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Abstract

The 1988 Amundson Report on research needs in chemical engineering encouraged

the pursuit of frontier areas in chemical engineering with the warning, however, that

attention to core areas must be preserved. Indeed, the strong core base in chemical

engineering during the latter half of the 20th century enabled chemical engineers to

contribute extensively to many areas outside of the traditional. The depth of such

involvement has led researchers to confront questions much more engaging to the

field of application. This effort has led to adopting and cultivating expertise more

native to the field of application than to secure chemical engineering as a discipline.

It therefore seems appropriate to ask if the warning voiced in the Amundson Report

needs to be reiterated. If chemical engineering research must leave a strong trail of

fundamental understanding through developed methodologies to ensure continuing

progress, then this article yields considerable scope for discussion.
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1 | INTRODUCTION

Contemporary research in any branch of engineering is seen of late to

transgress its traditional academic borders to an extent that its relation-

ship to the embryonic beginnings of the field is often unclear.1 This

occurrence is a consequence of the notable strides in fundamental

understanding of natural phenomena and its powerfully unifying effect.

In this regard, chemical engineering, in view of its empirical roots, has

had the most striking advances in the last several decades. The early

development of any engineering discipline has been to cater to some

selected societal need (or set of needs) served by the formulation of

core subjects toward maintaining some territorial integrity. Thus, chemi-

cal engineering began naturally by being associated with industrial

chemistry, which was the art of producing chemicals for multifarious

applications toward meeting diverse societal needs. This beginning is

reflected well in the manner in which core chemical engineering pro-

gressed from unit processes to unit operations, and further on to the

use of chemical kinetics and thermodynamics, the framework of contin-

uum mechanics to study transport processes in fluids, with parallel

development of statistical mechanics and molecular theories. For a more

comprehensive account of the emergence and evolution of chemical

engineering as a discipline, the reader is referred to Scriven in the open-

ing chapter of Perspectives in Chemical Engineering Research and Educa-

tion edited by Colton.2 This cited compilation has an excellent collection

of articles by numerous academics on various areas of chemical engi-

neering with projections for the future. The history in the foregoing cov-

erage, insofar as serving to examine the edifice that has been built with

a ChE core, serves the purpose of comparing current events with expec-

tations then held. Our concern arises from sensing compromises in core

education both at the undergraduate and graduate levels.

The use of mathematics in chemical engineering climbed precipi-

tously during the fifties, sixties, and seventies in the last century with

a healthy influx of analysis particularly in chemical reaction engineer-

ing, fluid mechanics, transport phenomena, and the process systems
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area. Graduate core courses in most chemical engineering depart-

ments came to include Transport Phenomena, Thermodynamics,

Chemical Reaction Engineering, and Applied Mathematics. Although

these core courses have remained about the same over the years,

there has occurred some withering of intensity, probably because fac-

ulty interests have tended to shift away from areas that benefit

directly from such background. Not infrequently, junior faculty in pur-

suit of greener pastures elsewhere have subconsciously compromised

the level at which core courses are taught. These observations cannot

be said to be emanating from obscure corners of the profession. They

seem largely prevalent viewpoints, often expressed but more often

held back. As mentioned earlier, the objective of this article is to pro-

voke discussion, at least to the extent of examining the evolutionary

course of the profession. There is the familiar quip of “Chemical

Engineering is what chemical engineers do!” Ignoring the “circularity”
of this definition, we may inquire into whether or not chemical engi-

neering is served well by such a stance. Arbitrary activity is no one's

objective. Also, the effectiveness of a researcher's direction will be

tempered by the response of the profession at large. We have taken

for granted the relevance of contributions to practice because of its

limited bearing on our main issue of concern, that of diminishing rela-

tionship of chemical engineering research to its core strength.

This article seeks to argue for a rationally infinite domain for the

creativity of chemical engineers to flourish by formulating inquiries as

to whether or not their activity results in some attributes on which we

could expect some degree of consensus. While some attributes may

not be contested, others could spark debate:

a. As with all research, engineering research must be creative as well

as impactful. The focus of most researchers is impact as expressed

by citations and, perhaps to a lesser extent, through recognition by

a professional arm of the field as awards or keynote invitations to

perspective conferences.

b. Contributions by chemical engineers must display some distinctive

traits which must contribute to the solution of a significant prob-

lem. In the absence of such traits, the researcher's message is sub-

sumed into the multitude of contributions in the field of

application by researchers more directly connected to the subject.

The area of biology, which represents perhaps the most exciting

opportunity for chemical engineers to contribute creatively, is a

particular case in point. Often, the only response to a question on

relevance of the research to chemical engineering has been that

the scale of observation is a reactor which does not attract the

attention of a biologist. While reactor-scale work is certainly of

importance, the contribution derives merit not from the scale of

the observed system but from how the reactor is coaxed to work

with quantitative use of biological principles.

c. A traditional chemical engineering audience often views askance

research seminars that are stacked with biological facts or hypoth-

eses without a lateral conduit to a clarifying conceptual source in

chemical engineering for interpretation.

d. Another measure that seems important for chemical engineering

activity in a different field is its potential to modify or enhance the

core. Indeed, this feature is tied to securing core strength toward

preserving a more liberal version of “territorial integrity” than

before; “more liberal” implying generality rather than insularity.

One may inquire into whether or not the contribution of engineers

is generating new perspectives by virtue of tools that define the

parent discipline, and further if this experience has widened as well

as sharpened the tools that were used.

e. As in all other areas of science and engineering, opportunities

abound in chemical engineering for the use of data science,

machine learning, and artificial intelligence methods in dealing with

complex systems.

Our deliberations will focus on biology, on which chemical engi-

neering has had a major impact. Not surprisingly, many ChE depart-

ments have added “biological” or “biomolecular” engineering to their

names. Although such a discussion may seem antithetical to the main

theme of this article, it will serve to show that the many pioneering

developments in the bio area were much in the spirit of contributions

that not only drew richly on core chemical engineering but also

enhanced it. The discussion in the ensuing section on Biological Engi-

neering dilates further on this aspect. Thus, the concern raised here

about contributions to biology is related more to those seeking to

address core biological issues in competition with biologists. Even suc-

cessful ventures of this kind are unlikely to illumine the discipline of

chemical engineering.

We begin with briefly reflecting on the traditional core areas. Scri-

ven provides a scintillating account of the early development of chem-

ical engineering and its evolution in Perspectives in Chemical

Engineering which led to core chemical engineering principles estab-

lished around the latter half of the last century.

2 | APPLIED MATHEMATICS, TRANSPORT,
AND CHEMICAL REACTION ENGINEERING

A comprehensive account of mathematics in chemical engineering

over the past several decades has appeared in this journal.3 The math-

ematical culture that prevailed in the latter half of the 20th century

spurred the use of analytical tools in chemical engineering applica-

tions. While Amundson and Aris were the chief architects of this

movement, there were others such as Horn, Acrivos, Brenner, Chur-

chill, and Stewart, to mention only a few, whose publications reflected

a significantly higher level of mathematics. It is interesting to note that

scholarship pervaded in the early sixties even among industrial circles

such as the Socony Mobil Oil (now a part of ExxonMobil) hosting

Truesdell's lectures in continuum mechanics.4 Numerous in-depth

mathematical applications emerged from industry such as the determi-

nation of rate constants of catalytic reaction systems using spectral

information from suitably designed experiments,5 the analysis of

lumping reaction systems,6 and so on. Such applications thrived from

an edifice that espoused analysis as well as computation.

Fluid mechanics thrived through a major pioneering effort by

Acrivos and his group. In particular, Acrivos established the use of
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matched asymptotic expansions for problems in transport with several

analytical results.7 Aris' Vectors, Tensors and the Equations of Fluid

Mechanics provided a rare perspective of the subject more akin to a

physicist's view.8 Scriven's study of fluid interfaces and Marangoni

instability and subsequent involvement with interfacial driven flow set

a tone in fluid mechanics distinctly higher than the prevailing level.9

Transport Phenomena by Bird, Stewart, and Lightfoot most effectively

changed the teaching of Transport.10 The growth of this development

continued with the publication of their (long delayed) second edition.

The books of Leal11 and Deen12 deserve special mention in preserving

the graduate version of transport phenomena. It is puzzling, however,

that undergraduate courses in transport phenomena have suffered

some loss of level. There are notable exceptions to this observation

but consensus may be said to exist on this impression. The unique

expertise of chemical engineers on mass transfer is at risk with dwin-

dling attention to this subject. Often a single semester course in grad-

uate Transport is unable to include mass transfer, in spite of its high

importance to chemical and biological systems encountered in

research and in industrial practice.

Mathematical software such as Matlab and Comsol have enor-

mously eased the application of mathematical models in engineering.

The capabilities of symbolic software such as Maple and Mathematica

are prodigious in that computation can be postponed to the very final

stage when parameter values are to be inserted for numerical evalua-

tion of a mathematical model. Matlab is routinely used in undergradu-

ate courses. Sometimes their premature use has been at the expense

of time that could be better spent on issues of formulation and analy-

sis that harbor the essence of innovation. Notwithstanding the

strongly positive role of mathematical software in education, most

undergraduate instructors sense a drop in the comfort level of chemi-

cal engineering students in mathematics. Under these circumstances,

elimination of a first-level core course in Applied Mathematics in ChE

graduate programs would appear to be patently unwise. Schools

strong in the systems area are, however, an exception in this regard

since this field of research has made notable strides over the years.

Generally, computational work can be said to be thriving but often

without recognition that it can sometimes be coaxed to gain from a timely

input of analytical reasoning. For example, instances can be cited in which

parameter estimation can be notably improved by local analysis of non-

linear dynamic behavior with bifurcation methods. It is unclear whether

the age-old practice of inaugurating the introductory chemical engineer-

ing course with dimensional analysis and the Buckingham Pi Theorem is

still in vogue. Clearly, parameter estimation of nonlinear models can be

aided by non-dimensionalization, as the number of dimensionless param-

eters is less than the original set; furthermore, a better rationale is fre-

quently available for their initial estimates for iterative computation.

The argument in favor of analytical reasoning is not made to

diminish in any way the importance of computational methods but

rather to point to its effectiveness in organizing computation. A cul-

ture of analysis has the facility to cultivate creative ideas in the pro-

fession, for in its absence, there would not be the likes of Gavalas,13

who introduced topological methods in reactor analysis, Balakotiah

and Luss,14 for their work on singularity theory, Feinberg,15 who made

intriguing contributions to chemical reaction network theory, and

Jackson,16 who published many interesting papers on particle flows as

well as in chemical reaction engineering. Of course, there are many

more who deserve mention, but the goal here is to argue for more

analysis than provide an exhaustive list of creative analysts.

Graduate courses in Chemical Reaction Engineering have tended

to become more oriented to catalytic science because of significant

developments in this field. Discussion of transport effects in reaction

systems appears to have lost some of its prevalence. Dispersed phase

reactors receive no more than a modicum of mention due to limited

familiarity with the use of population balance equations. It is hearten-

ing, however, that an industrial reaction engineering course organized

by Hickman17 under the auspices of Purdue CISTAR provided an

excellent picture of reaction engineering practice.

3 | PROCESS SYSTEMS ENGINEERING

Process systems engineering (PSE) is the application of systems engi-

neering to biophysicochemical processes, where systems engineering

is the methodical approach for the design of systems via mathemati-

cal modeling, data analytics, optimization, and control, and a system

is a set of units that interact. Numerous journal papers have been

published in the last decade in which authors provide various per-

spectives on PSE.18 Some papers argue that the discipline of PSE

was founded in the 1950s, whereas others argue for the 1960s or

even later. The PSE field actually can be traced back to the 1930s to

early 1940s, when the use of mathematical modeling to design con-

trolled process systems was already practiced in the chemical

industry.19–23 PSE was an active research area by the 1950s, with

pioneering work by Rutherford Aris, Neal Amundson, and Roger Sar-

gent in various types of chemical reactors and separations.24–29 The

use of numerical computing in PSE, which had already been applied

in industry in the 1950s, became widely studied by the 1960s, with

additional research teams including that of Ernst Gilles, Lowell Kop-

pel, Leon Lapidus, Dale Rudd, W. Harmon Ray, Larry Evans, Reuel

Shinnar, and Art Westerberg.30–44

The 1970s saw the development of many research groups in PSE,

including G.V. Reklaitis, George Stephanopoulos, Iori Hashimoto, John

Perkins, Thomas Edgar, Ignacio Grossmann, Dale Seborg, Michael

Doherty, Manfred Morari, Charles Cutler (at Shell), and Jeffrey Siirola

(at Eastman Chemical).45–52 Much of the research was in developing

PSE solutions for specific classes of processes. Other research consid-

ered processes more generally, and precise mathematical formulations

were derived for much of the PSE technologies used in today's indus-

try, including for model predictive control, data reconciliation, and

process scheduling. Methods were developed for better handling of

practical considerations such as uncertainties and mixed continuous-

discrete operations. At the same time, several research groups were

making an impact outside of the field of chemical engineering, along-

side their contributions within the field. As in earlier years, many indi-

viduals within the PSE community were widely known outside of PSE,

including in reaction engineering and separations.

3 of 8 RAMKRISHNA AND BRAATZ
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The 1980s to mid-1990s saw the founding of a large number of

PSE research groups worldwide, with a large proportion focusing their

attention only within the PSE community, with very little interaction

outside of PSE, either within or outside of chemical engineering. A

small proportion became highly engaged outside of PSE, in some

cases becoming very well known outside of PSE, including in the areas

of optimization and control theory and in applications such as energy

systems, pharmaceutical manufacturing, and biomedical devices. Indi-

viduals at such interfaces included James Rawlings, Lorenz Biegler,

Nikolaos Sahinidis, Babatunde Ogunnaike, and Frank Doyle.

Data analytics, which was an active area of research within a sub-

set of the PSE community and applied in industry for decades, has

become of increased activity with the meteoric rise (and some

rebranding) of machine learning. Recent years have seen PSE faculty

increasingly collaborating with non-PSE faculty to apply PSE method-

ologies to their research problems, which has resulted in an increase

in the number of publications by PSE faculty in highly scientific

venues including Nature, Science, Cell, and PNAS. These collaborations

include applications of machine learning, systems analysis, and pro-

cess design, operations, and control. The “PSE community” is largely

two distinct groups today, with one group being very inward-looking

and focused on publishing papers in traditional PSE publication

venues, and another group whose primary goal is to make an impact

in other communities. The interactions between the two groups are

rather limited, although some individuals have received some level of

acceptance by both groups. The outward-looking community is likely

to continue to grow, as automation, high-throughput experimentation,

sensor technologies, and computing continue to favor methods that

make best use of these trends.

With the growth of computing and data, PSE continued to grow

in methods, software, and applications to the point of becoming indis-

pensable in the design and operation of modern chemical and biotech-

nological processes. Today software for computer-aided PSE such as

Aspen Plus, gPROMS, DMCplus, and DeltaV is ubiquitous in the pro-

cess industries. While systematic methods for addressing such charac-

teristics as time delays, nonlinearities, disturbances, and uncertainties

have been developed since the early days of the PSE discipline,53

algorithms and software have become increasingly powerful since

then, enabling increasingly complex systems and types of design prob-

lems to be addressed. The engineering designs are only as good as the

mathematical formulation of the PSE problem to be solved, and chem-

ical engineers need to continue to be trained in the language of math-

ematics and in chemical and PSE fundamentals to be able to address

the increasingly complex chemical and biological systems that arise in

today's and tomorrow's technological problems.

4 | BIOLOGICAL ENGINEERING

The traditional core background of chemical engineers constituted an

ideal fit for the study of biological systems in which enzyme-catalyzed

reactions and physical transport occurred aplenty albeit in a very com-

plex setting. The early entrants to the bio area such as Lightfoot,

Fredrickson, and Tsuchiya, and many other trend-setters were able to

show that chemical engineers can make unique contributions to this

area. Not surprisingly, the models were gross abstractions of the sys-

tem with a few ordinary differential equations and lumped chemical

species. Fredrickson et al.54–56 demonstrated the applicability of

kinetic models of microbial systems with structured biomass from the

perspective of an “average” cell. In an early development of the popu-

lation balance framework, Fredrickson et al.57 developed models that

could accommodate population heterogeneity. In the course of time,

however, the models grew in sophistication including metabolic net-

works of increasing complexity. Bailey,58 Stephanopoulos,59

Palsson,60 Lauffenburger,61 and many others developed models with

detailed metabolic perspectives. In particular, metabolic engineering in

which the genetic background of cells is altered to change their meta-

bolic potential was founded by Bailey. Further, the flow cytometer

had its early beginnings in Bailey's laboratory under the name micro-

fluorometer. The foregoing accomplishments were impressive as they

notably changed the quantitative approach to modeling biological sys-

tems. The development of flow cytometry also led to assessing the

heterogeneity of microbial populations and identification through

population balance models.62,63

Metabolic modeling brims with many interesting perspectives

that reaction engineers will find attractive. However, its popularity in

International Symposia on Chemical Reaction Engineering Confer-

ences (ISCRE) has been surprisingly limited. A detailed metabolic net-

work may appear at first to be of daunting complexity. The

recognition that external nutrients enter the cells at rates much

slower than those at which intracellular reactions occur, however,

offers the comfort of a pseudo-steady state for intracellular compo-

nents thus affecting linear coupling of the various intracellular fluxes.

Metabolic flux analysis (MFA) is built on this edifice with matrices of

stoichiometric coefficients accounting for connectivity of metabolites

in the network. An excellent treatment of MFA with numerous exam-

ples of applications is contained in Stephanopoulos et al.59 Clearly,

the fluxes obtained by such computation are regulated versions. Thus,

if the regulatory scenario is different for one reason or another, the

fluxes would be altered and must again be obtained experimentally.

In a complex network, many “reaction paths” are conceivable as

cellular alternatives. A truly creative concept associated with these

alternatives is that of an elementary mode. Crudely, it may be viewed

as comprising the uptake of an external nutrient into the cell to be

engaged in a sequence of intracellular reactions culminating in the

excretion of an ultimate product into the environment. Obviously,

there would be a countless number of such reaction paths and it

would be unrealistic to expect that all of them will be commissioned

by the cell. (One could imagine, with some comfort, the potential real-

ity of a single path as arising from the absence of catalytic enzymes

that could divert metabolic species away from the specific reac-

tion path.)

It is now known that, even for a network of reasonable size, the

number of elementary modes can run into millions. Palsson's choice of

reaction paths that maximize the biomass yield is a stroke of brilliance

because of its capacity for predicting yields of metabolic products
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with ease even for relatively large networks.64 Specification of the

substrate uptake rate (readily obtainable experimentally) leads to pro-

ductivity calculations of all cellular products. Extension of the flux bal-

ance analysis (FBA) has been made for dynamic predictions (DFBA) by

kinetically modeling uptake rates free of regulatory effects.65

The steady-state approach, however, is not suited to accounting

for the phenomenon of metabolic regulation, due to which cells prefer-

entially navigate through their metabolic network by controlling the

syntheses and activities of enzymes. The development of cybernetic

models,66–68 has led to dynamic modeling of metabolism comprehen-

sively inclusive of regulatory effects. While cybernetic models have

been successfully used to demonstrate numerous, dynamic conse-

quences of regulatory phenomena such as different uptake patterns

of mixed substrates, and dynamic effects of specific gene knock-outs

and gene insertion,69 their full exploitation for metabolic engineering

is still pending. Song's work on lumped hybrid cybernetic models

based on lumping of elementary modes toward reducing model

parameters deserves commendation as an example of chemical engi-

neering process.70

Regulatory processes include transcriptional, transcriptomic, and

post-translational regulation. The foregoing cybernetic approach is

based on the postulate that the details of the foregoing mechanisms

do not need to be included explicitly as they represent the implement-

ing mechanism of the optimal strategies ensuring cellular survival

goals. Thus, consistency of regulatory patterns predicted by cyber-

netic models with temporal gene expression profiles shows their capa-

bility to include regulatory effects in metabolism.

Regulatory processes evidently control directly or indirectly the

distribution of all components that participate in life processes in vari-

ous ways. Consequently, modeling of biological processes and the

quantitative understanding to be had from it is clearly contingent on

consideration of regulation. The success with modeling regulatory

effects in bacterial metabolism provides considerable incentive to

extend the approach to eukaryotic systems in spite of the latter's

greatly added complexity.

Some beginnings have been made by Aboulmouna et al.71 with

cybernetic modeling of regulation in macrophage cells which are con-

cerned with the organism's immune response. This system is riddled

with uncertainties from various sources. First, choices for cellular goals

are not as suggestive for eukaryotic cells as they are for bacterial cells.

Second, multiple goals may be involved at different stages of the cells'

development. Third, metabolic interconnections are not known in their

entirety for a rational cause-and-effect representation of all cellular

events. Aboulmouna's model was predicated on the goal of maximizing

production of the cytokine TNF-α by cybernetic control of arachidonic

metabolism. While the details are best left to the cited reference, multi-

ple goals were included in dealing with different network components.

The issue of unknown links between the production rate and those of

different metabolites was accomplished by a linear fit of their respective

time series data. This model successfully predicted the regulatory conse-

quences of certain perturbations. The terse view just presented is more

to provide a broad perspective of the model assemblage than for sug-

gesting any generality of its specific features.

Regulatory processes are studied experimentally in considerably

more detail by measuring the concentrations of messenger RNAs

(m-RNA), constituting crucial data for cybernetic modeling of eukary-

otic systems. The regulatory dynamics is represented by the m-RNA

profiles so that the cybernetic model features m-RNA concentrations

as variables among other components of metabolism.72 The incentive

for such modeling is the possibility of laying a foundation for

improved quantitative understanding of eukaryotic systems with

potential applications to fighting disease and developing drugs.

Modeling in biology has thrived well by the activity of chemical

engineers. With the tools of analysis of reaction-transport systems in

homogeneous, heterogeneous, and dispersed media, the capacity to

address further biological problems is immense. The foregoing tools are

uniquely suited for the solution of a diverse class of biological problems

in which numerous transformations are encountered as a result of com-

plex regulatory phenomena. We contend that such activity has not only

the opportunity to further understanding of biological systems but also

contributes to ChE core by strengthening or enhancing it.

5 | POPULATION BALANCES

Although population balances date back to the days of Boltzmann, this is

an area in which chemical engineering leadership has been notable since

the 1960s.57,73,74 The contribution of chemical engineers has been espe-

cially creative since the coinage of the term “internal” coordinates by

Hulburt and Katz73 for variables other than spatial location of an entity

which opened the flood gates to a plethora of applications. Numerous

reviews provide perspectives of population balances.75–78 An application

of consequence to biology is the formulation of signal transduction prob-

lems in a population setting. The signaling variables become internal

coordinates of the cell and the stochastic process characterizing the

dynamics of intracellular reactions translating into the convective and dif-

fusive transport of cells in the abstract space of internal coordinates. This

transport can also occur in conjunction with spatial transport if the cells

were in motion through physical space.79,80 The transfer of drug resis-

tance between bacterial species, which has been of major concern in

combating bacterial infection, is a significant area of application.81,82 This

transfer occurs by exchange of resistance-bearing plasmid DNA from the

“donor” cell to the “recipient” following signaling reactions in the donor

as shown in Figure 1. A single cell stochastic model, oblivious to the

F IGURE 1 Transfer of antibiotic resistance from donor to
recipient through transfer of plasmid
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presence of other cells in the neighborhood, would show a steady-state

population distribution in which individual cells exhibit stochastic dynam-

ics, whereas the more relevant population balance model would paint a

different picture of the same scenario as shown in Figure 2.

6 | DATA SCIENCE AND MACHINE
LEARNING

Data-ridden systems are a frequent occurrence in all fields of human

endeavor as computers have the means to store and process an

incredible amount of data. Biological engineering, of particular interest

to us, is no exception in this regard as advances in measurement tech-

niques have helped collect massive amounts of data in numerous

areas in which chemical engineers are active. Venkat Venkatasubra-

manian83 provides a modern perspective of artificial intelligence in

chemical engineering, while reviewing its progression since the 1980s

and including a healthy dose of data science and machine learning

given the close relationships between these topics. The use of data to

build neural network models and apply them to a wide variety of

chemical engineering problems was heavily investigated in the 1980s

to 1990s, including in works by Venkat, George Stephanopoulos,

David Himmelblau, Thomas McAvoy, and Mark Kramer.84–88 The

technologies became widely applied in industry, and dynamical neural

network models have been the basis of nonlinear process control

technologies by Rockwell/Pavilion and AspenTech for more than

20 years.89 While the value of using multiple layers in neural network

models for some applications is well known nowadays in the machine

learning community, that value was well-recognized by the PSE com-

munity by the early 1990s.86–88 In his perspective,83 Venkat observes

that data science and machine learning with suitable infusion of first

principles could be an attractive combination for chemical engineering

applications. Scientists and engineers in many disciplines are increas-

ingly reaching the same opinion.

A reviewer of this article brought our attention to the contribu-

tions of Haase and his group on the use of machine learning in ther-

modynamics that appears to have notably surpassed conventional

methods, for example, in the calculation of activity coefficients.90

Diagnostic issues in health science are indeed a promising area of

application. Verma, in quest of the source of peripheral neuropathy

from the use of Vincristine in the treatment of leukemic cancer, used

machine learning to identify a handful of pain-associated metabo-

lites.91 Early detection of such metabolites from blood samples could

lead to drug dosage adjustments for improving the quality of life.

Lumping of chemical species in systems with a very large number

of species has been of interest to chemical reaction engineers. When

nonlinear reaction kinetics is involved, lumping strategies could be of

interest using data science and machine learning. Similarly, order

parameters or collective variables have been of interest in molecular

systems toward reducing their dimension as a means to study rare

events such as nucleation. Data science and machine learning could

be a potential source to elucidate a small number of collective vari-

ables in terms of which the free energy of the system can be deter-

mined. While such applications abound, the likelihood of pedestrian

usage of the methodology cannot be ignored.

7 | CONCLUDING REMARKS

Our objective has been to present a perspective of current educa-

tional and research trends in chemical engineering with an eye on

maintaining a strong core. It is our position that a conscious effort to

nurture core areas of chemical engineering through both education

and research would be essential to perpetuate the success of chemical

engineers in contributing to society. Chemical engineering embraces

analysis of transport and chemical reaction on systems encompassing

a wide spectrum of spatio-temporal scales that offer unlimited oppor-

tunities for synthesis, optimal design control, and scope for local and

global perspectives. The 2018 Nobel Prize of Arnold for deploying

directed evolution techniques to engineer new enzymes is a striking

example of what chemical engineering expertise can accomplish. Sein-

feld's contributions to aerosol science and atmospheric chemistry

have paved the way for quality control regulations in the

United States. Enormous contributions have come about in the drug

delivery area from Langer92 and Peppas.93

Preservation and growth of chemical engineering core areas can-

not occur without allocation of resources for teaching and research.

Graduate programs, regardless of their research thrusts, must invest

F IGURE 2 Temporal evolution of
donor population toward steady state.
PrgB is a protein made by the donor cell
in response to the signal dispatched by
the recipient which facilitates transfer of
plasmid. The “on” cells are ready to
transfer plasmid while the “off” cells are
not. Note the substantial difference in the
steady states predicted by the population

balance model and the single cell model.
(A) Population balance model. (B) Single
cell model
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in high-quality core teaching. The present situation does not appear

conducive in this regard as researchers dedicated to core areas have

to find sagacious means of survival. Awards committees must recog-

nize researchers who are sensitive to core areas either in their deploy-

ment or making new contributions to them.
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