 𝜖𝑐D ∼  (0, 𝜎2𝑐D ) and the
temperature measurement is obtained as 𝑇𝑚 = 𝑇 + 𝜖𝑇 , 𝜖𝑇 ∼  (0, 𝜎2𝑇 ).
Two noise levels were considered for the concentration measurement;
a low level of noise with 𝜎𝑐D = 1.2 × 10−5 mol/L and a medium level
of noise with 𝜎𝑐D = 2.4 × 10−5 mol/L. With the true value of 𝑐D being
2–10 × 10−4 mol/L, these noise levels correspond to about 6% and 12%
maximum additive noise respectively. Higher levels of measurement
noise for the concentration would imply a poorly designed process. The
additive noise acting on the true value of the reactor temperature was
set to have 𝜎𝑇 = 0.17 K which implies a maximum level of temperature
noise of about 0.51 K.

5.3. Model construction for concentration prediction

Both concentration and temperature models were constructed using
data sets of various sizes and signal/noise ratios. The maximum value of
the cross-correlation for the input–output pair 𝑐D–𝑞1 is 0.26 and for 𝑐D–
H+C it is 0.32, implying that a nonlinear model for concentration might
e more suitable. The maximum value of the cross-correlation for the
nput–output pair 𝑇 –𝑞1 is −0.38 and for 𝑇 –𝑟H+C is 0.80, implying that

linear model for temperature prediction might be sufficient. Model
andidates with 𝑀 = {10, 20, 30, 40}, 𝑟 = {1, 2, 3}, and 𝑀𝑦 = 4 were
onsidered. Data sets with 100, 250, 500, 750, 1000, and 2000 data
oints were split into 75% training data and 25% testing data and
eparately trained. A 3-fold cross-validation for time series was also
mployed. The inputs 𝑢 in the NARX model were 𝑞1 and 𝑟HC and the
utputs 𝑦 were 𝑐D and 𝑇 .

First, models for concentration were constructed with noise-free
ata. Sparse models were obtained using EN; most models have less
han 100 regressors with a nonzero coefficient (Fig. 2(a)). To illustrate
he level of sparsity, for the model candidate 𝑀 = 40, 𝑟 = 3 identified
ith 2000 data points, only 9 out of a total of 121,484 regressors were

etained with a nonzero coefficient in the final model, indicating a
parsity of 99.99%.

The RMSE calculated for the testing data, is below 2% of the
inimum concentration measurement value, except for the models

uilt with the data set with 100 data points. The RMSE for models
uilt with the 100 point data set is much larger compared to the RMSE
f models built with the other data sets and is hence not depicted in
ig. 2(b). The smallest RMSE across all model candidates is observed
or the models constructed with 250 and 2000 data points. Using either
f those two data sets, the most parsimonious model candidate with the
inimum RMSE is 𝑀 = 10, 𝑟 = 2. The test residual distributions for all
odel candidates increasingly approximate a normal distribution for

arger data set sizes (SI Fig. 1). For models constructed with larger data
ets, the residuals are smaller, as expected, since the higher number
f high-quality data points increases the capacity to construct accurate
odels.

The test error autocorrelation plots for model candidates of second
rder constructed with 250, 500, and 2000 data points can be seen in
ig. 3. The autocorrelation vanishes within 20 lags for all models with
= 2, indicating that the dynamics are sufficiently captured by second-
rder polynomial models with a horizon of 𝑀 = 10 or more. The model
andidate with the minimum RMSE (𝑀 = 10, 𝑟 = 2) constructed using
ata sets with 250, 500 or 2000 data points, sufficiently captures the
rocess dynamics since the autocorrelation disappears at most after 10
ags.

Fig. 4 shows time-domain prediction, x–y plot, and testing residual
haracteristics for the model with 𝑀 = 10, 𝑟 = 2. For the models
onstructed with 2000 data points, the time-domain, x–y plot, and
esidual characteristics indicate that the model makes satisfactory pre-
ictions. On the other hand, the models constructed with 250 and 500
ata points give skewed predictions. Worse predictions are observed for
odels with larger horizons (i.e., 𝑀 = 20, 𝑟 = 2, which can be seen in

I Fig. 4) or a polynomial order 3 (i.e., 𝑀 = 10, 𝑟 = 3 in SI Fig. 6).
For a first-order model (𝑀 = 10, 𝑟 = 1) the model is underpredicting
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Fig. 2. Characteristics of constructed models with data sets of varying sizes. The legend indicates the total number of training and testing data points used. All models have an
autoregressive order 𝑀𝑦 = 4.

Fig. 3. 𝑐D prediction residual autocorrelation analysis for the testing data for second-order models and various data set sizes used for training and testing.
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Fig. 4. 𝑐D prediction performance metrics for the model 𝑀 = 10, 𝑟 = 2, for various data sets. The time-domain and x–y plots contain training and testing data points while the
residual distribution and autocorrelation analyses correspond to the testing data residuals.
in the med- and high-range concentrations (see SI Fig. 5). In summary,
to build a good prediction model for concentration, 2000 high-quality
noise-free data points were needed for training and testing.

Since the data quality can be compromised by measurement noise,
the ability to construct predictive models using data points affected by
three different noise levels was assessed. The noise levels were denoted
as ‘‘0’’ for perfect measurements of 𝑐D, ‘‘L’’ for the low noise and ‘‘M’’ for
the medium noise level, as defined in the System Identification section.

The data set with 2000 points was used to study the effect of mea-
surement noise on model construction for concentration predictions.
The RMSE of the models identified using the noisy data (Fig. 5) is
about twice the standard deviation of the white noise affecting the data,
where 𝜎𝑐D = 1.2 × 10−5 mol/L for ‘‘L’’ and 𝜎𝑐D = 2.4 × 10−5 mol/L for
‘‘M’’. The model with 𝑀 = 10, 𝑟 = 2 is quite sparse, although it is
the least sparse compared to all other models in Fig. 5, and has the
smallest RMSE across all levels of measurement noise. Additionally, its
testing residuals are distributed quite normally around zero and over a
smaller range compared to the residual distributions of all other model
candidates (SI Fig. 7) for all levels of measurement noise. The good
7

predictive capabilities of the model 𝑀 = 10, 𝑟 = 2 can be further
verified by the time-domain, x–y, and test error autocorrelation plots
in Fig. 6. Time-domain and testing residual plots for other models
are appended for comparison purposes (SI Figs. 8–10). In conclusion,
for reasonable levels of measurement noise, given enough high-quality
data points, a good prediction model for 𝑐D can be constructed.

5.4. Model construction for temperature prediction

A predictive model for temperature was constructed independently
from the concentration model. Model candidates with 𝑀 = {10, 20,
30, 40} and 𝑟 = {1, 2, 3} were considered. The autoreregressive order
for the outputs was 𝑀𝑦 = 4 for all model candidates. Data sets with
100, 250, 500, 750, 1000, and 2000 data points were used to train the
models. The model sparsity and corresponding testing RMSE for various
model candidates are seen in Fig. 7. RMSE information on models
constructed with 100 data points has been omitted from the plot due to
the very large RMSE values of these models. It is apparent that 100 data
points are not enough to describe the system behavior with a sparse



Computers and Chemical Engineering 177 (2023) 108272A. Nikolakopoulou and R.D. Braatz
Fig. 5. Characteristics of concentration predictive models constructed with data sets of 2000 data points. The legend indicates the level of noise impacting the measurements as
‘‘0’’ (no noise), ‘‘L’’ (low level of noise) and ‘‘M’’ (medium level of noise). All models have an order 𝑀𝑦 = 4.
model and the resulting models are very inaccurate. The sparsity for the
resulting temperature models is on the same order of magnitude as the
sparsity for the concentration models in most cases. The values of the
testing RMSE (Fig. 7(b)) are below 3 degrees for most models, implying
that the constructed models are quite accurate and the predictive
differences between them are not significant. The smallest values for
the testing RMSE are obtained for models of polynomial order 𝑟 = 2
for the data set with 1000 data points and for 𝑟 = 1 for the largest
data set (2000 data points). However, the smallest RMSE does not
necessarily point to the best model; a parsimonious model should be
favored when the model differences are small. In this case, first-order
models seem to have a small enough RMSE compared to second-order
models. Therefore, first-order models are most likely sufficient for a
temperature predictive model. This hypothesis is further assessed by
examining the test residual properties.

The test residual distributions increasingly approximate a normal
distribution as the size of the data set used to construct the models
increases (SI Fig. 11), indicating that training models with more high-
quality data points results in less skewed predictions. Additionally, the
variance of the test residuals of the first-order models is smaller than
the variance of the residuals of higher-order models.

The test residual autocorrelation vanishes rapidly for first-order
polynomial models constructed with 2000 data points but not for
first-order models constructed with fewer data points (Fig. 8). The
autocorrelation for second- and third-order polynomial models (SI Figs.
12 and 13) does not reduce as fast as the autocorrelation for models
with 𝑟 = 1. For first-order models, the model horizon 𝑀 does not signif-
icantly impact the autocorrelation function for the models constructed
with 2000 data points or more, implying that 𝑀 = 10, 𝑟 = 1 would be
sufficient to capture the system dynamics.

Time-domain prediction and x–y plots as well as the corresponding
testing residual results for the model 𝑀 = 10, 𝑟 = 1 are shown in Fig. 9.
The model constructed with more data points has better predictive
capabilities while models constructed with 250 or 500 data points
exhibit skewed predictions. Results for other models are shown in SI
Figs. 14–17. All these plots indicate that a wider model horizon is not
necessary and that higher-order models do not offer any advantage to a
first-order model. Therefore, the simpler models are favored during the
final model selection process, due to their ability to capture the process
behavior adequately while maintaining simplicity of representation.

Predictive models for temperature were also constructed using 2000
data points affected by measurement noise. The notation ‘‘0’’, ‘‘L’’, and
‘‘M’’ corresponds to no, low, and medium noise levels impacting the
measurement of 𝑐D while the level of noise impacting the temperature
8

measurement was constant. Noisier data used for temperature modeling
resulted in sparser models in most cases (Fig. 10(a)). The testing RMSE
for the models constructed with noisy data was about 10% higher than
the RMSE for the models constructed with noise-free data (Fig. 10(b)).
The RMSE was about 0.1% of the temperature value, suggesting that
even under the presence of measurement noise the resulting model
predictions are quite accurate when enough data points are used to
train the models. The minimum RMSE for the models constructed with
noisy data was observed for first-order models, in agreement with the
observation for the noise-free data case. The testing residual distribu-
tions (see SI Fig. 18) were consistent with previous observations (see SI
Fig. 7), that increasing levels of measurement noise result in residual
distributions that increasingly approximate the normal distribution.

Analyzing the models trained with the noisy data pointed towards
selecting the same final model as when analyzing models trained with
noise-free data, with 𝑀 = 10, 𝑟 = 1 (see Fig. 11). Time-domain and
testing residual plots for other models are appended for comparison
purposes (SI Figs. 19–22). The small differences between the various
models point to the final selection of the simplest model. Therefore,
the model selected for temperature prediction was 𝑀 = 10, 𝑟 = 1.

5.5. Nonlinear model predictive control

The continuous stirred-tank reactor was controlled using NMPC. The
model with input horizon 𝑀 = 10, autoregressive order 𝑀𝑦 = 4, and
polynomial order 𝑟 = 2 was selected for the concentration prediction
and the model with 𝑀 = 10, 𝑀𝑦 = 4, and 𝑟 = 1 was selected
for the prediction of temperature. Models constructed with 2000 data
points with noise-free (‘‘0’’) and noisy (‘‘M’’) data were used in closed-
loop simulations (Figs. 12(a)–12(f)). The first-principles model was
used in place of the ‘‘true’’ plant and the ODE system was solved in
Julia (Rackauckas and Nie, 2017) with the solver Rosenbrock23
which is appropriate for stiff equations at high tolerances. The level
of measurement noise which impacted the closed-loop operation was
the same as the level of noise impacting the 𝑐D and 𝑇 measurements
used for model construction. The controller calculated the future input
sequence every 2 s which matches the sampling frequency of data
collection during the system identification phase. The controller tuning
parameters and listed in Table 2. Table 3 summarizes the disturbances
acting on the process. The implemented control moves are shown in
Figs. 12(e) and 12(f).

The reactor was initialized at some steady state different from the
setpoint at 𝑡 = 0. During the first 9 sampling instants of the operation,
a model prediction was not available since at least 4 past outputs
and 9 past inputs (and a guess for the current input) were required

to predict the future outputs. Initial input values (here 𝑞1 = 0.3
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Fig. 6. 𝑐D prediction performance metrics for the model 𝑀 = 10, 𝑟 = 2, constructed with 2000 data points, for various noise levels. The time-domain and x–y plots contain training
and testing data points while the residual distribution and autocorrelation analyses correspond to the testing data residuals.
.

Table 2
NMPC tuning parameters for the MIMO case study.

Prediction horizon 𝑝 6
Control horizon 𝑐 3
Input 𝑞1 weight 𝑊𝑢 1
Input 𝑟HC weight 𝑊𝑢 2
Output 𝑐D weight 𝑊𝑦 2 × 105

Output 𝑇 weight 𝑊𝑦 4 × 10−4

First-order filter 𝛼 for 𝑐D 0.4
First-order filter 𝛼 for 𝑇 0.7

L/s and 𝑟HC = 0.5) were used before the controller started acting
n the process. All controllers successfully rejected the disturbances
isted in Table 3, usually within 0.5 min and at most within 1.3 min.
isturbances in the inlet concentration of species A, 𝑐A,in, caused larger
eviations from the setpoint compared to simultaneous disturbances
n the inlet flowrate 𝑞 and cooling fluid temperature 𝑇 . The plant
9

2 C
Table 3
Step disturbances acting on the closed-loop operation with responses shown in Fig. 12

Disturbance Magnitude Start time [min] End time [min]

𝑞2 +10% 2.5 3.5
𝑇C +5 K 2.5 3.5
𝑐A,in −10% 4.5 6.5
𝑞2 −10% 7.5 8.5
𝑇C −5 K 7.5 8.5
𝑐A,in +10% 9 11

would reach the setpoint at about 0.8 min after a setpoint change was
introduced. This timescale is about 4.8 times the process time scale.
The accuracy of the concentration predictive model was compromised
when unmeasured disturbances were acting on the process and this was
more prominent when measurement noise was also present. The loss of
predictive accuracy is noticeable, for example, between the 4.5–6.5 min
marks (Fig. 12(c)), when 𝑐 is reduced by 10%. The predictive model
A,in
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Fig. 7. Characteristics of the reactor temperature prediction models. The models were constructed with data sets of varying sizes. The legend indicates the total number of training
and testing data points used. All models have an autoregressive order 𝑀𝑦 = 4.

Fig. 8. Temperature prediction residual autocorrelation analysis for the testing data for first-order models and various data set sizes used for training and testing.
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Fig. 9. Temperature prediction performance metrics for the model 𝑀 = 10, 𝑟 = 1, for various data sets. The time-domain and x–y plots contain training and testing data points
while the residual distribution and autocorrelation analyses correspond to the testing data residuals.
for temperature is less susceptible to loss of predictive accuracy when
noise and disturbances are present. Despite the loss of accuracy in the
prediction, the controller successfully brought the plant to the setpoint
due to integral action (see Figs. 12(a)–12(d)).

The nonlinear optimization was solved every 2 s of operation with
an associated computational time shown in Fig. 13. Since the computa-
tional time is two orders of magnitude faster, the controller is real-time
implementable. The computations were carried out in a laptop with
Intel(R) Core(TM) i9-8950HK CPU at 2.90 GHz and 128 GB RAM.

Closed-loop responses for MPCs using different NARX models are
shown in Fig. 14. The corresponding controller actions are shown in
Fig. 15 and the associated computational times of the optimization are
shown in Fig. 16. The NMPC described earlier (NMPC1) is compared
to linear MPC (LMPC) where a NARX model with 𝑀𝑦 = 4, 𝑀 = 10, and
𝑟 = 1 for both 𝑐D and 𝑇 predictions is implemented, as well as another
NMPC scheme (NMPC2) with a NARX model with 𝑀𝑦 = 4, 𝑀 = 10,
𝑟 = 3 for both 𝑐 and 𝑇 predictions. The closed-loop performance
11
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differences among the LMPC and the NMPC schemes are significant.
LMPC cannot control concentration to its setpoint due to the model-
plant mismatch. NMPC2 has slower dynamics compared to NMPC1. All
MPCs were tuned as per Table 2.

6. Conclusion

A methodology is proposed for identifying sparse polynomial NARX
models using elastic net for use in real-time implementable NMPC.
Good closed-loop performance under setpoint changes, unmeasured
disturbances, and measurement noise is demonstrated for a case study
of a MIMO dynamic continuous stirred-tank reactor with a heated
jacket.

First-principles simulations were used to generate representative
data of the process dynamics. The MIMO case study system exhibited
strong nonlinearities between the inputs and outputs. Data interro-
gation informed the autoregressive order of the polynomial model
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Fig. 10. Characteristics of temperature prediction models, constructed using 2000 data points. The legend indicates the level of noise impacting the concentration measurements
as ‘‘0’’ (no noise), ‘‘L’’ (low level of noise), and ‘‘M’’ (medium level of noise). All models have an order 𝑀𝑦 = 4.

Fig. 11. Temperature prediction performance metrics for the model 𝑀 = 10, 𝑟 = 1, constructed with 2000 data points, for various noise levels. The time-domain and x–y plots
contain training and testing data points while the residual distribution and autocorrelation analyses correspond to the testing data residuals.
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Fig. 12. Closed-loop response of the concentration of species D, the reactor temperature and the associated manipulated variables during a setpoint tracking and unmeasured

disturbance program.
Fig. 13. Computational time associated with the NMPC controller with closed-loop
esponses shown in Fig. 12.
13
candidates, to limit the model candidate pool to a small set. The
relationship between the process characteristics – such as extent of
nonlinearity and the signal-to-noise ratio – and the quantity of data
needed for model construction was examined. A linear and a nonlinear
predictive model were identified for the two system outputs respec-
tively. In both cases, the larger the data sets used for model training
and cross-validation, the better the predictive accuracy of the model.
The correct model structure was identified even under the presence
of various noise levels, provided that a large enough data set was
available.

The resulting NMPC algorithm is implementable in real time, with
computational times about two orders of magnitude faster than the
control sampling time. The sparse algebraic predictive models and
the use of automatic differentiation, internally implemented in JuMP,
significantly contribute to the fast solution of the optimization in each
control iteration. Good, fast, reliable solvers are central in the imple-
mentation of NMPC, especially if such systems engineering solutions
aim to become part of regulated software packages with potential for

applications in manufacturing.
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Fig. 14. Closed-loop response of the concentration of species D and the reactor temperature during a setpoint tracking and unmeasured disturbance program based on various
ARX models.
Fig. 15. Time evolution of the manipulated variables during a setpoint tracking and unmeasured disturbance program based on various NARX models.
Fig. 16. Computational time associated with the NMPC controller with closed-loop
esponses shown in Fig. 14.
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