
Computers and Chemical Engineering 173 (2023) 108179

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Thermal imaging-based state estimation of a Stefan problem with application
to cell thawing
Prakitr Srisuma a,b,c, Ajinkya Pandit b, Qihang Zhang d, Moo Sun Hong b, Janaka Gamekkanda b,
Fabio Fachin e, Nathan Moore e, Dragan Djordjevic e, Michael Schwaerzler e, Tolutola Oyetunde e,
Wenlong Tang e, Allan S. Myerson b, George Barbastathis a,c, Richard D. Braatz b,c,∗

a Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
d Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA

A R T I C L E I N F O

Keywords:
Stefan problems
Finite differences
Thermal imaging
Observer design
Cell thawing
Cell therapy

A B S T R A C T

The Stefan problem describes the evolution of the interface between two phases of a material undergoing
phase change. Its formulation has been applied to model and solve a wide range of science and engineering
problems across industries. This article describes observer design of a Stefan problem that arises in cell therapy
in which frozen cells need to be thawed before injection. The dynamic model is simulated via a finite difference
scheme with the method of lines solved over a moving grid. A Luenberger observer is designed based on the
continuous-time moving-boundary moving-grid equations and information from real-time thermal imaging.
Simulation and experimental results show that the integrated numerical model and observer can precisely
predict the spatiotemporal evolution of thawing with errors of 1%–2% throughout the cell thawing process
despite sensor noise, offering a reliable approach for state estimation and monitoring of cell thawing.
1. Introduction

The classical Stefan problem is a heat transfer problem that de-
scribes the evolution of a moving interface in a freezing or melting
process (Carslaw and Jaeger, 1959; Bird et al., 2002). The one-phase
Stefan problem assumes the temperature of either liquid or solid to be
constant at the melting/freezing point, whereas the two-phase Stefan
problem considers temperature variations in both phases (Friedman
and Kinderlehrer, 1975). The Stefan problem has been explored for a
variety of boundary conditions, dimensions, coordinate systems, and
other relevant assumptions (Carslaw and Jaeger, 1959; Meyer, 1971;
Kar and Mazumder, 1994).

The Stefan problem arises in industrial and natural systems, e.g.,
casting (Kar and Mazumder, 1994), polymorphous materials forma-
tion (Tao, 1979), alloy formation (Brosa Planella et al., 2019, 2021),
glaciation (Mikova et al., 2017), and phase change materials (Brezina
et al., 2018). Stefan problems are also encountered in various biomedi-
cal scenarios including freezing and thawing of biological tissue during
cryosurgery (Rubinsky and Shitzer, 1976; Rabin and Shitzer, 1995,
1997) and during cryopreservation (Dalwadi et al., 2020).
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Many analytical and numerical techniques have been proposed for
various types of Stefan problems. Exact analytical solutions to some
specific Stefan problems have been derived for both one-phase (Bollati
and Tarzia, 2018) and two-phase systems (McCord et al., 2016; Khalid
et al., 2019). The analytical solutions typically involve Bessel functions,
the error function, and/or infinite series. Numerical techniques have
been developed for handling more general Stefan problems. Finite dif-
ference, volume, and element methods have been implemented on one-
and two-phase Stefan problems (Meyer, 1971; Sartoretto and Spigler,
1990; Kutluay et al., 1997; Popov et al., 2005; Savović and Caldwell,
2009; Mitchell and Vynnycky, 2014; Karabenli et al., 2016; Kurbatova
and Ermolaeva, 2019; Gusev et al., 2021).

State estimation and/or control of Stefan problems have also been
investigated, including an observer-based backstepping-based control
design for the one-phase Stefan problem (Koga et al., 2019), a full-
state feedback control design for the two-phase Stefan problem for
the continuous casting of steel (Petrus et al., 2010), and real-time
estimation of an unmeasured heat flux at a boundary (Abdulla and
Poggi, 2019). Applications to cell thawing, on the other hand, are
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Fig. 1. Experimental system for cell thawing. A thermal imaging camera continuously measures the spatial temperature field during heating of a vial containing cells.
very limited. Optimization of freezing and thawing has been shown
to improve the viability and quality of the resulting cells (Baboo
et al., 2019; Hunt, 2019; Uhrig et al., 2022), and thus successful
cryopreservation and cell thawing preceding injection are crucial in
cell therapy (Hunt, 2019; Cottle et al., 2022). While some studies have
analyzed and modeled cell thawing/freezing (Rubinsky and Shitzer,
1976; Rabin and Shitzer, 1995, 1997; Dalwadi et al., 2020), real-time
state estimation and control based on a thawing/freezing model that
simulates the solid–liquid interface have not been available.

This article presents a new approach for state estimation of Stefan
problems and implements the approach to cell thawing. The Stefan
problem is solved by a combination of the moving grid finite difference
method and the numerical method of lines. A Luenberger observer is
proposed for estimation of the spatially distributed states by using the
information from real-time thermal imaging of the vial. The observer
design is demonstrated in simulations and experiments.

This article is organized as follows. Section 2 describes the cell thaw-
ing system and associated mathematical model. Section 3 presents the
numerical method for solving the Stefan problem. Section 4 describes
the design and implementation of the Luenberger observer. Section 5
shows and discusses the simulation and experimental results obtained
from implementing our model and observer in the real process. Finally,
Section 6 summarizes the study and suggests some future directions.

2. Theoretical background and problem formulation

2.1. Cell thawing process

This article considers a cell thawing process used in cell therapy
before cells are introduced to the patients. Prior to thawing, cryopreser-
vation is used to temporarily store the cells. The cells are frozen at low
temperature (around −80◦C) to preserve their function, with the system
being a single solid phase (consisting of cells, ice, and cryoprotection
molecules) at its initial state. During thawing, energy is continuously
supplied by a heating plate to thaw the material in each vial. When
the mass fraction of frozen material decreases to about 5%, the vial
is removed, and the cells are taken to the patient to be injected into
the patient’s body. The amount of frozen material left in the vial is
specified so that all the vial contents are fluid by the time that the cells
are injected into the patient; the small amount of frozen material keeps
the aqueous solution from warming before injection.
2

Fig. 2. Cell thawing with radial symmetry. The radial coordinate is 𝑟, the radius of
the vial is 𝑏, and the radial position of the moving solid–liquid interface is 𝑠(𝑡).

Our experimental setup consists of a vial with the radius of 5 mm
and height of 43 mm initially containing biological cells frozen in ice, a
heating plate whose temperature is specified (e.g., fixed at 37◦C), and
a thermal imaging camera FLIR A35sc (FLIR, 2018) for monitoring the
spatially varying temperature (Fig. 1). This setup combines commercial
cell thawing equipment with a thermal imaging camera to provide
real-time measurements for estimation and control.

Accurate prediction of the mass fraction of the solid can help
achieve the best cell condition before these cells are injected, which
directly benefits the patient. To track the mass fraction of the solid, a
model for predicting the solid–liquid interface which directly relates to
the volume of solid (and liquid) in the system is proposed. Considering
the vial shape, the model is defined and formulated in cylindrical
coordinates (𝑟, 𝜃, 𝑧). As heat flow is primarily in the radial direction, the
Stefan problem can be simplified to be in the radial dimension (Fig. 2).
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2.2. Energy conservation

The energy conservation equation can be written as (Bird et al.,
2002)

𝜌𝐶𝑝
𝐷𝑇
𝐷𝑡

= −(∇ ⋅ 𝐪) −
(

𝜕 ln 𝜌
𝜕 ln 𝑇

)

𝑝

𝐷𝑝
𝐷𝑡

− (𝝉 ∶ ∇𝐯), (1)

where 𝑇 is the temperature, 𝑝 is the pressure, 𝐪 is the heat flux governed
by Fourier’s law of heat conduction, 𝐯 is the velocity, 𝝉 is the shear
stress, 𝑡 is time, 𝜌 is the density, and 𝐶𝑝 is the heat capacity. In cell
thawing/freezing modeling, heat conduction is considered dominant
compared to other heat transfer modes (Dalwadi et al., 2020; Hayashi
et al., 2022). In our system, heat transfer can be omitted in the 𝜃
irection due to the vial being radially symmetric and in the 𝑧 direction
ue to the low surface area of the bottom of the vial relative to the
ides. Furthermore, the viscous dissipation term −(𝝉 ∶ ∇𝐯) is much
maller than the other terms and can be neglected. In addition, the
ells are relatively small compared with the length scales of the vial
nd create negligible biochemical reactions at the operating conditions,
nd so do not influence any phenomena in the system. Lastly, the liquid
nd solid have nearly constant thermal properties. By incorporating all
hese assumptions and substituting Fourier’s law of heat conduction
nto (1), we obtain

1
𝛼
𝜕𝑇
𝜕𝑡

= 𝜕2𝑇
𝜕𝑟2

+ 1
𝑟
𝜕𝑇
𝜕𝑟

, (2)

where 𝛼 = 𝑘∕(𝜌𝐶𝑝) denotes the thermal diffusivity, and 𝑘 is the thermal
conductivity. The subscripts 1 and 2 denote the solid and liquid phases,
respectively. Hence, the governing equations for the solid region (0 <
𝑟 < 𝑠) and liquid region (𝑠 < 𝑟 < 𝑏) are

1
𝛼1

𝜕𝑇1
𝜕𝑡

=
𝜕2𝑇1
𝜕𝑟2

+ 1
𝑟
𝜕𝑇1
𝜕𝑟

, (3)

1
𝛼2

𝜕𝑇2
𝜕𝑡

=
𝜕2𝑇2
𝜕𝑟2

+ 1
𝑟
𝜕𝑇2
𝜕𝑟

. (4)

Define the times when thawing starts and completes as 𝑡𝑠 and 𝑡𝑙,
respectively. In a thawing problem where the initial state is pure solid,
the solid domain exists when 𝑡 < 𝑡𝑙, while the liquid domain exists when
𝑡 > 𝑡𝑠. For 𝑡𝑠 < 𝑡 < 𝑡𝑙, both phases are present.

2.3. Boundary conditions

This section describes the boundary conditions for the model of the
cell thawing system.

2.3.1. Outer boundary condition
The outer boundary of the vial, which is heated by the heating plate,

satisfies the Robin boundary condition

⎧

⎪

⎨

⎪

⎩

𝑘1
𝜕𝑇1
𝜕𝑟

= 𝑈 (𝑇0 − 𝑇1) for 𝑡 ≤ 𝑡𝑠,

𝑘2
𝜕𝑇2
𝜕𝑟

= 𝑈 (𝑇0 − 𝑇2) for 𝑡 > 𝑡𝑠,
(5)

at 𝑟 = 𝑏, where 𝑇0 is the fixed heater temperature, and 𝑈 is the overall
heat transfer coefficient which takes into account the heat transfer
resistance due to the cell vial thickness and the air gap between the cell
vial and the heater. The heat transfer coefficient depends on multiple
factors, including the unknown small gap between the outer wall of the
vial and the heating plate, and is estimated from experimental data.

2.3.2. Symmetry condition
Symmetry of a cylinder implies the boundary condition

⎧

⎪

⎨

⎪

⎩

𝜕𝑇1
𝜕𝑟

= 0 for 𝑡 < 𝑡𝑙 ,

𝜕𝑇2
𝜕𝑟

= 0 for 𝑡 ≥ 𝑡𝑙 ,
(6)

t 𝑟 = 0.
3

.3.3. Stefan conditions
When 𝑡𝑠 < 𝑡 < 𝑡𝑙, heat transfer associated with thawing at the

oving solid–liquid interface 𝑟 = 𝑠 is described by the Stefan conditions

1 = 𝑇2 = 𝑇𝑚, (7)

𝛥𝐻𝑓
𝑑𝑠
𝑑𝑡

= 𝑘1
𝜕𝑇1
𝜕𝑟

− 𝑘2
𝜕𝑇2
𝜕𝑟

, (8)

where 𝛥𝐻𝑓 is the latent heat of fusion, and 𝑇𝑚 is the melting point. The
first condition requires the temperature at the interface 𝑠 to be 𝑇𝑚. The
second condition is the energy balance associated with thawing at the
moving interface. For the density 𝜌, past publications used the density
of the solid (McCord et al., 2016), the density of the liquid (Mitchell
and Vynnycky, 2014), or assumed that both phases have the same
density (Šarler, 1995). The solid and liquid densities are not largely
different, so any of these densities gives similar results. In our case,
it is more convenient to use the density of the solid (𝜌1) because
the equations are nondimensionalized with respect to the solid phase
(Section 2.4).

2.4. Dimensionless quantities and equations

In transport phenomena, it is common to solve model equations in
dimensionless form to minimize the number of parameters in the final
problem formulation. A technique of nondimensionalization used in
this work is appropriate for moving grids, i.e., the space between each
grid point is varied with respect to the moving interface. This technique
has been applied in pharmaceutical process modeling (Mesbah et al.,
2014), and its concept is similar to the variable space grid method
that has been used to solve some one-phase Stefan problems (Kutluay
et al., 1997; Savović and Caldwell, 2009; Karabenli et al., 2016). An
alternative nondimensionalization technique which is more common
and produces fixed grids is given and discussed in Appendix A.

For two-phase problems, define the dimensionless variables and
constants

𝑅1 =
𝑟
𝑠
, (9)

𝑅2 =
𝑟 − 𝑠
𝑏 − 𝑠

, (10)

=
𝛼1𝑡
𝑏2

, (11)

𝛩1 =
𝑇1 − 𝑇𝑚
𝑇0 − 𝑇𝑚

, (12)

𝛩2 =
𝑇2 − 𝑇𝑚
𝑇0 − 𝑇𝑚

, (13)

𝑆 = 𝑠
𝑏
, (14)

Ste =
𝐶𝑝1(𝑇0 − 𝑇𝑚)

𝛥𝐻𝑓
, (15)

𝛼0 =
𝛼2
𝛼1

, (16)

𝑘0 =
𝑘2
𝑘1

, (17)

𝑈0 =
𝑈𝑏
𝑘2

, (18)

where Ste is the Stefan number. We use 𝑅1 and 𝑅2 to denote the
adial position within the solid and the radial position within the liquid,
espectively. Both 𝑅1 and 𝑅2 depend on the radial position of the
oving interface 𝑠, which results in moving grids when the equations

re discretized. From (9), 𝑅1 = 0 at the center 𝑟 = 0, and 𝑅1 = 1 at the
olid–liquid interface 𝑟 = 𝑠. Similarly, from (10), 𝑅2 = 0 at the solid–
iquid interface 𝑠, and 𝑅2 = 1 at the outer boundary 𝑟 = 𝑏. This type of
ondimensionalization has several advantages which are discussed in
ection 3.

With these dimensionless variables, applying the chain rule to all
he derivative terms in (3) and (4) results in
𝜕𝑇1 =

𝛼1(𝑇0 − 𝑇𝑚) 𝜕𝛩1 −
𝛼1𝑅1(𝑇0 − 𝑇𝑚) 𝜕𝛩1 𝑑𝑆 , (19)
𝜕𝑡 𝑏2 𝜕𝜏 𝑏2𝑆 𝜕𝑅1 𝑑𝜏
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𝜕𝑇1
𝜕𝑟

=
𝑇0 − 𝑇𝑚

𝑏𝑆
𝜕𝛩1
𝜕𝑅1

, (20)

𝜕2𝑇1
𝜕𝑟2

=
𝑇0 − 𝑇𝑚
𝑏2𝑆2

𝜕2𝛩1

𝜕𝑅2
1

, (21)

𝜕𝑇2
𝜕𝑡

=
𝛼1(𝑇0 − 𝑇𝑚)

𝑏2
𝜕𝛩2
𝜕𝜏

−
𝛼1(1 − 𝑅2)(𝑇0 − 𝑇𝑚)

𝑏2(1 − 𝑆)
𝜕𝛩2
𝜕𝑅2

𝑑𝑆
𝑑𝜏

, (22)

𝜕𝑇2
𝜕𝑟

=
𝑇0 − 𝑇𝑚
𝑏(1 − 𝑆)

𝜕𝛩2
𝜕𝑅2

, (23)

𝜕2𝑇2
𝜕𝑟2

=
𝑇0 − 𝑇𝑚

𝑏2(1 − 𝑆)2
𝜕2𝛩2

𝜕𝑅2
2

. (24)

ubstituting (19)–(24) into (3) and (4) results in the nondimensional-
zed partial differential equations (PDEs)

𝜕𝛩1
𝜕𝜏

= 1
𝑆2

𝜕2𝛩1

𝜕𝑅2
1

+ 1
𝑆2𝑅1

𝜕𝛩1
𝜕𝑅1

+
𝑅1
𝑆

𝑑𝑆
𝑑𝜏

𝜕𝛩1
𝜕𝑅1

, (25)

1
𝛼0

𝜕𝛩2
𝜕𝜏

= 1
(1 − 𝑆)2

𝜕2𝛩2

𝜕𝑅2
2

+ 1
(1 − 𝑆)(𝑆 + 𝑅2(1 − 𝑆))

𝜕𝛩2
𝜕𝑅2

+
1 − 𝑅2

𝛼0(1 − 𝑆)
𝑑𝑆
𝑑𝜏

𝜕𝛩2
𝜕𝑅2

, (26)

here (25) is for the solid region (0 < 𝑅1 < 1), and (26) is for the liquid
egion (0 < 𝑅2 < 1). The Robin boundary condition is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑆

(

𝜕𝛩1
𝜕𝑅1

)

= 𝑈0𝑘0(1 − 𝛩1) for 𝜏 ≤ 𝜏𝑠, at 𝑅1 = 1,

1
1 − 𝑆

(

𝜕𝛩2
𝜕𝑅2

)

= 𝑈0(1 − 𝛩2) for 𝜏 > 𝜏𝑠, at 𝑅2 = 1,
(27)

here 𝜏𝑠 is the dimensionless time evaluated at 𝑡𝑠. For the symmetry
ondition,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑆

(

𝜕𝛩1
𝜕𝑅1

)

= 0 for 𝜏 < 𝜏𝑙 , at 𝑅1 = 0,

1
1 − 𝑆

(

𝜕𝛩2
𝜕𝑅2

)

= 0 for 𝜏 ≥ 𝜏𝑙 , at 𝑅2 = 0,
(28)

where 𝜏𝑙 is the dimensionless time evaluated at 𝑡𝑙. The Stefan conditions
at 𝑅1 = 1 and 𝑅2 = 0 are

𝛩1 = 𝛩2 = 0, (29)
1
Ste

𝑑𝑆
𝑑𝜏

= 1
𝑆

𝜕𝛩1
𝜕𝑅1

−
𝑘0

1 − 𝑆
𝜕𝛩2
𝜕𝑅2

. (30)

his transformation results in nonlinear PDEs.
An analytical solution for the temperature profiles for the two-

hase Stefan problem in the finite cylindrical domain has been derived
sing the separation of variables (Khalid et al., 2019). The analytical
olution is in the form of an infinite series involving transcendental
quations (Carslaw and Jaeger, 1959; Khalid et al., 2019), and cannot
e written as a closed-form expression.1 A closed-form expression for
he interface position 𝑆(𝜏) is not available, motivating the use of the
umerical methods in the next section.

. Numerical methods

To produce moving grids, the radial positions are defined as

1 = 𝑖𝛥𝑅, (31)

2 = 𝑗𝛥𝑅, (32)

here 𝑖 and 𝑗 are the integer indices for discretization, 𝛥𝑅 = 1∕𝑛, and
is the number of grid points. From (9) and (31), 𝑖 = 0 and 𝑅1 = 0

t the center 𝑟 = 0, and 𝑖 = 𝑛 and 𝑅1 = 1 at the solid–liquid interface

1 A closed-form expression is a mathematical formula with a finite number
f terms containing no limits, differentiations, or integrals.
4

𝑟 = 𝑠, respectively. Similarly, (10) and (32) imply that 𝑗 = 0 and 𝑅2 = 0
t the solid–liquid interface 𝑟 = 𝑠, and 𝑗 = 𝑛 and 𝑅2 = 1 at the outer
oundary 𝑟 = 𝑏.

The transformation in Section 2.4 and discretization explained
bove allow grid size to be varied with the position of a moving
nterface to capture the system behavior accurately. As the solid–liquid
nterface moves, the size of grids in the solid phase decreases, while
hat in the liquid phase increases (Figs. 3 and 4). In addition, the
umber of grid points in each phase is constant irrespective of the
nterface position. This property ensures that the number of grids is
lways sufficient at any stage of thawing. Moreover, state estimation
nd process control are simplified because the number of states is
onstant in both regions all the time.

Neither of the aforementioned properties can be achieved if the
roblem is solved in a fixed grid domain, which makes the moving
rid approach superior to the typical fixed grid approach in nearly all
spects. The only drawback of the moving grid approach is that it is
ignificantly more complicated in terms of mathematical derivation and
omputation (See Appendix B for comparison).

In this work, the numerical method of lines (Schiesser, 1991) is
pplied for discretization. This technique discretizes the spatial deriva-
ives only, converting each PDE into a system of ordinary differential
quations (ODEs). The resulting ODEs can be solved by available
olvers such as ode45 and ode15s in MATLAB. These ODE solvers

employ highly efficient adaptive time stepping procedures, which is
computationally efficient, especially when the time step needs to be
small to achieve numerical accuracy for some of the time.

Discretizing the governing PDEs (25) and (26) using the central
difference (second-order accurate) approximation and the numerical
method of lines results in
𝑑(𝛩1)𝑖
𝑑𝜏

= 1
𝑆2

( (𝛩1)𝑖+1 − 2(𝛩1)𝑖 + (𝛩1)𝑖−1
(𝛥𝑅)2

)

+ 1
𝑆2(𝑖𝛥𝑅)

( (𝛩1)𝑖+1 − (𝛩1)𝑖−1
2𝛥𝑅

)

+ 𝑖𝛥𝑅
𝑆

( (𝛩1)𝑖+1 − (𝛩1)𝑖−1
2𝛥𝑅

)

(𝑑𝑆
𝑑𝜏

)

,

(33)

𝑑(𝛩2)𝑗
𝑑𝜏

=
𝛼0

(1 − 𝑆)2

( (𝛩2)𝑗+1 − 2(𝛩2)𝑗 + (𝛩2)𝑗−1
(𝛥𝑅)2

)

+
𝛼0

(1 − 𝑆)(𝑆 + 𝑗𝛥𝑅(1 − 𝑆))

( (𝛩2)𝑗+1 − (𝛩2)𝑗−1
2𝛥𝑅

)

+
1 − 𝑗𝛥𝑅
1 − 𝑆

( (𝛩2)𝑗+1 − (𝛩2)𝑗−1
2𝛥𝑅

)

(𝑑𝑆
𝑑𝜏

)

.

(34)

The Robin boundary condition can be treated by applying the central
difference scheme
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑆

( (𝛩1)𝑛+1 − (𝛩1)𝑛−1
2𝛥𝑅

)

= 𝑈0𝑘0
(

1 − (𝛩1)𝑛
)

for 𝜏 ≤ 𝜏𝑠,

1
1 − 𝑆

( (𝛩2)𝑛+1 − (𝛩2)𝑛−1
2𝛥𝑅

)

= 𝑈0
(

1 − (𝛩2)𝑛
)

for 𝜏 > 𝜏𝑠.
(35)

The temperatures at 𝑖, 𝑗 = 𝑛 + 1 are not in the domain but can be
eliminated by coupling (35) with the governing PDEs at 𝑖, 𝑗 = 𝑛.
Several techniques are available for treating the symmetry condition.
One technique is to first apply L’Hôpital’s rule to the governing PDEs
at 𝑅1, 𝑅2 = 0 to eliminate the singularity, and then discretize the PDEs
as usual, resulting in

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑(𝛩1)0
𝑑𝜏

= 4
𝑆2

(

(𝛩1)1 − (𝛩1)0
(𝛥𝑅)2

)

for 𝜏 < 𝜏𝑙 ,

𝑑(𝛩2)0
𝑑𝜏

=
4𝛼0

(1 − 𝑆)2

(

(𝛩2)1 − (𝛩2)0
(𝛥𝑅)2

)

for 𝜏 ≥ 𝜏𝑙 .
(36)

This technique, which has been applied in many diffusion problems
(e.g., Crank (1975), Ford Versypt and Braatz (2014)), is second-order
accurate at the singularity point 𝑟 = 0. For the Stefan conditions, the
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Fig. 3. Discretization of the moving grid domain.
Fig. 4. Evolution of the solid–liquid interface in the moving grid domain.
second-order forward and backward difference schemes can be applied
to the liquid and solid sides, respectively, which gives

(𝛩1)𝑛 = (𝛩2)0 = 0, (37)
𝑑𝑆
𝑑𝜏

= Ste
𝑆

(

3(𝛩1)𝑛
2𝛥𝑅

−
2(𝛩1)𝑛−1

𝛥𝑅
+

(𝛩1)𝑛−2
2𝛥𝑅

)

−
𝑘0Ste
1 − 𝑆

(

−
3(𝛩2)0
2𝛥𝑅

+
2(𝛩2)1
𝛥𝑅

−
(𝛩2)2
2𝛥𝑅

)

. (38)

During the thawing process (𝜏𝑠 < 𝜏 < 𝜏𝑙), all the above equations can
be simplified to
𝑑(𝛩1)0
𝑑𝜏

= 𝑓1((𝛩1)0, (𝛩1)1, 𝑆) for 𝑖 = 0, (39)
𝑑(𝛩1)𝑖
𝑑𝜏

= 𝑓2
(

(𝛩1)𝑖−1, (𝛩1)𝑖, (𝛩1)𝑖+1, 𝑆,
𝑑𝑆
𝑑𝜏

)

for 𝑖 = 1,… , 𝑛 − 1,

(40)
𝑑(𝛩2)𝑗
𝑑𝜏

= 𝑓3
(

(𝛩2)𝑗−1, (𝛩2)𝑗 , (𝛩2)𝑗+1, 𝑆,
𝑑𝑆
𝑑𝜏

)

for 𝑗 = 1,… , 𝑛 − 1,

(41)
𝑑(𝛩2)𝑛
𝑑𝜏

= 𝑓4((𝛩2)𝑛−1, (𝛩2)𝑛, 𝑆) for 𝑗 = 𝑛, (42)
𝑑𝑆 = 𝑓 ((𝛩 ) , (𝛩 ) , (𝛩 ) , (𝛩 ) , (𝛩 ) , (𝛩 ) , 𝑆), (43)
5

𝑑𝜏 5 1 𝑛−2 1 𝑛−1 1 𝑛 2 0 2 1 2 2
where 𝑓1, 𝑓2, 𝑓3, 𝑓4 and 𝑓5 are the nonlinear functions, and (𝛩1)𝑛 =
(𝛩2)0 = 0. The state vector 𝐱 ∈ R2𝑛+1 can be defined as

𝐱 =
⎡

⎢

⎢

⎣

𝐱1
𝐱2
𝑥3

⎤

⎥

⎥

⎦

, (44)

where 𝐱1 ∈ R𝑛 collects the temperature profile of the solid (𝛩1)𝑖 from
𝑖 = 0 to 𝑖 = 𝑛 − 1, 𝐱2 ∈ R𝑛 collects the temperature profile of the liquid
(𝛩2)𝑗 from 𝑗 = 1 to 𝑗 = 𝑛, and 𝑥3 is the interface position 𝑆. As a result,
(39)–(43) can be written as

𝑑𝐱1
𝑑𝜏

= 𝐅1(𝐱,𝐮), (45)
𝑑𝐱2
𝑑𝜏

= 𝐅2(𝐱,𝐮), (46)
𝑑𝑥3
𝑑𝜏

= 𝐹3(𝐱,𝐮), (47)

where 𝐮 is the vector of manipulated variables (e.g., heater tempera-
ture) and 𝐅1 ∈ R𝑛, 𝐅2 ∈ R𝑛, 𝐹3 ∈ R denote the nonlinear functions of 𝐱
and 𝐮. For implementation, (45)–(47) can be integrated using ode15s
in MATLAB.
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4. State estimation

This section describes the design of a state observer (aka state
estimator) for the moving grid two-phase Stefan problem and its appli-
cation to (45)–(47) for state estimation and control of the cell thawing
process.

4.1. Mathematical structure of the observer

Our primary aim of constructing an observer is to estimate the
states in the moving grid model from the measurements. Well-known
observers include the Luenberger observer, Kalman filter, high-gain ob-
server, sliding-mode observer, and moving horizon estimator (Kalman,
1960; Luenberger, 1971; Wang and Gao, 2003; Kumar et al., 2013; Jang
et al., 2014).

Detailed discussion and comparison of state observers for chemical
processes can be found in Mohd Ali et al. (2015). Luenberger observers
are computationally efficient for both linear and nonlinear processes,
which has resulted in widespread use in various applications (Tarantino
et al., 2000; Vries et al., 2007; Mohd Ali et al., 2015). Kalman filtering
has been heavily investigated in the academic literature of varying
degrees of computational complexity for both linear and nonlinear
processes, but all require knowledge of the process and measurement
covariance matrices (Kalman, 1960). That information is not available
for cell thawing, and so the covariance matrices become additional
degrees of freedom for observer design, resulting in many more degrees
of freedom than a Luenberger observer. Moving horizon estimation,
which is an optimization-based estimator, has a much higher on-line
computational cost than the Luenberger observer, especially for non-
linear distributed parameter systems (Jang et al., 2014). An observer
for cell thawing needs to be solvable within seconds (the entire cell
thawing process is completed in a few minutes). These considerations
motivate the use of a Luenberger observer for state estimation for cell
thawing.

Applying the Luenberger observer to our moving grid model (45)–
(47) results in
𝑑�̂�1
𝑑𝜏

= 𝐅1(�̂�,𝐮) + 𝐋1(�̂�1 − 𝐲1), (48)

𝑑�̂�2
𝑑𝜏

= 𝐅2(�̂�,𝐮) + 𝐋2(�̂�2 − 𝐲2), (49)

𝑑�̂�3
𝑑𝜏

= 𝐹3(�̂�,𝐮) + 𝐿3(�̂�3 − 𝑦3), (50)

where �̂�1, �̂�2, �̂�3 are the estimated states corresponding to 𝐱1, 𝐱2, 𝐱3; 𝐋1,
𝐋2, 𝐿3 are the Luenberger observer gains; 𝐲1, 𝐲2, 𝑦3 are the measured
outputs; and �̂�1, �̂�2, �̂�3 are the estimated outputs. The temperature
profiles and interface position are approximated from the data provided
by the thermal imaging camera (Fig. 1), so the output vectors are

�̂�1 = 𝐂1�̂�1, (51)

𝐲1 = 𝐂1𝐱1 + 𝐧1, (52)

�̂�2 = 𝐂2�̂�2, (53)

𝐲2 = 𝐂2𝐱2 + 𝐧2, (54)

�̂�3 = 𝐶3�̂�3, (55)

𝑦3 = 𝐶3𝑥3 + 𝑛3, (56)

where 𝐂1 = 𝐂2 = 𝐈𝑛; 𝐈𝑛 is the 𝑛×𝑛 identity matrix; 𝐶3 is 1; and 𝐧1 ∈ R𝑛,
𝐧2 ∈ R𝑛, 𝑛3 ∈ R represent sensor noise.

The Luenberger observer is divided into three main parts: (48)
estimates the temperature profile of the solid, (49) estimates the tem-
perature profile of the liquid, and (50) estimates the interface position.
This observer structure separates the states in three regions, each of
which depends on a different set of parameters and measurement
data, while respecting the coupling of the states in the moving grid
model. The states of the observer in each region are updated by the
6

corresponding measurements. In addition, this structure simplifies the
selection of the observer gains. The control stopping criterion for cell
thawing is the specified fraction of frozen material at the end of the
thawing, which is directly related to the interface position rather than
the temperature profiles within the solid and liquid phases. As such,
the estimation of the interface position 𝑥3 = 𝑆 is of primary interest,
with the estimation of the other states of lesser importance.

4.2. Observer design procedure

The observer gains are selected to trade off sensitivity to mea-
surement noise with speed of convergence of the state estimates. In
(48)–(50), the observer gains 𝐋𝟏 ∈ R𝑛×𝑛 and 𝐋𝟐 ∈ R𝑛×𝑛 correspond
to the number of grid points, while 𝐿3 is a real scalar for the one
interface position. The measurement noise in the infrared sensor is not
spatially dependent, which suggests a parameterization with one degree
of freedom in each phase:

𝐋𝟏 = 𝐿1𝐈𝑛, (57)

𝐋𝟐 = 𝐿2𝐈𝑛, (58)

where 𝐿1 and 𝐿2 are real scalars. With this parameterization, each
spatial domain has one design parameter.

Each observer gain (𝐿1, 𝐿2, and 𝐿3) is selected to steer the states
in the associated spatial domain in the first-principles model to the
correct states given the measurement data. A higher gain results in
faster convergence of the model states but increases the effects of
measurement noise on the state estimates. The value of each gain is
selected to converge the model states to the correct states as fast as pos-
sible without significantly polluting the state estimates by measurement
noise.

In a linear, observable system, the Luenberger observer gain can
be designed based on the eigenvalues of the closed-loop state equa-
tions (Luenberger, 1971). In our nonlinear model, the observer gains
are designed in a two-step procedure. The first step relies entirely on
the first-principles model developed in (45)–(56), whereas the second
step takes the data/measurement obtained from the real system into
account. For convenience, we denote the first step as model-based design
and the latter as data-based design.

For the model-based design, the first-principles model and observer
given by (45)–(56) are simulated to determine a range of observer gains
that may have a practically reasonable convergence rate and filtering
of measurement noise, without taking into account plant/model mis-
match. After that step, the observer gains are refined by using the real
data. For the data-based design, (52), (54), and (56) are replaced by
the real measurement data, and the observer gains are varied. This
step ensures that the design is based on the actual performance of the
observer and tunes the observer gain to account for real measurement
data and plant/model mismatch. The design and actual performance of
the observer are shown in Section 5.

The model-based design allows for different models and noise pro-
files to be tested so that the resulting design can cover many possible
scenarios, whereas the data-based design is primarily specific to the
system where the real data are available. The former enables an initial
observer design and performance assessment before the experimental
system is set up. On the other hand, as the first-principles model is
not perfect, and noise characteristics are not precisely known until
the system is set up, the second step selects observer gains to account
for that. The two-step approach to observer design saves time while
providing an assurance of robustness in the final design.

5. Results and discussion

This section firstly describes the simulation results obtained from
simulating the first-principles model in Section 3 and compares the

results to the experimental data. Subsequently, the Luenberger observer
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Fig. 5. Time evolution of the radial position of the solid–liquid interface predicted by the first-principles model for (a) four values of the vial radius with the heater temperature
of 37◦C and (b) four values of the heater temperature with the vial radius of 5 mm. The initial temperature of the solid phase is uniform at −80◦C, and the initial temperature
of the liquid phase is uniform at the melting point temperature of −2◦C.
Table 1
Default parameters in the simulations.

Parameter Value Unit Description

𝜌1 916 kg/m3 Density of the solid
𝜌2 1000 kg/m3 Density of the liquid
𝑘1 2.22 W/(m K) Thermal conductivity of the solid
𝑘2 0.556 W/(m K) Thermal conductivity of the liquid
𝐶𝑝1 2.050 kJ/(kg ◦C) Heat capacity of the solid
𝐶𝑝2 4.204 kJ/(kg ◦C) Heat capacity of the liquid
𝛥𝐻𝑓 334 kJ/kg Latent heat of fusion
𝑈 850 W/(m2 K) Overall heat transfer coefficient
𝑏 5 mm Vial radius
𝑇0 37 ◦C Heater temperature
𝑇𝑚 −2 ◦C Melting point
𝑛 50 – Number of grid points

design results derived following the procedure in Section 4 are pre-
sented. Finally, the results from implementing the complete model and
observer to perform real-time state estimation and control of the cell
thawing process are discussed. Table 1 lists the default parameters used
in the simulations.

5.1. Simulation results and model validation

5.1.1. Simulation results
Figs. 5–7 show the solid–liquid interface position and temperature

profiles predicted by the first-principles model (45)–(47). From Fig. 5,
the position of the solid–liquid interface decreases linearly at the
beginning, and that decrease becomes slower as the driving force for
heat transfer, i.e., the temperature difference between the heater and
the vial, is lower. At the end of the process, the interface position drops
rapidly, which is consistent with the increasing surface-area-to-volume
ratio of the solid core. The time for complete thawing ranges from 1 min
to about 7 min, with an increase of a factor of seven for an increase
in the vial radius of a factor of three (Fig. 5a). Increasing the heater
temperature by 27◦C reduces the thawing time by about a factor of
three (Fig. 5b).

The model predictions are consistent with typical thawing times in
the literature. Previous studies have suggested a thawing temperature
of 37◦C with thawing times of less than 5 min (Baboo et al., 2019; Hunt,
2019). A thawing time of about 3 min was experimentally observed for
a vial size similar to our vial of radius 5 mm (Baboo et al., 2019).
7

For a vial of radius 5 mm and the standard heater temperature of
37◦C, the temperature during thawing is nearly linear near the solid–
liquid interface in the solid phase (Fig. 6a) and over the whole domain
in the liquid phase (Fig. 6b). The spatial profile of the temperature
in the solid deviates from linearity at its center (𝑅1 = 0), which is
consistent with the radial symmetry condition. Once some of the heat
has transferred to the center of the solid, the spatial profile retains a
similar curved shape, eventually reaching the melting point once the
solid core is sufficiently thin. The time scale of heat conduction in the
liquid phase is about ten times slower than that of the solid phase (cf.,
Fig. 6ab).

In Fig. 7, the temperature of the solid increases from −80◦C to the
melting point of −2◦C within half a minute, so the solid temperature
profile is flat most of the time. The liquid temperature at the inner
glass surface of the vial (5 mm) evolves from its melting point to about
30◦C by the end of the thawing. The mesh spacing in Fig. 7 shows
how the moving grid evolves during the simulation, i.e., the grid size in
each domain varies as the interface position changes, with fine spatial
resolution in the liquid phase near the start and in the solid phase near
the end of the thawing.

5.1.2. Model validation
This section validates the first-principles model using the experi-

mental data. To measure the temperature profile and interface position
in each experiment, the thermal imaging camera was oriented to mon-
itor the temperature from the top of the vial (Fig. 1). Some examples
of the image data and relevant data analysis procedure are given in
Appendix C.

Fig. 8 compares the value of the interface position predicted by
the first-principles model initialized by the measured temperatures and
interface position at time 𝑡 = 0 with the measured interface position
throughout the thawing. The prediction of the first-principles model
deviates from the measured interface position by less than 0.05 (i.e., 5%
of the vial radius) during the first 2 min but by more than 10%
at later times when the interface position drops more rapidly. One
cause of the deviation is that the first-principles model is based on
heat transfer in one spatial dimension, but the actual thawing process
occurs in three spatial dimensions. Another potential cause is that some
movement of the frozen material could occur when most of the material
is liquid. Such movement can enhance convective heat transfer and
induce asymmetric effects. This deviation can be improved by using
a well-designed observer (Section 5.3).
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Fig. 6. Spatiotemporal evolution of the temperatures of the (a) solid and (b) liquid phases for the default vial radius (5 mm) and heater temperature (37◦C). The initial temperature
of the solid phase is uniform at −80◦C, and the initial temperature of the liquid phase is uniform at the melting point temperature of −2◦C. The normalized position is used to
help visualize the plots easily.
Fig. 7. Spatiotemporal evolution of the temperature of the solid and liquid phases
in the original coordinates for a vial of radius 5 mm and the heater temperature of
37◦C. The initial temperature of the solid phase is uniform at −80◦C, and the initial
temperature of the liquid phase is uniform at the melting point temperature of −2◦C.

5.2. Observer design

With the first-principles model established, the observer was de-
signed following the procedure in Section 4.2. The observer has three
gains: 𝐋1, 𝐋2, and 𝐿3. Since the objective of cell thawing estimation is
to track the interface position, this section first focuses on the design
of the associated observer gain 𝐿3. Then the section shows that values
of the observer gains 𝐋1 and 𝐋2 do not significantly affect the interface
tracking performance.

5.2.1. Observer gain selection
Noise-free model-based simulation results show that the proposed

observer converges for a wide range of values of the observer gain 𝐿3
for the solid–liquid interface (Fig. 9). The estimated interface position
converges to the actual value in 30 s for values of the observer gain 𝐿3
from −2 to −15, and slowly for 𝐿3 = −1∕2.

Model-based simulation results with normally distributed measure-
ment noise show similarly fast convergence of the estimated interface
position for values of the observer gain 𝐿 from −2 to −15 and poor
8
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Fig. 8. Time evolution of the measured and predicted interface position for the vial
radius of 5 mm and heater temperature of 37◦C. The first-principles model is initialized
by the measured initial temperatures and interface position.

convergence for 𝐿3 = −1∕2 (Fig. 10). For 𝐿3 = −2, the estimated
interface position is smooth and almost not polluted by noise (Fig. 10b).
The estimate of the interface position is slightly noisy for 𝐿3 = −5
but still provides a good estimate (Fig. 10c), implying that the gain
should not be increased much further. When the observer gain is too
high, the estimated interface position is noisy and does not give a good
estimate of the state (Fig. 10d). These model-based results suggest that
the optimal observer gain should be within the range of −2 to −5, with
the final value decided by application to the experimental data.

When the observer is applied to experimental data, the estimated
interface position reaches the measured value within 30 s for four
values of the observer gain 𝐿3 between −2 and −5 (Fig. 11). The
observer poorly tracks the interface position between 0.5 to 1.5 min
and after 2 min with the observer gain 𝐿3 = −2 and −3 (Fig. 11ab),
indicating the gain is too small. The convergence is improved for 𝐿3
of −4 and −5, respectively (Fig. 11cd). For the observer gain 𝐿3 =
−5, the estimated interface position converges to the measured value
throughout the process with slight deviation during the last few seconds
where the interface drops rapidly (Fig. 11d). This small deviation is
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Fig. 9. Simulated time evolution of the actual, measured, and estimated position of the solid–liquid interface for values of the observer gain (a) 𝐿3 = −1∕2, (b) 𝐿3 = −2, (c)
3 = −5, and (d) 𝐿3 = −15, noise-free case. The observer gains 𝐿1 and 𝐿2 are −1. The vial radius is 5 mm, and the heater temperature is 37◦C. The initial interface position of

the observer (red curve) is different from the actual initial state (black curve) to assess convergence. The output (blue curve) and actual state (black curve) are identical as there
is no measurement noise.
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not a concern because it comes at the very end of the process after
the mass fraction of the solid is 5%, where the thawing process should
be terminated. The interface position estimates have low sensitivity
to measurement noise for all four values of the observer gain, with
𝐿3 = −5 having the fastest speed of convergence. As a result, all
subsequent simulations use the observer gain 𝐿3 = −5.

The actual sensor noise in the experiment (Fig. 11) is not as strong as
the sensor noise assumed based on the equipment specification of the
thermal imaging camera (Fig. 10). The observer gain could be made
larger in magnitude to improve convergence, but the observer would
have higher sensitivity to noise. Since the observer converges efficiently
with 𝐿3 = −5, it is reasonable to use this gain to provide some margin
for the observer to work well even with larger sensor noise, e.g., if some
electronic equipment comes within the vicinity of the thermal imaging
system.

5.2.2. Comparison of output measurement sets
The above derivations and results assume that all state measure-

ments including the temperature profiles and interface position are
available, which is valid for our thermal imaging camera setup. A draw-
back of such an estimator is that the temperature readings from thermal
imaging can be inaccurate for low temperatures. For example, while
the thermal imaging camera used in this work, FLIR A35sc, can read
the temperature down to −40◦C with an accuracy of ±5◦C (FLIR, 2018),
the minimum temperature of our system is −80◦C. Potential sensor bias

otivates the design of an observer whose only measurement input is
he interface position. In this case, the output matrices 𝐂 and 𝐂 in
9

1 2
(51)–(54) are zero, and 𝐋1 and 𝐋2 are no longer design parameters of
he observer.

Dropping the temperature profile measurements from the observer
nly has a very small effect on the observer performance (Fig. 12). The
stimated profiles are almost identical (Fig. 12a) with the difference in
he estimated interface position of less than 0.01 (i.e., 1% of the vial
adius) most of the time except for the end of the process where the
rror is slightly higher (Fig. 12b). These results indicate that the ob-
erver requires only the interface position measurement, which means
nly the observer gain 𝐿3 is important in the observer design. Since the
implified observer does not receive any image data at low temperature
alues (much below the melting point), this observer is robust to such
ensor bias.

.3. Real-time state estimation

The numerical model integrated with the observer was employed to
erform real-time state estimation of the cell thawing process, focusing
n tracking the moving solid–liquid interface and controlling the final
ass fraction of the solid.

Fig. 13 compares the interface position predicted by the first-
rinciples model and observer initialized by the measured temperatures
nd interface position at time 𝑡 = 0 with the measured interface
osition throughout the thawing. The measurement and prediction
f the first-principles model are the same as those shown in Fig. 8,
ith the observer prediction added for comparison. As expected, the
bserver updating (50) corrects for the inevitable uncertainty in the
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Fig. 10. Simulated time evolution of the actual, measured, and estimated position of the solid–liquid interface for values of the observer gain (a) 𝐿3 = −1∕2, (b) 𝐿3 = −2, (c)
𝐿3 = −5, and (d) 𝐿3 = −15, with random measurement noise with the maximum of 5◦C and minimum of −5◦C given by the accuracy of the thermal imaging camera (FLIR, 2018).
The observer gains 𝐿1 and 𝐿2 are −1. The vial radius is 5 mm, and the heater temperature is 37◦C. The initial interface position of the observer (red curve) is different from the
actual initial state (black curve) to assess convergence.
first-principles model when determining the estimated interface po-
sition. The difference between the measured and estimated interface
position is about 1%–2% except for the last few seconds where the
error slightly increases. In addition, the observer filters the noise in
the measurement of the interface position.

The observer was repeatedly tested under the given operating con-
ditions (Fig. 14). In all cases, the observer accurately tracks the solid–
liquid interface position through the end of the thawing process while
filtering the measurement noise. The experimental performance over
many runs provides confidence that the observer can be used to reliably
control the cell thawing process.

The observer design is also capable of handling a thermal imaging
camera that has larger sensor noise. While some noise can be observed
in the measured interface position (Fig. 14), the noise is relatively
modest. The sensor noise can be larger, for example, when the spatial
resolution of the thermal imaging camera is lower, or there is interfer-
ence from electronic devices or other light sources. Fig. 15 considers
the same measurement data as in Fig. 14, except with independent
normally distributed noise of standard deviation given by 3𝜎 = 5◦C
added to each pixel, which is based on the error range reported in the
user manual for the thermal imaging camera (FLIR, 2018). Our observer
can give good interface position estimates even with very noisy data.
The observer has the most value for determining the endpoint of cell
thawing when the thermal imaging data are noisy.

Besides noise filtering and interface position estimation, the ap-
proach taken in this article captures all the important physics of the
system. As such, the approach can be readily extended to a wide range
10
of applications including optimal control and model predictive control,
which is useful in some cell thawing scenarios where the heater temper-
ature needs to be manipulated (Jang et al., 2017; Baboo et al., 2019).
The observer also has better performance than alternative approaches
that are more straightforward such as using a simple mechanistic model
in the observer, or using a low-pass filter (see Appendix D).

It is important to note that the numerical model and observer pre-
sented and tested in this work are based on thawing in one dimension.
Nevertheless, in reality, frozen material is also heated from the bottom.
As a result, vertical thawing can influence the final mass fraction of the
frozen material. This deviation and possible correction regarding heat
transfer in the vertical direction are briefly discussed in Appendix E.

6. Conclusion

This work proposes a strategy for the dynamic simulation, state
estimation, and control of the Stefan problems and applies the strategy
to cell thawing. The first-principles model of cell thawing is derived
from the one-dimensional two-phase Stefan problem defined in the
cylindrical coordinate system. A finite difference approximation is com-
bined with the method of lines in a moving grid domain, which is a
more accurate numerical scheme than typical fixed grid approaches
and facilitates observer and control design. State estimation and control
of the Stefan problem can be achieved by building the Luenberger
observer upon the first-principles model with inputs from real-time
thermal imaging of cells. With an optimal observer gain design, the
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Fig. 11. Time evolution of the measured and estimated position of the solid–liquid interface for values of the observer gain (a) 𝐿3 = −2, (b) 𝐿3 = −3, (c) 𝐿3 = −4, and (d)
𝐿3 = −5. The observer gains 𝐿1 and 𝐿2 are −1. The vial radius is 5 mm, and the heater temperature is 37◦C. The initial interface position of the observer is different from the
initial measured value to demonstrate convergence; in practice, this value can be set to the initial measured value.
Fig. 12. Time evolution of the (a) estimated position of the solid–liquid interface when both temperature and interface position are measurable, and only the interface position
can be measured and (b) pointwise difference between the results obtained from both approaches. The observer gain 𝐿3 is −5 in all cases with 𝐿1 = 𝐿2 = −1 for the case with
temperature measurements (full states). Other parameters and data are the same as those in Fig. 11.
observer corrects the states in the first-principles model while being
insensitive to model uncertainty and measurement noise.

The numerical model and observer were employed in an experimen-
tal cell thawing process for real-time state estimation and control of
the moving solid–liquid interface. The first-principles model simulates
11
the evolution of the solid–liquid interface with errors of less than 5%
when the solid phase dominates, and more than 10% when the system
contains mostly liquid. The integrated model and observer can accu-
rately predict the interface position within about 1%–2% throughout
the process in all experimental runs.



Computers and Chemical Engineering 173 (2023) 108179P. Srisuma et al.

f
𝐿
a
m

a
t
t
d

C

g
o
g
W
F
s
M
G
v
W
–
–
i
T
a
a
t
R
B
P
r
i
s
W

D

c
i

D

A

t
c
s
U
o

A

l

𝑅

F

Fig. 13. Time evolution of the measured, estimated, and predicted interface position
or the vial radius of 5 mm and heater temperature of 37◦C. The observer gains are
1 = 𝐿2 = −1 and 𝐿3 = −5, taking a complete set of measurements (temperature
nd interface position). The first-principles model and observer are initialized by the
easured initial temperatures and interface position.

Some potential future directions would be to develop a model
nd design an observer for a system with more spatial dimensions,
ake into account temperature-dependent properties, include convec-
ive heat transfer into the model, and explore advanced control systems
esign.
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ppendix A. Fixed grid dimensionalization

A common nondimensionalization technique for heat transfer prob-
ems in the radial direction is to define the normalized radius

= 𝑟
𝑏
, (A.1)

where other variables and constants are the same as those defined in
Section 2.4. As a result, the governing equations for the solid region
(0 < 𝑅 < 𝑆) and liquid region (𝑆 < 𝑅 < 1) can be written as

𝜕𝛩1
𝜕𝜏

=
𝜕2𝛩1

𝜕𝑅2
+ 1

𝑅
𝜕𝛩1
𝜕𝑅

, (A.2)

1
𝛼0

𝜕𝛩2
𝜕𝜏

=
𝜕2𝛩2

𝜕𝑅2
+ 1

𝑅
𝜕𝛩2
𝜕𝑅

. (A.3)

The Robin boundary condition at 𝑅 = 1 is

⎧

⎪

⎨

⎪

⎩

𝜕𝛩1
𝜕𝑅

= 𝑈0𝑘0(1 − 𝛩1) for 𝜏 ≤ 𝜏𝑠,

𝜕𝛩2
𝜕𝑅

= 𝑈0(1 − 𝛩2) for 𝜏 > 𝜏𝑠.
(A.4)

or the symmetry condition at 𝑅 = 0,

⎧

⎪

⎨

⎪

⎩

𝜕𝛩1
𝜕𝑅

= 0 for 𝜏 < 𝜏𝑙 ,

𝜕𝛩2
𝜕𝑅

= 0 for 𝜏 ≥ 𝜏𝑙 .
(A.5)

Finally, the Stefan conditions at 𝑅 = 𝑆 for 𝜏𝑠 < 𝜏 < 𝜏𝑙 include the
melting point condition having the same form as (29), and the energy
balance that becomes
1
Ste

𝑑𝑆
𝑑𝜏

=
𝜕𝛩1
𝜕𝑅

− 𝑘0
𝜕𝛩2
𝜕𝑅

. (A.6)

Discretization of the above equations results in a fixed grid domain,
i.e., the space between each grid point is constant and does not change
with time. This approach is straightforward to implement numerically
but requires adding or subtracting grid points in the two domains when
the solid–liquid interface moves, and tracking the time-varying distance
between grid points near the interface (see Appendix B).

Appendix B. Numerical methods for fixed grids

Applying the central difference (second-order accurate) approxima-
tion to the spatially dependent terms and the forward Euler method to
the time-dependent terms in (A.2) and (A.3) transforms the PDEs into
the difference equations

(𝛩1)𝑘+1𝑖 − (𝛩1)𝑘𝑖
𝛥𝜏

=
(𝛩1)𝑘𝑖+1 − 2(𝛩1)𝑘𝑖 + (𝛩1)𝑘𝑖−1

(𝛥𝑅)2
+

(𝛩1)𝑘𝑖+1 − (𝛩1)𝑘𝑖−1
2𝑖(𝛥𝑅)2

, (B.1)

(𝛩2)𝑘+1𝑖 − (𝛩2)𝑘𝑖
𝛼0𝛥𝜏

=
(𝛩2)𝑘𝑖+1 − 2(𝛩2)𝑘𝑖 + (𝛩2)𝑘𝑖−1

(𝛥𝑅)2
+

(𝛩2)𝑘𝑖+1 − (𝛩2)𝑘𝑖−1
2𝑖(𝛥𝑅)2

, (B.2)

where 𝛥𝑅 = 1∕𝑛 is the distance between adjacent grid points in the
radial direction, 𝑖 is the integer index in the radial direction (𝑅 = 𝑖𝛥𝑅),
𝛥𝜏 is the time step, and 𝑘 is the integer index along the time axis



Computers and Chemical Engineering 173 (2023) 108179P. Srisuma et al.

g
a

(
r

(

Fig. 14. Time evolution of the estimated and measured interface position from four experimental runs for the vial radius of 5 mm and heater temperature of 37◦C. The observer
ains are 𝐿1 = 𝐿2 = −1 and 𝐿3 = −5, taking a complete set of measurements (temperature and interface position). The observer is initialized by the measured initial temperatures
nd interface position.
w
c
(
o
d

𝜏 = 𝑘𝛥𝜏). The above difference equations can be solved iteratively by
earranging to give

𝛩1)𝑘+1𝑖 = (𝛩1)𝑘𝑖 +
𝛥𝜏

(𝛥𝑅)2
((

1 + 1
2𝑖

)

(𝛩1)𝑘𝑖+1 − 2(𝛩1)𝑘𝑖

+
(

1 − 1
2𝑖

)

(𝛩1)𝑘𝑖−1
)

, (B.3)

(𝛩2)𝑘+1𝑖 = (𝛩2)𝑘𝑖 +
𝛼0𝛥𝜏
(𝛥𝑅)2

((

1 + 1
2𝑖

)

(𝛩2)𝑘𝑖+1 − 2(𝛩2)𝑘𝑖

+
(

1 − 1
2𝑖

)

(𝛩2)𝑘𝑖−1
)

. (B.4)

Applying the central difference scheme to the Robin boundary
condition results in
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛩1)𝑘𝑛+1 − (𝛩1)𝑘𝑛−1
2𝛥𝑅

= 𝑈0𝑘0
(

1 − (𝛩1)𝑘𝑛
)

for 𝜏 ≤ 𝜏𝑠,

(𝛩2)𝑘𝑛+1 − (𝛩2)𝑘𝑛−1
2𝛥𝑅

= 𝑈0
(

1 − (𝛩2)𝑘𝑛
)

for 𝜏 > 𝜏𝑠.

(B.5)

The symmetry condition at the center reformulated by L’Hôpital’s rule
is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛩1)𝑘+10 − (𝛩1)𝑘0
𝛥𝜏

= 4
(𝛥𝑅)2

(

(𝛩1)𝑘1 − (𝛩1)𝑘0
)

for 𝜏 < 𝜏𝑙 ,

(𝛩2)𝑘+10 − (𝛩2)𝑘0
𝛥𝜏

=
4𝛼0
(𝛥𝑅)2

(

(𝛩2)𝑘1 − (𝛩2)𝑘0
)

for 𝜏 ≥ 𝜏𝑙 .
(B.6)

The Stefan conditions are

(𝛩 )𝑘 = (𝛩 )𝑘 = 0, (B.7)
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1 𝑝 2 𝑝
1
Ste

(

𝑆𝑘+1 − 𝑆𝑘

𝛥𝜏

)

=

(

3(𝛩1)𝑘𝑝
2𝛥𝑅

−
2(𝛩1)𝑘𝑝−1

𝛥𝑅
+

(𝛩1)𝑘𝑝−2
2𝛥𝑅

)

−𝑘0

(

−
3(𝛩2)𝑘𝑝
2𝛥𝑅

+
2(𝛩2)𝑘𝑝+1

𝛥𝑅
−

(𝛩2)𝑘𝑝+2
2𝛥𝑅

)

, (B.8)

where 𝑆 = 𝑝𝛥𝑅 varies between 0 and 1, and 𝑝 is the position index of
the moving interface (Fig. B.1) rounded to the closest integer.

A drawback of solving the difference equations iteratively is that
the time step 𝛥𝜏 is required to be small to ensure numerical stability,

hich is not computationally efficient. To avoid this issue, the PDEs
an be alternatively handled by using the numerical method of lines
employed in the main paper), which discretizes the spatial derivatives
nly, converting each PDE into a system of ODEs. In this case, the
iscretized governing equations are

𝑑(𝛩1)𝑖
𝑑𝜏

=
(𝛩1)𝑖+1 − 2(𝛩1)𝑖 + (𝛩1)𝑖−1

(𝛥𝑅)2
+

(𝛩1)𝑖+1 − (𝛩1)𝑖−1
2𝑖(𝛥𝑅)2

, (B.9)

1
𝛼0

𝑑(𝛩2)𝑖
𝑑𝜏

=
(𝛩2)𝑖+1 − 2(𝛩2)𝑖 + (𝛩2)𝑖−1

(𝛥𝑅)2
+

(𝛩2)𝑖+1 − (𝛩2)𝑖−1
2𝑖(𝛥𝑅)2

. (B.10)

The Robin boundary condition is

⎧

⎪

⎨

⎪

(𝛩1)𝑛+1 − (𝛩1)𝑛−1
2𝛥𝑅

= 𝑈0𝑘0(1 − (𝛩1)𝑛) for 𝜏 ≤ 𝜏𝑠,

(𝛩2)𝑛+1 − (𝛩2)𝑛−1 = 𝑈 (1 − (𝛩 ) ) for 𝜏 > 𝜏 .
(B.11)
⎩ 2𝛥𝑅 0 2 𝑛 𝑠
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he symmetry condition becomes

𝑑(𝛩1)0
𝑑𝜏

= 4
(𝛥𝑅)2

(

(𝛩1)1 − (𝛩1)0
)

for 𝜏 < 𝜏𝑙 ,

𝑑(𝛩2)0
𝑑𝜏

=
4𝛼0
(𝛥𝑅)2

(

(𝛩2)1 − (𝛩2)0
)

for 𝜏 ≥ 𝜏𝑙 .
(B.12)

The Stefan conditions are

(𝛩1)𝑝 = (𝛩2)𝑝 = 0, (B.13)
1
Ste

𝑑𝑆
𝑑𝜏

=
(3(𝛩1)𝑝

2𝛥𝑅
−

2(𝛩1)𝑝−1
𝛥𝑅

+
(𝛩1)𝑝−2
2𝛥𝑅

)

−𝑘0

(

−
3(𝛩2)𝑝
2𝛥𝑅

+
2(𝛩2)𝑝+1

𝛥𝑅
−

(𝛩2)𝑝+2
2𝛥𝑅

)

. (B.14)

In comparison with the technique presented Section 3, this approach
is easier to implement as the discretization is straightforward, and the
PDEs/ODEs are linear. Nevertheless, there are significant disadvan-
tages. Figs. B.1 and B.2 pictorially illustrate the discretization of the
fixed grid domain and evolution of the moving interface, respectively.
The indices are 𝑖 = 0 at the center to 𝑖 = 𝑛 at the outer boundary. The
interface position is labeled with the index 𝑝. With this approach, the
space between each grid is always constant, i.e., does not change with
time. In addition, the total number of grid points is fixed at 𝑛 + 1. The
number of grid points in each phase, however, varies as the moving
interface moves, i.e., as the index 𝑝 changes. As such, the number of
grids in each region changes with time. In terms of numerical solutions,
this change can cause some issues at the beginning of thawing because
the number of grid points in the liquid phase is low during this time. For
14
example, when 𝑝 = 𝑛−1, there is only one grid point in the liquid region,
and having only one grid point to capture a high temperature gradient
in the liquid phase results in an inaccurate solution. The same issue can
occur when thawing almost completes, i.e., the solid region is small.
Another problem of this approach is that variation in the number of grid
points implies that the number of states in each region is not constant,
which is not preferable in state estimation and process control. These
issues can be avoided by using the moving grid technique proposed in
Sections 2.4 and 3.

Appendix C. Thermal imaging data analysis

The spatial temperature fields recorded by the thermal imaging
camera indicate radial symmetry during thawing (Fig. C.1). The tem-
perature map was interpolated linearly between pixels to obtain the
temperature corresponding to each grid point for the numerical model.

The radial position of the solid–liquid interface from the measure-
ment (𝑦3) can be determined by

𝑦3 =

√

𝐴𝑠
𝐴𝑡

, (C.1)

where 𝐴𝑠 is the circle area covering the solid phase, i.e., the region
with temperatures lower than the melting point of −2◦C, and 𝐴𝑡 is the
total circle area of the cell vial. By connecting the camera to MATLAB,
the temperature profile and interface position were extracted from each
spatial temperature field and recorded every second.
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Fig. B.1. Discretization of the fixed grid domain.
Fig. B.2. Evolution of the solid–liquid interface in the fixed grid domain.
Fig. C.1. Spatial temperature fields recorded by the thermal imaging camera.
Appendix D. Simple model and low-pass filter

As discussed in Section 5.3, the proposed observer is able to estimate
the interface position despite noisy measurement. The observer relies
on numerical simulation of the mechanistic model derived from the
Stefan problem integrated with the Luenberger observer; we denote
this approach as the Luenberger observer in this appendix. Two simpler
alternatives for interface position estimation are using (1) a simple
model in the observer or (2) a low-pass filter.

For the simple model, the speed of the interface position can be
assumed constant at 𝑣, which is corrected by an observer. Modifying
(50) results in
𝑑�̂�3 = −𝑣 + 𝐿 (�̂� − 𝑦 ), (D.1)
15

𝑑𝜏 𝑣 3 3
where 𝐿𝑣 is the observer gain for this simple model, which is the only
design parameter. This approach does not model the heat transfer in
the system, and so is simpler than our framework.

For the low-pass filter, the measurement is filtered using an expo-
nential filter,

𝜏𝐹
𝑑�̂�3
𝑑𝜏

+ �̂�3 = 𝑦3, (D.2)

where 𝜏𝐹 is the only design parameter.
To compare the three approaches, consider the base case where

all the parameters are as given in Table 1. The correct interface po-
sition (actual state) is obtained by simulating the first-principles model
(45)–(47). The noisy measurement is created by adding random mea-
surement noise of ±5◦C to the actual state. The Luenberger observer,
simple model, and low-pass filter are applied to that noisy measurement
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Table D.1
Comparison between the interface position errors of the Luenberger observer, simple
model, and low-pass filter. The optimal values of 𝐿𝑣 and 𝜏𝐹 are used for the simple
model observer and low-pass filter.

Approach Interface position error

RMS Maximum

Luenberger observer 0.0070 0.0254
Simple model 0.0116 0.0264
Low-pass filter 0.0170 0.0380

Fig. E.1. Vertical moving interface.

for interface position estimation, with estimation errors reported in
Table D.1. Quantitatively, the Luenberger observer gives a significantly
more accurate estimation of the interface position – both in terms of the
root-mean-square (RMS) and maximum errors – than the simple model
and low-pass filter.

In addition to having the highest accuracy, our framework captures
all the important physics of the system and therefore can be employed
for additional applications such as optimal control and model predictive
control of cell thawing. Although the simple model and low-pass filter
are computationally much cheaper than the Luenberger observer, all
of the approaches are implementable in real time for this application.
While the number of floating point calculations in the Luenberger
observer is orders of magnitude higher than for the simple estimation
methods, the Luenberger observer still only requires simulatio, which
is orders of magnitude less expensive than more advanced observers,
e.g., moving horizon estimation and particle filtering.

Appendix E. Vertical thawing correction

Although the observer design presented in this work is based on
thawing in one dimension (𝑟), thawing in the vertical direction (𝑧) at
the bottom of the frozen material would affect the mass fraction of the
solid (Fig. E.1). This section estimates the error caused by neglecting
vertical thawing.

If the bottom of the vial has curvature similar to its sides, then the
thickness of liquid at the bottom of the vial will be nearly the same
as the thickness of liquid on the sides (Deen, 1998), and this can be
used to correct the fraction of frozen material. For example, for frozen
material of height of 43 mm in a vial of radius 5 mm, the height of
43 mm would be corrected to 43−4 = 39 mm when the frozen material
has a radius of 1 mm. This correction to the mass of frozen material
would be (43 − 39)∕43 = 9.3%.

For a vial bottom that is flat, a somewhat more involved analysis
results in a similar estimate for the thickness of liquid at the bottom
of the vial. As explained and derived in Carslaw and Jaeger (1959),
the motion of the solid–liquid interface in the vertical direction can be
16
approximated using a similarity solution.2 The interface position in the
vertical direction (𝑠𝑧) is given by

𝑠𝑧 = 𝜆
√

4𝛼2𝑡, (E.1)

where 𝜆 is a constant that satisfies the relation

𝜆𝑒𝜆
2
erf 𝜆 =

𝐶𝑝2(𝑇0 − 𝑇𝑚)

𝛥𝐻𝑓
√

𝜋
. (E.2)

From the results shown in Section 5.3, the time scale of thawing is
around 2.5 min. With this time scale, the vertical interface position
𝑠𝑧 is about 4 mm, which should be considered in comparison to the
height of our vial of about 43 mm. Hence, the error when neglecting
vertical thawing is about 10% in the solid mass fraction. This error
is not negligible but also not significant enough to prevent the one-
dimensional model from working reliably. This small correction can be
simply added to the current model to obtain a more accurate prediction
of the solid fraction of frozen material.
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