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A B S T R A C T

High-dimensional linear regression is important in many scientific fields. This article considers discrete
measured data of underlying smooth latent processes, as is often obtained from chemical or biological systems.
Interpretation in high dimensions is challenging because the nullspace and its interplay with regularization
shapes regression coefficients. The data’s nullspace contains all coefficients that satisfy 𝐗𝐰 = 𝟎, thus allowing
very different coefficients to yield identical predictions. We developed an optimization formulation to compare
regression coefficients and coefficients obtained by physical engineering knowledge to understand which part
of the coefficient differences are close to the nullspace. This nullspace method is tested on a synthetic example
and lithium-ion battery data. The case studies show that regularization and z-scoring are design choices that,
if chosen corresponding to prior physical knowledge, lead to interpretable regression results. Otherwise, the
combination of the nullspace and regularization hinders interpretability and can make it impossible to obtain
regression coefficients close to the true coefficients when there is a true underlying linear model. Furthermore,
we demonstrate that regression methods that do not produce coefficients orthogonal to the nullspace, such
as fused lasso, can improve interpretability. In conclusion, the insights gained from the nullspace perspective
help to make informed design choices for building regression models on high-dimensional data and reasoning
about potential underlying linear models, which are important for system optimization and improving scientific
understanding.
1. Introduction

Many important regression problems have the dimensionality of
the data 𝑝 much larger than the sample size 𝑛 (Bühlmann and Van
De Geer, 2011; Johnstone and Titterington, 2009; Hastie et al., 2009;
Kobak et al., 2020). Consequently, 𝑝 ≫ 𝑛 and the matrix 𝐗 ∈
R𝑛×𝑝 of predictors is ‘‘wide’’. This case arises, for example, in most
spectroscopies, lithium-ion batteries (Ralbovsky and Lednev, 2020;
Schaeffer and Braatz, 2022), brain imaging, and computational biol-
ogy (Boulesteix and Strimmer, 2007; Hastie et al., 2009; Bühlmann
and Van De Geer, 2011). Classical literature on linear regression (Groß,
2003; Montgomery et al., 2012; Seber and Lee, 2003) focuses mainly
on the case where 𝑝 < 𝑛 and mostly assumes full column rank; however,
many linear regression methods work well with wide predictor matri-
ces. While Ordinary Least Squares (OLS) is not defined for wide data
matrices because 𝐗⊤𝐗 is singular, the related minimum norm solution
(e.g., Monticelli (1999)) can be used instead. Ridge Regression (RR)
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and other shrinkage-based regression methods (e.g., Least Absolute
Shrinkage and Selection Operator (lasso), Elastic Net (EN)) do not suffer
from this problem due to the penalty term that is added to the main
diagonal of 𝐗⊤𝐗. The fused lasso, a generalization of the lasso, adds
an L1-norm penalty of adjacent regression coefficient differences to
the objective function (Tibshirani et al., 2005). This additional penalty
encourages piecewise constant regression coefficients, i.e., sparsity in
regression coefficient differences. Thus it is required that the predictors
can be ordered in some meaningful way. Latent variable methods
such as Partial Least Squares (PLS) and Principal Component Regres-
sion (PCR) are popular choices for high-dimensional regression in the
chemometrics community.

A key question is how to interpret high-dimensional linear regres-
sion results and the corresponding regression coefficients. In particular,
how to reason about an underlying (linear) model for scientific in-
sights and system optimization? Technically, regression coefficients
vailable online 20 October 2023
098-1354/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compchemeng.2023.108471
Received 31 August 2023; Received in revised form 11 October 2023; Accepted 17
 October 2023

https://www.elsevier.com/locate/cace
http://www.elsevier.com/locate/cace
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://github.com/JoachimSchaeffer/HDRegAnalytics
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
https://data.matr.io/1/
mailto:braatz@mit.edu
https://doi.org/10.1016/j.compchemeng.2023.108471
https://doi.org/10.1016/j.compchemeng.2023.108471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108471&domain=pdf


Computers and Chemical Engineering 180 (2024) 108471J. Schaeffer et al.

m
g

t
i
t
s
r
c

d
f
t

a
H
t
w
u
t
o

m

y
l
t
t
i
𝜆
a
S
t

𝜷

T
m
c

𝜷

T
c

𝜷

d
𝐗

(

for a linear model can be analyzed and compared to engineering or
scientific expectations in terms of shape (e.g., peaks, plateaus, slopes),
which is often done implicitly by engineers when looking at regression
coefficients. However, as shown in this article, such an interpretation
can lead to misleading conclusions.

This article develops a method, based on the nullspace of the
predictor matrix  (𝐗), for comparing coefficients obtained by different

ethods with each other for the case of high-dimensional data that was
enerated by a smooth latent process, also called functional data (Ram-

say and Silverman, 2005).1 We use the fact that  (𝐗) consists of
all solutions to 𝐗𝐰 = 0 and thus the predictions do not change
when adding a vector of the nullspace to the regression coefficients
𝐗(𝜷 + 𝐰) = 𝐗𝜷. The nullspace and its interplay with regularization
significantly influence the shape of the regression coefficients. There-
fore, an understanding of the effect of the nullspace is needed for
interpretation and scientific understanding. Our objective is to support
such an understanding with this article.

The next section briefly introduces the key linear regression meth-
ods used in this article. Then the nullspace approach is derived. Subse-
quently, case studies are presented on fully synthetic data, lithium-ion
battery data with two different synthetic linear responses, and the
measured nonlinear cycle life response (Severson et al., 2019). The
conclusion section summarizes the key learnings. All code and data
used in this article are open-source and open-access, allowing the
reproduction of results.

2. Motivation and linear regression

Linear, static models, assuming mean-centered data, have the gen-
eral form

𝐲 = 𝐗𝜷∗ + 𝝐 (1)

where the input data matrix 𝐗 ∈ R𝑛×𝑝, 𝑛 is the number of observations,
𝑝 is the number of predictors, and we assume that 𝑝 ≫ 𝑛. Our work
is motivated by measurements of chemical or biochemical systems,
i.e., discrete, noisy measurements of an assumed smooth underlying
process. Consequently, we assume a latent model structure, i.e., 𝐗
(independently of 𝐲) can be approximated in a lower dimensional space,
and 𝐗 is not sparse. Most of the analysis in this article is technically
not limited to this assumption. However, the nullspace perspective is
motivated by a latent model structure and the high multicollinearity
of columns that arises from functional data. The coefficients 𝜷 ∈ R𝑝

contain the relation between 𝐗 and 𝐲. The errors 𝝐 ∈ R𝑝 are assumed
to be homoscedastic, to have zero means, and to be uncorrelated.

Linear regression denotes statistical methods to determine �̂� from
data 𝐗 and 𝐲 minimizing the error �̂� concerning a defined measure of
the error,

𝐲 = �̂� + �̂� = 𝐗�̂� + �̂�. (2)

The objective of regression methods is to find a �̂� that yields predictions
hat are reasonably close to the predictions of 𝜷∗ when applied to
ndependent data, i.e., were not available during training. When a
rue underlying linear model exists, interpretation and scientific in-
ights would be supported by achieving a different goal, which is to
econstruct the true coefficients, i.e., �̂� = 𝜷∗, where 𝜷∗ are the true
oefficients of the model.

1 Measured data from chemical and other systems often exhibit a certain
egree of smoothness and can be considered to originate from discretized
unctions (similar to the assumptions made by Dette and Tang (2021)). The
erm smoothness, as used in this article, refers to data in which neighboring

values are linked to each other to some extent, are not too different from one
another, and there exists an underlying function that is differentiable once or
2

multiple times.
As shown by Schaeffer and Braatz (2022), often columns in high-
dimensional functional data are correlated, and regularized regression
will find a solution that is optimal for its objective function; however,
the resulting regression coefficients can be visually very different from
𝜷∗ due to the interplay of the regularization and the nullspace,  (𝐗).
Furthermore, in practice, 𝜷∗ is not known and the true underlying
system might be nonlinear, requiring a thorough understanding of
the interplay of regularization and the nullspace to draw reasonable
conclusions about the underlying model.

Generally, the regression coefficients associated with �̂�Model are
random variables because 𝐗 and 𝐲 are realizations from a system
that contains randomness (e.g., measurement errors, random system
processes, etc.). One approach to model the regression coefficients
probabilistically is Bayesian linear regression which places a prior
on the regression coefficients and yields their posterior distribution,
conditioned on data, which can then be analyzed (e.g., see Makalic
and Schmidt (2016) for more information on Bayesian linear regression
for high-dimensional data). While probabilistic modeling of regression
coefficients is important, we focus on analyzing linear regression meth-
ods that do not model regression coefficients probabilistically because
chemical engineers commonly use non-probabilistic models. We use
𝜷Model to denote that it is a realization of the random variable by
the ‘‘Model’’ and specific training data. From here, we drop the ‘‘hat’’
notation because it is clear from the model name in the superscript that
the coefficients were obtained by regression from data.

Ordinary Least Squares (OLS) regression estimates with the closed-
form solution 𝜷OLS = (𝐗⊤𝐗)−1𝐗⊤𝐲 for the case 𝑝 < 𝑛 have low bias
nd are optimal under the assumption of the Gauss–Markov theorem.
owever, the regression coefficients 𝜷 have a very large variance if

he condition number of 𝐗⊤𝐗 is large, as is the case for many real-
orld data analytics problems, resulting in low prediction accuracy on
nseen data. Ridge Regression (RR) addresses this problem by adding
he squared L2-norm of the weights as a penalty to the least-squares
bjective (Hoerl and Kennard, 1970):

in
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖22, (3)

ielding the closed-form solution 𝜷RR = (𝐗⊤𝐗 + 𝜆𝐈)−1𝐗⊤𝐲. The regu-
arization penalty adds to the main diagonal of 𝐗⊤𝐗 and ensures that
he resulting matrix is also invertible in the case 𝑝 > 𝑛. RR improves
he model’s generalization by introducing a bias that reduces variance
n the estimated parameters (Zou and Hastie, 2005). For 𝑝 < 𝑛 and
→ 0, RR converges to OLS. In the more general case, without making

ssumptions about the dimensionality and rank of the real matrix 𝐗,
ingular Value Decomposition (SVD), 𝐗 = 𝐔𝜮𝐕⊤, can be used to show
hat

0 = lim
𝜆→0

𝜷𝜆 = 𝐗†𝑦. (4)

he full derivation and further information can be found in the Supple-
entary Information (SI), Sec. S1 and in Kobak et al. (2020). For the

ase 𝑝 > 𝑛, the Moore–Penrose-Inverse 𝐗† can be written as

0 = 𝐗⊤(𝐗𝐗⊤)−1𝐲. (5)

his expression is known as the minimum norm solution (e.g., Monti-
elli (1999)),

0 = argmin
𝜷

{

‖𝜷‖22
|

|

|

‖𝐲 − 𝐗𝜷‖22 = 𝟎
}

. (6)

For any �̃� that fulfills 𝐗�̃� = 𝐲 (i.e., regression coefficients that fit the
ata 𝐗 and 𝐲 perfectly including the noise), (5) can be used to show that
(�̃� − 𝜷0) = 𝟎, and that

�̃� − 𝜷0)⊤𝜷0 = (�̃� − 𝜷0)⊤𝐗⊤(𝐗𝐗⊤)−1𝐲
= (𝐗(�̃� − 𝜷0))⊤(𝐗𝐗⊤)−1𝐲

= 𝟎 (7)
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and consequently (�̃�−𝜷0) ⟂ 𝜷0 which is equivalent to  (𝐗) ⟂ 𝜷0 (Boyd
and Lal, 2022). Thus there exists a set of regression coefficients  that
all fulfill 𝐗�̃� = 𝐲 with �̃� ∈ .

Most regularized regression methods solve an optimization of the
form

min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝐹 (𝜷). (8)

Regularized methods trade the perfect fit to the training data against
the objective of keeping regression coefficients small. This trade-off
is seen in the objective used to define the regularization methods.
The orthogonality of the regression coefficients to  (𝐗) does not hold
for arbitrary regularization terms 𝐹 (𝜷). Orthogonality holds for RR,
because the regularization term in (3) is always smaller for coefficients
orthogonal to  (𝐗). The PCR coefficients are orthogonal to the  (𝐗)
because all eigenvectors of 𝐗⊤𝐗 that correspond to nonzero eigenvalues
are orthogonal to each other and to the nullspace. Similarly, the PLS
coefficients are also orthogonal to the nullspace by construction. The
pathological case of 𝐲 being the nullvector must be excluded and is
not relevant. Proofs for orthogonality between regression coefficients
and nullspace for RR, PCR, and PLS are included in the SI, Sec. S2.
However, regression coefficients obtained by the lasso and EN are not
orthogonal to  (𝐗) because of the L1-norm. For more information
on regularized high-dimensional regression, see Schaeffer and Braatz
(2022) and Tibshirani (1996). Depending on the function 𝐹 ∶R𝑝 → R,
regression coefficients obtain different shapes. Usually, methods such as
RR, PCR, and PLS yield solutions that are not sparse, which can make
interpretation difficult. An alternative method is the lasso, however,
sparsity is often not a reasonable assumption for functional data. A
generalization of the lasso is

min
𝜷

1
2
‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝐃𝜷‖1 (9)

where choosing 𝐃 as the identity matrix recovers the lasso. For

𝐃𝟏 =

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 0 ⋯ 0
0 1 −1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎦

, (10)

he resulting model is called the one-dimensional fused lasso which
enalizes the L1-norm of the regression coefficients as well as their
ifferences, but thus requires predictors that can be ordered (Tibshirani
t al., 2005), a characteristic of functional data (Ramsay and Silver-
an, 2005). The choice of 𝐃 can incorporate expectations about the
nderlying model structure (Tibshirani and Taylor, 2011), and can thus
ield models that should be interesting for many chemical engineering
roblems for its flexibility to incorporate assumptions, and its potential
o yield easier-to-interpret regression coefficients. In the next section,
e derive the nullspace method to compare the regression coefficients
f different regularized models thoroughly.

. Nullspace method

The addition of a vector 𝐯 ∈  (𝐗), i.e., a vector in the nullspace,
to any 𝜷 yields coefficients with unchanged predictions. The vectors
in the nullspace affect only the regularization term in the objective
function. We are interested in a method for understanding the effects
of the nullspace when comparing different coefficients and how such
a comparison can be used to reason about underlying relationships.
Consider a regularized regression model called A,

�̂�A = 𝐗𝜷A, (11)

where 𝜷A is associated with method A. For any vector 𝐯 in the
ullspace, this equation implies that

̂A = 𝐗(𝜷A + 𝐯). (12)
3

e want to compare the regression coefficients 𝜷A with other coeffi-
ients 𝜷B. The coefficients 𝜷B can either be another estimator obtained
y another regression method or instead be chosen for engineering
r scientific reasons (e.g., constant regression coefficients). Thus, we
ropose finding coefficients 𝐯∗ ∈  (𝐗) that are closest to the difference
etween the coefficients under comparison 𝜷𝛥 = 𝜷A−𝜷B. This approach

can be formalized by

min
𝐯

‖𝜷𝛥 + 𝐯‖22 (13a)

ubject to 𝐗𝐯 = 𝟎, (13b)

his optimization is a convex quadratic program with linear con-
traints. The solution is the projection of 𝜷𝛥 onto the nullspace,
∗ = (𝐗⊤(𝐗𝐗⊤)−1𝐗 − 𝐈)𝜷𝛥, (14)

here 𝐗𝐗⊤ is assumed to be invertible. The derivation is included in the
I, Sec. S3. The expression can be simplified by inserting the singular
alue decomposition 𝐗 = 𝐔𝚺𝐕⊤,
∗ = (𝐕Σ⊤(ΣΣ⊤)−1𝚺𝐕⊤ − 𝐈)𝜷𝛥, (15)

hich can be used to improve the numerical efficiency. Simplifying
15) leads to

∗ =
(

𝐕
[

𝐈𝑛 𝟎
𝟎 𝟎

]

𝐕⊤ − 𝐈
)

𝜷𝛥. (16)

he property that 𝐕 is an orthogonal matrix leads to

∗ = −𝐕
[

𝟎 𝟎
𝟎 𝐈𝑝−𝑛

]

𝐕⊤𝜷𝛥. (17)

he projection onto the nullspace can be a hard requirement that might
ield a vector 𝐯∗ that is dominated by noise and difficult to interpret,
n particular, if 𝐗𝐗⊤ is ill-conditioned as is often the case for many
eal-world chemical engineering problems. Furthermore, regularization
hapes regression coefficients by trading their variance against a bias
owards zero to improve generalization. However, regularized regres-
ion coefficients usually differ from the true coefficients (if they exist),
nd their difference is not expected to lie exactly within the nullspace
ut might be close to it, motivating the relaxed optimization.

We propose to reformulate the optimization in (13) to allow devia-
ions from the nullspace,

in
𝐯

‖𝜷𝛥 + 𝐯‖22 + 𝛾‖𝐗𝐯‖22, (18)

here 𝛾 is a nonnegative scalar. Setting the derivative of (18) with
espect to 𝐯 to zero gives

𝛾 = −(𝛾𝐗⊤𝐗 + 𝐈)−1𝜷𝛥. (19)

or 𝛾 = 0, the nullspace is not considered and 𝜷𝛥 = 𝐯0. For 𝛾 → ∞, the
ptimization converges to (17), as seen by

lim
→∞

−(𝛾𝐗⊤𝐗 + 𝐈)−1𝜷𝛥 = lim
𝛾→∞

−𝐕(𝛾𝜮⊤𝜮 + 𝐈)−1𝐕⊤𝜷𝛥

= −𝐕
[

𝟎 𝟎
𝟎 𝐈𝑝−𝑛

]

𝐕⊤𝜷𝛥. (20)

nalyzing the nullspace, i.e., comparing the coefficients 𝜷A and 𝜷A +
𝛾 with 𝜷B, allows us to identify which differences can be removed
ith a vector that is close to the nullspace and which differences
ould require significant deviations from the nullspace and are thus
ainly responsible for the differences of the associated predictions.
e propose to select 𝛾, i.e., the penalization strength for deviations

rom the nullspace, based on a change in prediction accuracy to make
t easier to interpret the result. That is, we define 𝛾 based on the
ormalized-Root-Mean-Square Error (NRMSE) defined by

𝑠 = max
𝑖
{𝑦𝑖} − min

𝑖
{𝑦𝑖} (21)

(�̂�, 𝐲) = 1
√

‖�̂� − 𝐲‖2, (22)

𝑠 𝑛
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leading to the heuristic:

max
𝛾

𝛾 (23)

subject to |

|

|

𝐿(𝐗(𝜷A + 𝐯𝛾 ), 𝐲) − 𝐿(𝐗(𝜷A), 𝐲)||
|

≤ 𝑐

𝐯𝛾 = −(𝛾𝐗⊤𝐗 + 𝐈)−1𝜷𝛥,

where 𝑐 defines the maximum loss function change introduced by the
nullspace approach that is considered acceptable. The optimization (23)
is not convex for most practical examples but is easy to solve because
it only has one degree of freedom, 𝛾.2

4. Case studies

This section demonstrates the nullspace method on several example
cases to derive insights for interpretation of regression coefficients.
The data 𝐗 and 𝐲 are generated synthetically for the first example.
The second and third examples are on data from lithium-ion batter-
ies (Severson et al., 2019), where we use constructed response variables
by assuming different linear relationships to showcase the differences
between regression coefficients and true coefficients. The last example
uses the measured cycle life response where the true relationship
between 𝐗 and 𝐲 is unknown.

4.1. Synthetic parabolic data

The parabolic example is inspired by measurements of some quan-
tity over a continuous domain (e.g., time, concentration, voltage). To
keep the data and relationships simple, the data are drawn from

𝐱𝑖 = 𝑎𝑖𝐝⊙ 𝐝, 𝑖 ∈ {1, 2, 3,… , 50}, (24)

𝐝 = [1.0, 1.01, 1.02,… , 3.0], (25)

𝐗∗ =
[

𝐱1, 𝐱2,⋯ 𝐱𝑛
]⊤ ,

where 𝐝 is the vector of discretizations on the underlying domain, with
a constant spacing of 0.01 and a length of 𝑝 = 201, and ⊙ is the element-
wise product. The parameters 𝑎𝑖 ∼  (𝜇, 𝜎2) with 𝜇 = 0.3 and 𝜎 = 0.3.
Consequently, 𝐗 ∈ R50×201. We define the response as

𝐲∗ = 𝐗∗𝜷∗,

with 𝜷∗ = 1
𝑝
𝐈. (26)

The true coefficients are thus equal. Subsequently, we add white Gaus-
sian noise to the data and response

𝐱𝑖 = 𝐱∗𝑖 + 𝝐𝑥𝑖 (27)

𝐲 = 𝐲∗ + 𝝐𝑦 (28)

yielding the matrices 𝐗 and 𝐲 for use in regression. The added noise
𝝐𝑥𝑖 ∈ R201 is chosen such that the average SNR of each sample (𝐱𝑖) is
50 and the SNR of 𝐲 is 50 as well. Fig. 1a shows the mean-centered
data, where each line corresponds to a matrix row. The 201 individual
data points of each row are connected with a line, which is a reasonable
visualization because of the underlying functional structure. We picked
a PLS model with one component to learn the relationship between
𝐗 and 𝐲. The PLS method is popular among chemical engineers, and
its regularization parameter, the number of components, is discrete
and simple to choose. Fig. 1b shows that the true coefficients and the
PLS coefficients have very different shapes. However, their predictions
and prediction accuracies are almost identical (cf. SI, Sec. S4). The
noise leads to a prediction error even when the true coefficients are
used (i.e., 0.105% NRMSE). We hand-selected 𝛾 = 10 for this case
study. The resulting vector 𝐯10 is very close to the nullspace, i.e., does

2 For example, the optimization can be solved by plotting the left-hand side
f the inequality with respect to 𝛾.
4

not significantly change the prediction accuracy. The wrinkles indicate
independent identically distributed noise, in line with the data gen-
eration. The adjusted coefficients 𝜷PLS

1 + 𝐯10 are very similar to the
true coefficients 𝜷∗. While 𝜷PLS

1 is orthogonal to the nullspace, 𝜷PLS
1 +

10 is not orthogonal to the nullspace. Due to the simple underlying
tructure of the data and the model, the PLS coefficients yield a similar
rediction accuracy. However, the PLS coefficients have a smaller L2-
orm, i.e., ‖𝜷PLS

1 ‖

2
2 < ‖𝜷∗

‖

2
2, due to the implicit regularization of

LS.
Assume that the coefficients are expected to be piecewise constant

or physical reasons. We can then reformulate the regression as a
eneralized lasso problem with the matrix 𝐃 in (9) set to 𝐃1. Fig. 2

shows the regression coefficients associated with RR and the fused
lasso. The regularization parameter was chosen by CV and the one-
standard-error rule (Hastie et al., 2009). Here we hand-selected 𝛾 = 0.1,
as a different example. The resulting vector 𝐯0.1 is smoother than 𝐯10
ssociated with Fig. 1, while still being very close to the nullspace
nd only changing the associated NRMSE prediction error by 0.001%.
ig. 2 looks remarkably similar to Fig. 1. The fused lasso coefficients are
early identical to the true coefficients, and the ridge coefficients are
imilar to the PLS coefficients with one component but slightly noisier.

From the data alone, it is not possible to state whether 𝐲 was
onstructed from constant or parabolic coefficients. Furthermore, re-
ression coefficients obtained from methods that are orthogonal to
he nullspace can yield coefficients that appear to disagree with prior
nowledge at first sight. As this example shows, methods that are not
rthogonal to the nullspace, such as the fused lasso, can be advan-
ageous for interpretation and conclusions if selected based on prior
nowledge.

.2. Lithium-ion battery data

As a real-world measurement data example, we consider a LFP
attery data set, which contains cycling data for 124 batteries (Severson
t al., 2019). Each battery has a fixed charging and discharging pro-
ocol. The charging protocols vary widely between the cells, whereas
he discharge is constant and identical for all cells. The objective of
he original paper was the prediction of the cycle life, i.e., the number
f cycles until the battery’s capacity drops below 80% of its nominal
apacity. Features based on the difference between the discharge ca-
acity of voltage curves for two cycles, subsequently called 𝛥𝐐a−b, were
hown to linearly correlate well with the logarithm of the cycle life. For
his case study, we use the cycle pair 𝑎 = 100 and 𝑏 = 10, as suggested
y Severson et al. (2019). Furthermore, we denote by a tilde (𝛥�̃�100−10)
hat the columns are mean centered. The dimensionality 𝛥𝐐100−10 ∈
41×1000 due to the high resolution of the discharge capacity over the
oltage domain. More information about the data set and reasoning
bout the modeling objective can be found in Severson et al. (2019).
ig. 3a shows the LFP data set, partitioned into training, primary test,
nd secondary test data as suggested by Severson et al. (2019). Fig. 3b
hows the mean subtracted training data. The data of the shortest-lived
attery is clearly separated from the remainder of the data set. How-
ver, we keep this battery in the data set, as its influence on the training
s benign. Fig. 3c shows the z-scored training data (i.e., standardized
ata, yielding mean-centered unit variance columns). The unit (Ah) is
ost by z-scoring the data. Usually, z-scoring is recommended for data
ith features that have different units and thus might vary by orders of
agnitude. However, for functional high-dimensional data, the unit of

ll columns is the same. Nevertheless, the measured values can vary
y order of magnitude. Fig. 3c shows that the noise in the voltage
egion 3.2–3.5 V is amplified by rescaling because of a lower SNR in
his voltage region. A more detailed analysis of the SNR can be found
n the SI, Sec. S5. However, whether z-scoring is useful does not only
epend on the data matrix 𝐗 but also on its underlying relationship
ith 𝐲, which we explore next on synthetic responses 𝐲 before moving

o the cycle life response.
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Fig. 1. (a) Mean-centered parabolic data, with white Gaussian noise corresponding to an SNR of 50 added to 𝐗 and 𝐲 prior to mean centering, (b) True coefficients in black and
egression coefficients in green and nullspace-modified PLS coefficients in magenta.
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Fig. 2. Ridge coefficients in green and fused lasso coefficients in black based on CV
nd the one-standard-error rule. Nullspace-modified ridge coefficients in magenta.

.2.1. Synthetic response
onstant coefficients. The response for this example is the sample mean
efined in (26), with 𝑝 = 1000 to match the dimensionality of the
FP data set with added white Gaussian noise corresponding to an
NR of 50. Fig. 4a shows the nullspace perspective for the constant
oefficient response with the data on the original scale, and Fig. 4b
ased on z-scored data. The number of PLS components is determined
y CV and the one-standard-error rule. The PLS model associated with
he z-scored data needs more components. The nullspace penalization
arameter 𝛾 was chosen in both cases to allow for 𝑐 = 0.01% NRMSE
hange, i.e., approximately half of the NRMSE difference between the
wo models. Fig. 4a shows the differences between the true coefficients
nd the PLS model’s regression coefficients in the section from 2.0–
.1 V are relatively close to one another; however, some differences
emain. The differences in the voltage region from 3.2 to 3.5 V only
ave a minor effect on the prediction results. Most of the difference
etween the regression coefficients in this area is associated with the
ullspace, indicated by the large difference between the nullspace-
odified PLS coefficients in magenta and the original PLS coefficients

n green. Thus, the differences in the region 3.2 to 3.5 V do not change
he prediction results on the training data significantly and arise due
o the interplay of the regularization objective with the nullspace.

When the data are z-scored, most of the visible differences between
he PLS coefficients in green and the true coefficients in black are
ontained in the enlarged nullspace (Fig. 4b). The modified coefficients
5

atch the true coefficients very well. The prediction error difference
etween the PLS coefficients in green and the nullspace-modified coeffi-
ients in magenta is 0.01% NRMSE. The remaining differences between
he true coefficients in black and the modified coefficient in magenta
re barely visible but are responsible for another 0.01% NRMSE predic-
ion error change, highlighting the effect of the nullspace. Comparing
ig. 4a and b shows that, in case the true coefficients are constant
i.e., all columns are equally important), z-scoring can help regression
o yield coefficients that are more similar to the true coefficients.

olumn mean coefficients. The true coefficient vector 𝜷∗ for the next
synthetic example is the column mean of the data 𝐗 prior to column
centering

𝛽∗𝑗 = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖,𝑗 , (29)

𝜷∗ =
[

𝛽∗1 , 𝛽
∗
2 ,⋯ , 𝛽∗𝑝

]⊤
.

he PLS model with 6 components associated with the z-scored data
icks up a high amount of noise in the voltage regions from 3.3 to 3.5 V
Fig. 5b). In contrast, the PLS model with 3 components associated with
he data on the original scale converges well to the true coefficients
ver the entire voltage region (Fig. 5a). The small differences are
ery closely associated with the nullspace. The nullspace penalization
arameter 𝛾 was chosen in both cases to allow for 𝑐 = 0.05% NRMSE

change, i.e., approximately half of the NRMSE difference between the
two models. Here, z-scoring amplifies and feeds noise into the model,
manifesting as the spiky regression coefficients, with the most extreme
spikes in the voltage regions from 3.2 to 3.5 V (Fig. 5b). Still, the PLS
model associated with the z-scored data has approximately the same
prediction accuracy as the PLS model associated with the original data.

Suppose there was some prior evidence or physical intuition that the
true coefficients are constant or at least of similar magnitude. Then,
z-scoring feeds the assumption that all the columns’ importance is in
the same order of magnitude to the model. However, if the coefficients
are expected to vary by an order of magnitude (e.g., as is the case
for the true coefficients being the column mean of the data), then not
z-scoring the data accounts for the assumption that the scale of the
columns is correlated with the assumed underlying true coefficients.
The two examples show that the potential effects of z-scoring on the
regression coefficients should be considered carefully for functional
data. When data are z-scored, the model can become better at learning
the underlying relationship, but noise may be amplified, depending on

the noise structure.
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Fig. 3. (a) LFP Discharge capacity difference between cycle 100 and 10, data split into training, primary and secondary test set, (b) Mean-centered training data, (c) z-scored
training data.
Fig. 4. (a) True coefficients in black, PLS coefficients based on CV and the one-standard-error deviation rule in green, nullspace-modified coefficients in magenta, (b) Vullspace
perspective similar to a, with PLS coefficients estimated with the one-standard-error rule corresponding to z-scored data.
Fig. 5. (a) True coefficients in black, PLS coefficients based on CV and the one-standard-error rule in green, nullspace-modified coefficients in magenta, (b) Nullspace perspective
imilar to a, with PLS coefficients estimated with the one-standard-error rule corresponding to z-scored data.
t

.2.2. Measured cycle life response
The measured response associated with the LFP battery data is the

ycle life. We are interested in building models to predict the cycle
ife based on only discharge data from two cycles, which is a strategy
o reduce the risk of data leakage (Geslin et al., 2023). We train the
odels by using the logarithm of the cycle life and use the same

raining, primary test, and secondary test set as suggested by Severson
t al. (2019). We determine the regularization parameter based on the
6

c

minimum CV error and do not employ the one-standard-error rule.3
The PLS coefficients with five components have a similar shape as the
fused lasso coefficients (cf. Fig. 6ab). However, the PLS coefficients
have high-frequency perturbations, in particular, in the voltage range

3 The standard deviation of the CV error is large due to the long-living cells
hat heavily influence the prediction performance, which would lead to overly
onservative regularization estimates.
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Fig. 6. Cross-validated regression coefficients, original data (cf. Fig. 3b): (a) PLS coefficients, (b) Fused lasso coefficients.
Fig. 7. Cross-validated regression coefficients, z-scored data (cf. Fig. 3c): (a) PLS coefficients, (b) Fused lasso coefficients.
from 2.9–3.2 V, which is likely due to noise, making the PLS coeffi-
cients harder to interpret. The fused lasso coefficients (Fig. 6b) clearly
indicate three regions of importance, enabling a physical interpretation.
The range around 2.0–2.1 V is associated with the capacity change of
the cell between cycles 10 and 100. Around 2.4 V, a different pattern
can be seen in the data (Fig. 3), corresponding to the negative peak
in the regression coefficients, which may correspond to LFP cathode
degradation associated with iron anti-site defects, as the free energy of
reaction (overpotential times charge) exceeds their formation energy
∼0.55 eV (Malik et al., 2010). This interpretation is also consistent
with experiments showing that chemical reduction of LFP by citric
acid is able to heal iron anti-site defects with a similar free energy
of reaction of 0.58 eV (Xu et al., 2020). The voltage range around
2.9–3.3 V contains most of the regression coefficient peaks. The two
dominant plateaus of the Open-Circuit Voltage (OCV), which result
from the single broad plateau of LFP superimposed with two more
narrow plateaus of graphite, are located here, and most of the cell’s
capacity is discharged in this voltage range. These voltage plateaus
correspond to phase transformations of the porous electrodes (Ferguson
and Bazant, 2012), specifically between the low and high-density stable
phases of LFP, as well as between stages 1, 2, and 3 of lithiated
graphite (Ferguson and Bazant, 2014). The fused-lasso coefficients
showcase three distinct negative and positive peaks, corresponding to
changes in the rate-dependent tilt of the voltage plateaus, which may
result from changes in particle-size-dependent nucleation barriers and
population dynamics of reaction-controlled phase transformations (Fer-
guson and Bazant, 2014; Li et al., 2014). The peak width and height
can be interpreted as a weighted sum of the average slopes of the
data between the respective peaks. On low-rate data, the position and
magnitude of peaks in the incremental capacity analysis correspond
to different degradation modes (Dubarry et al., 2012). The peaks and
peak shifts of the incremental capacity analysis blur out at higher C-
rates, as expected from the suppression of phase separation by driven
auto-inhibitory reactions (Bazant, 2017). In particular, the decreasing
reaction rate with increasing lithium concentration in the LFP cath-
ode, which has been predicted theoretically (Fraggedakis et al., 2021)
7

and confirmed experimentally (Zhao et al., 2023), erases the voltage
plateaus at high rates and causes more homogeneous reactions that are
likely favorable for battery lifetime (Ferguson and Bazant, 2012, 2014;
Li et al., 2014). However, the obtained regression coefficients indicate
that there is degradation information in this region even in 𝜟𝐐100−10
(i.e., the discharge capacity difference of cycle 100 and 10, both at
4C) that is important for capturing past degradation and forecasting
future degradation. On the other hand, if the 4C current is well into
the regime of suppressed phase separation, then we would expect a
negative correlation between lifetime and internal resistance of the
intercalation reaction, which in turn is correlated with larger 𝜟𝐐100−10.

The coefficients regressed on the z-scored data have similar peaks
and characteristics as the coefficients regressed on the original data
(cf. Figs. 6ab, and 7ab). The z-scoring of columns introduces a linear
transformation that significantly changes the regression coefficients in
the range from 3.2 and 3.4 V.

The fused lasso based on the z-scored columns yields high prediction
accuracy and interpretable coefficients (cf. Table 1 and Fig. 7b). In the
higher voltage region, an additional peak appears around 3.35 V, which
could not be learned from the original data because of the very small
variance of the data prior to rescaling in combination with regulariza-
tion. Moreover, the coefficients estimated on the z-scored data have the
highest prediction performance on the training, primary, and secondary
test sets (Table 1), showcasing that there is valuable information in the
higher voltage region above 3.2 V. Furthermore, both models on the z-
scored data outperform the variance model suggested by Severson et al.
(2019). While being interpretable, fused lasso provides comparable
prediction accuracy than PLS. The PLS model with nine components,
suggested by Attia et al. (2021), slightly outperforms the fused lasso
model when all cells are considered. However, the fused lasso yields the
lowest Root-Mean-Square Error (RMSE) error for both test sets when
only evaluated on the shorter-lived cells. The higher performance of
the PLS model with nine components on the secondary test set is thus
mainly associated with the longest-living cells that are more difficult
to predict (cf. Severson et al. (2019) and Attia et al. (2021)). But, the
coefficients associated with the PLS model are challenging to interpret
because their sign changes frequently. What is more, the secondary test

set was impacted by a longer calendar aging due to an extended storing
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Table 1
Root-Mean-Square Error (RMSE) prediction accuracies associated with the coefficients in Figs. 6–7. Low Cycle Life (CL): 𝑦𝑖 ≤ 1200 cycles; high
Cycle Life (CL): 𝑦𝑖 > 1200 cycles. All models were trained on the entire training data. Scatter plots of prediction results are shown in the
Supplementary Information (SI) Sec. S6.

Set Original scale Z-Scored Feature

FL D1 PLS 5 Comp. FL D1 PLS 9 Comp. Variance model
(Attia et al., 2021) (Severson et al., 2019)

Training (41) 68 83 62 57 104
Test 1 (42) 115 116 105 102 138
Test 2 (40) 198 217 192 174 196

Training low CL (39) 62 82 53 50 103
Test 1 low CL (39) 96 101 76 80 96
Test 2 low CL (34) 135 202 115 132 119

Training high CL (2) 138 106 150 139 115
Test 1 high CL (3) 258 231 280 252 385
Test 2 high CL (6) 395 285 412 322 419
Fig. 8. Comparison of fused lasso coefficients (blue) and their component orthogonal to the nullspace (red): (a) Original data, (b) z-scored data.
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period before the cycling started (cf. SI of Attia et al. (2020)), making it
tough to understand the higher prediction accuracy of the PLS model on
the secondary test set. In particular, the PLS coefficients show further
peaks in the voltage region above 3.4 V influenced at least partially by
noise because the SNR in this region is very low (cf. SI Sec. S5).

Similarly to the parabolic data set, we observe that the fused
lasso coefficients are more interpretable than the PLS coefficients.
Not requiring the coefficients orthogonal to the nullspace improves
interpretability (Fig. 8ab). The component of the regression coefficients
orthogonal to the nullspace (cf. red coefficients in Fig. 8ab) are less
interpretable while making identical predictions on the training data.
The improved interpretability of the fused lasso has also been observed
in chemical engineering and other applications (e.g., Nowak et al.
(2011), Martin-Barragan et al. (2014), Park and Kim (2016), Ross Kunz
and She (2013) and Yu et al. (2015)).

5. Conclusion

The article proposes a nullspace perspective for gaining insights
to help make informed design choices for building regression models
on high-dimensional data and for reasoning about potential underly-
ing linear models. We demonstrate the nullspace method on a fully
synthetic data set and lithium-ion battery data with a designed linear
response. Applying the nullspace insights for predicting the cycle life
led to further insights into how degradation manifests itself for LFP
batteries during discharge at 4C.

The nullspace allows different-looking regression coefficients to
yield similar predictions (Fig. 1). While z-scoring for high-dimensional
functional data can be beneficial, it should be an active design choice
because it can increase noise by scaling up columns with low SNR
(Fig. 5). Appropriate regularization can mitigate increased noise after
z-scoring. Furthermore, regularization and z-scoring must be carefully
considered and correspond to prior physical knowledge to obtain in-
terpretable regression results (Figs. 6, 7). Otherwise, the combination
of the nullspace and regularization can hinder interpretability and
8
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potentially make it impossible to obtain regression coefficients close
to the true coefficients.

Regression methods which yield coefficients orthogonal to the
nullspace, such as RR, PCR, and PLS, can be challenging to inter-
pret. Methods that yield regression coefficients not orthogonal to the
nullspace, such as the fused lasso, can be advantageous for inter-
pretability (Fig. 8).

The learnings from the nullspace analysis help to build and interpret
linear regression models for high-dimensional functional data. The
case studies show how to reason about underlying linear relationships
between 𝐗 and 𝐲, which is important for system optimization and to
mprove scientific understanding.
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RegAnalytics. The repository contains the source code and notebooks to
visualize the results. The repository contains a small subset of the LFP
data set that was published with Severson et al. (2019) and is available
at https://data.matr.io/1/.
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