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A B S T R A C T

Freeze drying, aka lyophilization, is a process by which a pharmaceutical product is dried via sublimation
under vacuum. An alternative to the conventional process is microwave-assisted freeze drying, which relies
on microwave irradiation for drying the product, offering a reduction in the drying time by 70%–80%. This
article derives exact and approximate analytical solutions to a mechanistic model for conventional, microwave-
assisted, and hybrid freeze drying. The exact solution serves as a reference solution for validating numerical
or approximate results due to its highest accuracy up to machine precision. The approximate solution can be
computed about 4-fold faster than the numerical solutions and 200-fold faster than the exact solution with the
maximum error of less than 1%, which is highly computationally efficient and accurate. Applications of the
analytical solutions are demonstrated in the context of parameter estimation, optimal control, and parameter
space analysis.
1. Introduction

Freeze drying, aka lyophilization, is a crucial process in biophar-
maceutical manufacturing by which a product is dried (or dehydrated)
via sublimation under vacuum (Fissore et al., 2018; Park et al., 2021).
To achieve sublimation, the process is carried out at low temperature
compared to typical dehydration and drying techniques, and hence
freeze drying is better at preserving the quality and structure of heat-
sensitive materials, e.g., pharmaceutical products (Barresi et al., 2009).
This freeze-drying technique plays an important role in biotherapeu-
tics (Fissore et al., 2018), including applications related to global
pandemics such as COVID-19 (Hammerling et al., 2021).

Freeze drying consists of three stages, namely (1) freezing, (2)
primary drying, and (3) secondary drying. During freezing, the product
and liquid solvent (usually water) are frozen at a very low tempera-
ture (Fissore et al., 2018; Bano et al., 2020). In this stage, the free water
becomes ice crystals, whereas the bound water retains its noncrystalline
state while being bound to the product molecules (Fissore et al., 2018).
In primary drying, the frozen product and solvent are heated under
sufficiently low pressure and temperature that the ice crystals subli-
mate (Pisano et al., 2010). In secondary drying, the product is heated
further at higher temperature to remove much of the bound water via
desorption (Velardi and Barresi, 2008; Gitter et al., 2019).
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Primary drying is recognized as the most time-consuming, haz-
ardous, and expensive stage, and so is the main target for improvement
and optimization (Velardi and Barresi, 2008; Pisano et al., 2010). In
conventional freeze drying (CFD), the product is heated via a heating
shelf located under the drying chamber or vial during the drying
stages (Pisano et al., 2010; Fissore et al., 2018). To accelerate the
drying process, microwave-assisted freeze drying (MFD), which relies
on microwave irradiation, was studied and developed (Walters et al.,
2014; Gitter et al., 2019). It was shown via both simulations and
experiments that MFD can significantly reduce the drying time during
primary drying by 70%–80% while still preserving the quality of the
product (Gitter et al., 2018; Bhambhani et al., 2021; Park et al.,
2021). Hybrid freeze drying (HFD), which combines both CFD and MFD
heating techniques, can further decrease the drying time (Park et al.,
2021).

Mathematical models of freeze drying are valuable for guiding the
design, optimization, and control of the freeze-drying process (Pisano
et al., 2010; Fissore et al., 2015; Bano et al., 2020). Over the past few
decades, mechanistic modeling of CFD has become well established (see
examples and discussions in Litchfield and Liapis, 1979; Mascarenhas
et al., 1997; Pikal et al., 2005; Hottot et al., 2006; Velardi and Barresi,
2008; Pisano et al., 2010; Chen et al., 2015; Fissore et al., 2015;
Scutellà et al., 2017; Bano et al., 2020). Mechanistic modeling of MFD
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is not as mature as that of CFD; only a few mechanistic models are
available (Witkiewicz and Nastaj, 2010; Wang et al., 2020; Park et al.,
2021). A mechanistic model for HFD can be constructed by merging
the mechanistic models for CFD and MFD (Park et al., 2021).

The aforementioned mechanistic models are usually written as par-
tial differential equations (PDEs) describing heat and mass transfer
in freeze drying, so most previous research heavily relied on numer-
ical solutions, e.g., the finite element method (Mascarenhas et al.,
1997; Hottot et al., 2006; Chen et al., 2015) and the finite volume
method (Park et al., 2021). Numerical solutions are useful in appli-
cations where the model equations are so complicated that analytical
solutions cannot be derived. A drawback is that numerical solutions
do not explicitly reveal the relationships between model parameters
and solutions. The high computational cost is also a limitation for
some applications, such as in model-based optimal control (Klepzig
et al., 2020). Analytical solutions, on the other hand, are generally
more accurate and easier to compute. In addition, analytical solutions
allow the connections between model parameters and solutions to be
interpreted clearly, which is beneficial in understanding the physics of
the system and in engineering design.

This article derives analytical solutions to the established mecha-
nistic model of conventional, microwave-assisted, and hybrid freeze
drying during primary drying. The exact analytical solution is ob-
tained by using the superposition principle, separation of variables,
and Duhamel’s theorem. The approximate analytical solution is derived
using the heat-balance integral, which for this system is equivalent
to the integral method. The analytical solutions are compared with
the numerical solutions based on the finite difference and finite ele-
ment methods in terms of accuracy and computational performance.
Applications of the analytical solutions are demonstrated for parameter
estimation, optimal control, and parameter space analysis.

This article is organized as follows. Section 2 describes the mecha-
nistic model for simulating primary drying. Section 3 derives the exact
and approximate analytical solutions to the mechanistic model. Sec-
tion 4 briefly describes techniques used to generate numerical solutions
for comparing with the analytical solutions. Section 5 discusses the
accuracy and computational performance of the obtained solutions,
and demonstrates their applications. Finally, Section 6 summarizes the
study and suggests some future directions.

2. Model formulation and description

This section describes the mechanistic model for CFD, MFD, and
HFD used in this study.

2.1. Mathematical model

The mechanistic model used in this work is based primarily on the
simplified model of Park et al. (2021) (Fig. 1). The model is formu-
lated in the rectangular coordinate system by considering one spatial
dimension (𝑥) and time (𝑡). The model consists of two main parts. The
irst part describes the spatiotemporal evolution of the temperature in
he frozen region before sublimation starts. During this period, it is
ssumed that there is no phase change in the system, with the supplied
eat increasing the temperature of the frozen region. The second part
escribes the evolution of sublimation to predict the drying time by
ssuming that the supplied heat is used for sublimation only. We denote
he first part of the model as the heating stage for 0 ≤ 𝑡 < 𝑡𝑚 and the
econd part of the model as the sublimation stage for 𝑡 ≥ 𝑡𝑚, where 𝑡𝑚
s the time when sublimation begins.

During the heating stage, the energy conservation equation for the
rozen region is

𝐶𝑃
𝜕𝑇
𝜕𝑡

= 𝑘𝜕
2𝑇
𝜕𝑥2

+𝐻𝑣, 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑡𝑚, (1)

where 𝑇 (𝑥, 𝑡) is the temperature, 𝐻𝑣 is the microwave irradiation term,
2

𝜌 is the frozen material density, 𝑘 is the frozen material thermal
conductivity, 𝐶𝑃 is the frozen material heat capacity, and 𝐿 is the
length/height of the frozen material. In terms of the thermal diffusivity
𝛼 = 𝑘∕(𝜌𝐶𝑃 ), (1) becomes

1
𝛼
𝜕𝑇
𝜕𝑡

= 𝜕2𝑇
𝜕𝑥2

+
𝐻𝑣
𝑘

. (2)

During this heating stage, the microwave irradiation term 𝐻𝑣 can be
approximated by

𝐻𝑣 = 𝐻𝑤𝑝𝑏𝑤, (3)

where 𝐻𝑤 is the volumetric heat generation by the microwave affecting
the water and 𝑝𝑏𝑤 is the portion of the bound water at the initial state.
At the bottom surface, the frozen material is heated by the bottom shelf,
and thus the boundary condition follows Newton’s law of cooling

− 𝑘𝜕𝑇
𝜕𝑥

(𝐿, 𝑡) = ℎ(𝑇 (𝐿, 𝑡) − 𝑇𝑏(𝑡)), 0 < 𝑡 < 𝑡𝑚, (4)

where ℎ is the heat transfer coefficient at the bottom (sometimes known
as 𝐾𝑣 in previous literature) and 𝑇𝑏(𝑡) is the bottom shelf temperature.
The shelf temperature increases linearly as a function of time, which
results in

𝑇𝑏(𝑡) = 𝑟𝑡 + 𝑇𝑏0, (5)

where 𝑇𝑏0 is the initial shelf temperature and 𝑟 is the ramp-up rate. At
the top boundary, heat transfer is negligible compared to the bottom
shelf, and hence the boundary condition is

𝑘𝜕𝑇
𝜕𝑥

(0, 𝑡) = 0, 0 < 𝑡 < 𝑡𝑚. (6)

The initial temperature of the frozen region is uniform at 𝑇0,

𝑇 (𝑥, 0) = 𝑇0, 0 ≤ 𝑥 ≤ 𝐿. (7)

During this stage, there is no phase change (sublimation), thus no
moving interface. In the system, the temperature is highest at the bot-
tom surface of the frozen material following the temperature gradient.
When the temperature at the top of the vial reaches the sublimation
temperature, sublimation starts. Therefore, we specify the criterion for
switching from the heating stage to the sublimation stage as

𝑇 (0, 𝑡𝑚) = 𝑇𝑚, (8)

where 𝑇𝑚 is the sublimation temperature.
During the sublimation stage, the evolution of the moving interface

(sublimating interface) can be described by the energy balance

𝑑𝑠
𝑑𝑡

=
𝐻𝑏(𝑡) +𝐻𝑣𝐿

(𝜌 − 𝜌𝑎)𝛥𝐻sub𝑝ice
, 𝑡 > 𝑡𝑚, (9)

where 𝑠(𝑡) is the position of the moving interface, 𝐻𝑏(𝑡) is the heat
transfer from the bottom shelf, 𝐻𝑣 is the microwave irradiation, 𝜌𝑎 is
he density of the dried region, 𝛥𝐻sub is the latent heat of sublimation,

and 𝑝ice is the portion of the ice at the initial state. The microwave
irradiation 𝐻𝑣 during sublimation is slightly different from that of the
heating stage, which can be approximated by

𝐻𝑣 = 𝐻𝑤𝑝𝑤, (10)

where 𝐻𝑤 is as defined in (3) and 𝑝𝑤 is the parameter describing
water-related portions during sublimation. For the bottom shelf,

𝐻𝑏(𝑡) = ℎ(𝑇𝑏(𝑡) − 𝑇𝑚), (11)

where the temperature of the vial is approximately constant at 𝑇𝑚,
the sublimation point, during sublimation. The initial condition for the
position of the moving interface for the sublimation stage is

𝑠(𝑡𝑚) = 0. (12)

The above simplified model considers two important heat sources:
(1) a heating shelf and (2) microwave irradiation. Other heat transfer
mechanisms discussed in the literature are thermal radiation and con-

vective heat transfer. The former can be neglected for vials positioned
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Fig. 1. Schematic diagram of the freeze-drying process.
at the center of the shelf as they are shielded from the surrounding
environment, but has significant effect on the drying time for vials
at the edge (around 20%–30%) (Velardi and Barresi, 2008). For the
latter, a detailed study showed an error of only 5% when neglecting
convective effects in conventional freeze drying (Pikal et al., 2016).
Although both radiation and convective effects could vary among dif-
ferent experimental setups, these contributions can reasonably be taken
into account by adjusting the heat transfer coefficient ℎ defined in (4)
as suggested by Pikal et al. (2005).

2.2. Nondimensionalization

Define the dimensionless variables

𝛩 =
𝑇 − 𝑇𝑏0
𝑇m − 𝑇𝑏0

, (13)

𝜉 = 𝑥
𝐿
, (14)

𝜂 = 𝑠
𝐿
, (15)

𝜏 = 𝛼𝑡
𝐿2

, (16)

𝜈 = ℎ𝐿
𝑘

, (17)

𝜎 = 𝑟𝐿2

𝛼(𝑇𝑚 − 𝑇𝑏0)
, (18)

𝜆 =
𝐻𝑤𝑝𝑏𝑤𝐿2

𝑘(𝑇𝑚 − 𝑇𝑏0)
, (19)

𝜅 =
𝐿(𝐻𝑏 +𝐻𝑤𝑝𝑤𝐿)
𝛼𝛥𝐻sub𝑝ice(𝜌 − 𝜌𝑎)

, (20)

where 𝜈 is the Biot number (Bird et al., 2002). Prior to sublimation, the
equation of energy for the frozen region (2) in dimensionless form is

𝜕𝛩
𝜕𝜏

= 𝜕2𝛩
𝜕𝜉2

+ 𝜆, 0 < 𝜉 < 1, 0 < 𝜏 < 𝜏𝑚, (21)

where 𝜏𝑚 is the dimensionless time defined at 𝑡𝑚. The boundary condi-
tion (4) becomes

− 𝜕𝛩
𝜕𝜉

(1, 𝜏) = 𝜈(𝛩(1, 𝜏) − 𝜎𝜏), 0 < 𝜏 < 𝜏𝑚. (22)

The boundary condition (6) is
𝜕𝛩
𝜕𝜉

(0, 𝜏) = 0, 0 < 𝜏 < 𝜏𝑚. (23)

The initial temperature is

𝛩(𝜉, 0) = 𝛩 , 0 ≤ 𝜉 ≤ 1. (24)
3

0

The criterion for switching from the heating stage to the sublimation
stage is

𝛩(0, 𝜏𝑚) = 1. (25)

During sublimation, the evolution of the moving interface (9) becomes

𝑑𝜂
𝑑𝜏

= 𝜅, 𝜏 > 𝜏𝑚, (26)

with the initial condition

𝜂(𝜏𝑚) = 0. (27)

As 𝜅 is a function of time, it is useful to rewrite the equation more
explicitly
𝑑𝜂
𝑑𝜏

= 𝜅1𝜏 + 𝜅2, 𝜏 > 𝜏𝑚, (28)

where

𝜅1 =
𝑟ℎ𝐿3

𝛼2𝛥𝐻sub𝑝ice(𝜌 − 𝜌𝑎)
, (29)

𝜅2 =
𝐿(ℎ(𝑇𝑏0 − 𝑇𝑚) +𝐻𝑤𝑝𝑤𝐿)

𝛼𝛥𝐻sub𝑝ice(𝜌 − 𝜌𝑎)
. (30)

3. Derivation of the analytical solutions

This section derives analytical solutions to the freeze-drying model
in Section 2, including the exact and approximate solutions.

3.1. Exact solution for the heating stage

First, the nondimensionalized energy balance during the heating
stage is defined as Problem A:

𝜕𝛩A
𝜕𝜏

=
𝜕2𝛩A
𝜕𝜉2

+ 𝜆, 0 < 𝜉 < 1, 0 < 𝜏 < 𝜏𝑚, (31)

𝜕𝛩A
𝜕𝜉

= 0, 𝜉 = 0, 0 < 𝜏 < 𝜏𝑚, (32)

𝜕𝛩A
𝜕𝜉

= −𝜈(𝛩A − 𝜎𝜏), 𝜉 = 1, 0 < 𝜏 < 𝜏𝑚, (33)

𝛩A = 𝛩0, 0 ≤ 𝜉 ≤ 1, 𝜏 = 0, (34)

where 𝛩A denotes the solution to Problem A, which is the original
problem. This nonhomogeneous PDE with a time-varying boundary
condition is solved by the principle of superposition, which divides the
original problem into a number of simpler subproblems such that the
solution to the original problem is the superposition (sum) of the
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solutions to all of the subproblems; a comprehensive explanation and
examples of the superposition principle are given in Mills (1995).

Applying the principle of superposition to Problem A divides this
problem into two subproblems, namely Problems B and C. Problem B
is defined as
𝜕𝛩B
𝜕𝜏

=
𝜕2𝛩B
𝜕𝜉2

+ 𝜆, 0 < 𝜉 < 1, 0 < 𝜏 < 𝜏𝑚, (35)

𝜕𝛩B
𝜕𝜉

= 0, 𝜉 = 0, 0 < 𝜏 < 𝜏𝑚, (36)

𝜕𝛩B
𝜕𝜉

= −𝜈𝛩B, 𝜉 = 1, 0 < 𝜏 < 𝜏𝑚, (37)

𝛩B = 𝛩0, 0 ≤ 𝜉 ≤ 1, 𝜏 = 0, (38)

where 𝛩B denotes the solution to Problem B. The only difference
between Problems A and B is that the original boundary condition (33)
in Problem A is time-dependent, whereas the boundary condition (37)
in Problem B is not.

Problem C is defined as
𝜕𝛩C
𝜕𝜏

=
𝜕2𝛩C
𝜕𝜉2

, 0 < 𝜉 < 1, 0 < 𝜏 < 𝜏𝑚, (39)

𝜕𝛩C
𝜕𝜉

= 0, 𝜉 = 0, 0 < 𝜏 < 𝜏𝑚, (40)

𝜕𝛩C
𝜕𝜉

= −𝜈(𝛩C − 𝜎𝜏), 𝜉 = 1, 0 < 𝜏 < 𝜏𝑚, (41)

𝛩C = 0, 0 ≤ 𝜉 ≤ 1, 𝜏 = 0, (42)

where 𝛩C denotes the solution to Problem C. Problem C has no heat
generation (𝜆) in (39), and the initial condition (42) is 0 rather than
𝛩0.

The superposition of the solutions to Problems B and C is the
solution to Problem A,

𝛩A = 𝛩B + 𝛩C. (43)

Instead of solving Problem A directly, Problems B and C are solved,
and the principle of superposition is used to obtain the solution to
Problem A. At this stage, Problem C is simplified enough to be solved
analytically, whereas Problem B can be further simplified, i.e., by
applying another superposition.

Applying the superposition principle to Problem B results in two
more subproblems, labeled as Problems B1 and B2. Problem B1 is

𝑑2𝛩B1
𝑑𝜉2

= −𝜆, 0 < 𝜉 < 1, (44)

𝑑𝛩B1
𝑑𝜉

= 0, 𝜉 = 0, (45)

𝑑𝛩B1
𝑑𝜉

= −𝜈𝛩B1, 𝜉 = 1, (46)

where 𝛩B1 denotes the solution to Problem B1. Problem B1 is a steady-
state problem that can be solved straightforwardly.

Problem B2 is defined as
𝜕𝛩B2
𝜕𝜏

=
𝜕2𝛩B2
𝜕𝜉2

, 0 < 𝜉 < 1, 0 < 𝜏 < 𝜏𝑚, (47)

𝜕𝛩B2
𝜕𝜉

= 0, 𝜉 = 0, 0 < 𝜏 < 𝜏𝑚, (48)

𝜕𝛩B2
𝜕𝜉

= −𝜈𝛩B2, 𝜉 = 1, 0 < 𝜏 < 𝜏𝑚, (49)

𝛩B2 = 𝛩0 − 𝛩B1, 0 ≤ 𝜉 ≤ 1, 𝜏 = 0, (50)

where 𝛩B2 denotes the solution to Problem B2. Problem B2 is similar
to Problem B except that (47) does not contain a generation term, and
the initial condition (50) is shifted by the solution to Problem B1 (𝛩B1).

With this formulation, the superposition of the solutions to Problems
B1 and B2 is the solution to Problem B,
4

𝛩B = 𝛩B1 + 𝛩B2. (51)
Therefore, we can solve Problems B1 and B2 instead of Problem B, and
then apply the superposition principle to obtain the solution to Problem
B.

With all the subproblems established, the next sections concern
solving these subproblems.

3.1.1. Solution to Problem B1
Integrating (44) twice results in

𝛩B1 = −
𝜆𝜉2

2
+𝐾1𝜉 +𝐾2, (52)

where 𝐾1 and 𝐾2 are the constants of integration. Differentiating (52)
gives
𝑑𝛩B1
𝑑𝜉

= −𝜆𝜉 +𝐾1. (53)

The constants 𝐾1 and 𝐾2 can be determined using (45), (46), (52), and
(53), which leads to

𝐾1 = 0, (54)

𝐾2 = 𝜆
( 1
𝜈
+ 1

2

)

. (55)

Consequently, the solution to Problem B1 is

𝛩B1 = −
𝜆𝜉2

2
+ 𝜆

( 1
𝜈
+ 1

2

)

. (56)

.1.2. Solution to Problem B2
Before solving Problem B2, the initial condition (50) is rewritten by

sing the information from (56), leading to

B2 = 𝛩0 +
𝜆𝜉2

2
− 𝜆

( 1
𝜈
+ 1

2

)

, 0 ≤ 𝜉 ≤ 1, 𝜏 = 0. (57)

o solve Problem B2, the method of separation of variables is em-
loyed (Mills, 1995). This technique assumes that the solution 𝛩B2
atisfies

B2 = 𝐹 (𝜏)𝐺(𝜉). (58)

ubstituting (58) into (47), with some rearranging, yields

1
𝐹

𝑑𝐹
𝑑𝜏

= 1
𝐺

𝑑2𝐺
𝑑𝜉2

, (59)

here the partial derivatives are replaced by the total derivatives
ecause 𝐹 = 𝐹 (𝜏) and 𝐺 = 𝐺(𝜉). The left-hand side of (59) is a function
f 𝜏, whereas the right-hand side is a function of 𝜉 only. To make this
quality hold, both sides must be equal to a constant denoted as −𝛽2

in this case. The constant is chosen to be a negative number in order
to satisfy the boundary conditions. As a result, (59) can be divided into
two ordinary differential equations (ODEs):
1
𝐹

𝑑𝐹
𝑑𝜏

= −𝛽2, (60)

1
𝐺

𝑑2𝐺
𝑑𝜉2

= −𝛽2. (61)

Both (60) and (61) are integrated to obtain the expressions of 𝐹 and
𝐺, which are substituted into (58) to give

𝛩B2 = 𝑒−𝛽
2𝜏 (𝐾3 cos 𝛽𝜉 +𝐾4 sin 𝛽𝜉). (62)

Differentiating (62) yields
𝜕𝛩B2
𝜕𝜉

= 𝑒−𝛽
2𝜏 (−𝐾3𝛽 sin 𝛽𝜉 +𝐾4𝛽 cos 𝛽𝜉). (63)

Inserting this expression into the boundary condition (48) gives

𝐾4 = 0. (64)

Applying the boundary condition (49) to (62) and (63) results in the
transcendental equation

𝛽 tan 𝛽 = 𝜈. (65)
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An infinite number of values of 𝛽 can satisfy the transcendental equa-
tion (65). Each value of 𝛽 satisfying (65) is denoted by 𝛽𝑛, where 𝑛 is a
positive integer. Each 𝛽𝑛 corresponds to a different value of 𝐾3, which
is labeled as 𝐾3,𝑛. Then the solution 𝛩B2 can be written as a sum of all
ossible solutions,

B2 =
∞
∑

𝑛=1
𝐾3,𝑛𝑒

−𝛽2𝑛 𝜏 cos 𝛽𝑛𝜉. (66)

he constant 𝐾3,𝑛 can now be determined by substituting (66) into the
nitial condition (57) with 𝜏 = 0, giving

0 +
𝜆𝜉2

2
− 𝜆

( 1
𝜈
+ 1

2

)

=
∞
∑

𝑛=1
𝐾3,𝑛 cos 𝛽𝑛𝜉. (67)

o obtain 𝐾3,𝑛, multiply both sides of (67) by cos 𝛽𝑛𝜉 and integrate from
to 1. The resulting expression of 𝐾3,𝑛 is

3,𝑛 =

𝜆 sin 𝛽𝑛
2𝛽𝑛

+
𝜆 cos 𝛽𝑛

𝛽2𝑛
−

𝜆 sin 𝛽𝑛
𝛽3𝑛

−
𝜆 sin 𝛽𝑛

𝛽𝑛

( 1
𝜈
+ 1

2

)

+
𝛩0 sin 𝛽𝑛

𝛽𝑛
1
2
+

sin 𝛽𝑛 cos 𝛽𝑛
2𝛽𝑛

.

(68)

Thus, the complete solution to Problem B2 is

𝛩B2 =
∞
∑

𝑛=1

⎛

⎜

⎜

⎜

⎜

⎝

𝜆 sin 𝛽𝑛
2𝛽𝑛

+
𝜆 cos 𝛽𝑛

𝛽2𝑛
−

𝜆 sin 𝛽𝑛
𝛽3𝑛

−
𝜆 sin 𝛽𝑛

𝛽𝑛

( 1
𝜈
+ 1

2

)

+
𝛩0 sin 𝛽𝑛

𝛽𝑛
1
2
+

sin 𝛽𝑛 cos 𝛽𝑛
2𝛽𝑛

⎞

⎟

⎟

⎟

⎟

⎠

× 𝑒−𝛽
2
𝑛 𝜏 cos 𝛽𝑛𝜉. (69)

3.1.3. Solution to Problem C
Problem C is the only problem that collects the information of the

time-dependent boundary condition (𝜎𝜏). A technique for solving this
specific type of problems is Duhamel’s Theorem (Lubecki, 2014). The
solution to a similar problem by using Duhamel’s Theorem is given
in Carslaw and Jaeger (1959), and, with a few modifications, the exact
solution to Problem C can be obtained as

𝛩C = 𝜎𝜏 + 𝜎
(

𝜉2

2
− 1

2
− 1

𝜈

)

+ 2𝜈𝜎
∞
∑

𝑛=1

𝑒−𝛽2𝑛 𝜏 cos 𝛽𝑛𝜉
𝛽2𝑛 cos 𝛽𝑛

(

𝜈2 + 𝜈 + 𝛽2𝑛
) , (70)

here 𝛽𝑛 satisfies the transcendental equation (65).

.1.4. Exact solution to the original problem, Problem A
Summing the exact solutions to all subproblems gives the solution

o the original problem,

= 𝛩A = 𝛩B1 + 𝛩B2 + 𝛩C, (71)

here 𝛩B1, 𝛩B2, and 𝛩C are given by (56), (69), and (70), respectively.
Eq. (71) is the exact solution for HFD. The exact solution for CFD is

he same, by setting 𝜆 = 0. The exact solution for MFD is simpler as its
emperature profile does not vary spatially due to the spatial symmetry
f the problem. The model describing MFD is
𝜕𝛩
𝜕𝜏

= 𝜆, 0 < 𝜏 < 𝜏𝑚, (72)

= 𝛩0, 𝜏 = 0, (73)

hich can be integrated to yield the exact solution

= 𝛩0 + 𝜆𝜏. (74)

.2. Approximate solution for the heating stage

The analytical solution derived in the previous section is exact, that
s, without error or approximation. The obtained exact solution for CFD
nd HFD contains infinite series with coefficients required to satisfy the
5

ranscendental equation, and thus cannot be written in closed form.
n addition, the derivation procedure contains numerous steps and is
elatively complicated, making it difficult to be adapted when there are
ome changes in the model, e.g., variation in the boundary condition.
his section alternatively derives an approximate analytical solution to
he freeze-drying model for CFD and HFD. The obtained solution is a
losed-form expression and has a simpler derivation.

Firstly, assume that the approximate solution can be expressed by

= 𝑎1(𝜏) + 𝑎2(𝜏)𝜉 + 𝑎3(𝜏)𝜉2, (75)

here 𝑎1, 𝑎2, and 𝑎3 are the unknown functions of time 𝜏 to be
etermined. This expression is selected to be simplest while being able
o satisfy the boundary conditions. Also, for a typical heat equation
n the rectangular coordinate system, a second-degree polynomial has
een observed to provide a good approximation (Goodman, 1964; Taler
nd Duda, 2006). Differentiating (75) results in
𝜕𝛩
𝜕𝜉

= 𝑎2(𝜏) + 2𝑎3(𝜏)𝜉, (76)

𝜕2𝛩
𝜕𝜉2

= 2𝑎3(𝜏). (77)

ubstituting (76) in (23) gives

2 = 0. (78)

ubstituting (75) and (76) into (22), with some rearrangement, yields

1 + 𝑎3
(

1 + 2
𝜈

)

= 𝜎𝜏. (79)

The boundary conditions are now satisfied, with 𝑎1 and 𝑎3 yet to be
etermined. At this stage, we employ the integral method, a useful
echnique widely used in the analysis of fluid flow, mass transfer,
nd heat transfer for approximating the solutions to complicated prob-
ems (Mills, 1995; Deen, 1998; Bird et al., 2002). In the integral
ethod, the temperature is required to satisfy the heat-balance integral

nstead of the original governing equation (Goodman, 1964). The heat-
alance integral can be obtained by integrating the governing equation
21),

∫

1

0

𝜕𝛩
𝜕𝜏

𝑑𝜉 = ∫

1

0

𝜕2𝛩
𝜕𝜉2

𝑑𝜉 + ∫

1

0
𝜆𝑑𝜉. (80)

Substitute (75), (77), and (79) into (80), apply the Leibniz integral
rule (Petrovic, 2020) to the left-hand side, and integrate the equation
to obtain
(

−2
3
− 2

𝜈

) 𝑑𝑎3
𝑑𝜏

= 2𝑎3 + 𝜆 − 𝜎. (81)

he heat-balance integral converts the original PDE into the ODE (81).
olving the ODE is much simpler than solving the PDE, making this
olution technique much simpler than that introduced in Section 3.1.
q. (81) can be solved analytically with an appropriate initial condi-
ion. To determine the initial condition for 𝑎3, i.e., 𝑎3 at 𝜏 = 0, we
ely on the fact that the governing PDE is satisfied on the average, not
xactly, as the equation is integrated over the spatial domain Goodman
1964). Hence, the initial condition of 𝑎3 should be connected to the
nitial average temperature of the system. The average temperature is

𝛩 = ∫

1

0
𝛩𝑑𝜉. (82)

Substituting (75) into (82) yields

𝛩 = 𝑎1 +
𝑎3
3
. (83)

The initial average temperature can be obtained by integrating the
initial condition (24), which is

𝛩 = ∫

1

0
𝛩0𝑑𝜉 = 𝛩0, 𝜏 = 0. (84)

Eqs. (79), (83), and (84) at 𝜏 = 0 can be solved simultaneously for 𝑎1
and 𝑎3 to give the initial condition for 𝑎3,

𝑎 = −
3𝜈𝛩0 , 𝜏 = 0. (85)
3 2𝜈 + 6
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Integrating (81) and applying the initial condition (85) give

𝑎3 =
(

𝜆
2
− 𝜎

2
−

3𝜈𝛩0
2𝜈 + 6

)

𝑒−
3𝜈
𝜈+3 𝜏 − 𝜆

2
+ 𝜎

2
, (86)

1 = 𝜎𝜏 −
(

1 + 2
𝜈

)

((

𝜆
2
− 𝜎

2
−

3𝜈𝛩0
2𝜈 + 6

)

𝑒−
3𝜈
𝜈+3 𝜏 − 𝜆

2
+ 𝜎

2

)

. (87)

Inserting these expressions and 𝑎2 = 0 into (75) gives the approxi-
mate solution

𝛩 = 𝜎𝜏 −
(

1 + 2
𝜈

)

((

𝜆
2
− 𝜎

2
−

3𝜈𝛩0
2𝜈 + 6

)

𝑒−
3𝜈
𝜈+3 𝜏 − 𝜆

2
+ 𝜎

2

)

+ 𝜉2
((

𝜆
2
− 𝜎

2
−

3𝜈𝛩0
2𝜈 + 6

)

𝑒−
3𝜈
𝜈+3 𝜏 − 𝜆

2
+ 𝜎

2

)

.
(88)

.3. Exact solution for the sublimation stage

The above two sections derive analytical solutions to the freeze-
rying model during the heating stage. For the sublimation stage, the
overning equation (28) is much simpler, and the equation can be
ntegrated directly, resulting in

(𝜏) =
𝜅1(𝜏2 − 𝜏2𝑚)

2
+ 𝜅2(𝜏 − 𝜏𝑚), 𝜏𝑚 < 𝜏 ≤ 𝜏max. (89)

hen the shelf temperature reaches its maximum value 𝑇𝑏,max at 𝑡max
or 𝜏max), the shelf temperature is constant, and thus the interface
volves linearly,

(𝜏) = 𝜂(𝜏max) + (𝜅1𝜏max + 𝜅2)(𝜏 − 𝜏max), 𝜏 > 𝜏max. (90)

n approximate solution for the sublimation stage is not needed be-
ause the exact solution is a simple closed-form expression.

. Numerical methods

The formulated model in Section 2 can be alternatively solved using
umerical techniques. Introducing spatial discretization of the frozen
egion to produce 𝑁 grid points (𝑖 = 1 to 𝑖 = 𝑁), including the two
oundaries, gives the distance between each grid point of

𝜉 = 1
𝑁 − 1

. (91)

This article develops two numerical solutions to the freeze-drying
model, and these solutions are compared with the analytical solutions
to cross-validate the models and solution procedures.

4.1. Finite difference-based method of lines

The first technique applies the finite difference method (FDM) for
spatial discretization and the numerical method of lines (MOL) for
time integration. The governing PDE is discretized spatially to produce
a system of ODEs, and that system of ODEs can be integrated using
available ODE solvers.

Prior to sublimation, spatial discretization of the governing PDE
(21) using a central difference approximation leads to

𝑑�̂�𝑖
𝑑𝜏

=
�̂�𝑖+1 − 2�̂�𝑖 + �̂�𝑖−1

(𝛥𝜉)2
+ 𝜆, 2 ≤ 𝑖 ≤ 𝑁 − 1, (92)

here �̂�𝑖 denotes the FDM solution at node 𝑖. The boundary condi-
ion (22) becomes

−�̂�𝑁+1 + �̂�𝑁−1
2𝛥𝜉

= 𝜈(�̂�𝑁 − 𝜎𝜏). (93)

The temperature at 𝑖 = 𝑁+1 is not in the domain but can be eliminated
by substituting this boundary condition into the governing PDE at node
𝑖 = 𝑁 , resulting in

𝑑�̂�𝑁 =
−(2𝛥𝜉𝜈 + 2)�̂�𝑁 + 2�̂�𝑁−1 + 2𝛥𝜉𝜈𝜎𝜏

+ 𝜆. (94)
6

𝑑𝜏 (𝛥𝜉)2
The discretized boundary condition (23) is

�̂�2 − �̂�0
2𝛥𝜉

= 0. (95)

he temperature at 𝑖 = 0 can be treated similarly as described for
= 𝑁 + 1, which gives

𝑑�̂�1
𝑑𝜏

=
−2�̂�1 + 2�̂�2

(𝛥𝜉)2
+ 𝜆. (96)

For convenience, the system of Eqs. (92), (94), and (96) can be written
in the matrix form
𝑑𝐱1
𝑑𝜏

= 𝐀1𝐱1 + 𝐛1(𝜏), (97)

here 𝐱1 ∈ R𝑁×1 collects the FDM solution �̂�, 𝐀1 ∈ R𝑁×𝑁 , and
1 ∈ R𝑁×1. This system of equations can be integrated using ode15s
n MATLAB.

During sublimation, (28) can be integrated analytically or numeri-
ally, but no spatial discretization is required. For consistency with the
bove model, the equation is integrated using ode15s in MATLAB.

.2. Finite element-based method of lines

The technique presented in this section employs the finite element
ethod (FEM) to discretize the spatial domain and the MOL for time

ntegration. The major difference between the FDM and FEM is that the
ormer is based on a strong formulation of the PDE, while the latter is
erived from a weak formulation. The procedure to derive and apply
he linear FEM for time-dependent PDEs with the MOL is well described
n Chen et al. (1999) and Lin et al. (2013).

The FEM is capable of handling complex geometry better than the
DM as the elements can be developed in various shapes, which is more
lexible than the finite difference grids (Strang, 2007). In addition, for
typical heat equation, the weak form used in the FEM involves only

irst derivatives, which is more convenient for treating functions/cases
here second derivatives are not defined. Although these advantages
re not relevant for the freeze-drying model considered here, the FEM
rovides a framework that is more readily extendable to handling more
omplicated geometry or radiation profiles.

First consider the model describing rising temperature before subli-
ation starts. The weak formulation of (21)–(23) is

∫

1

0
𝑣 𝜕𝛩
𝜕𝜏

𝑑𝜉 = 𝑎(𝛩, 𝑣) + 𝑙(𝑣), ∀𝑣 ∈ 𝐻1(0, 1), (98)

where 𝐻1(0, 1) is the Hilbert space over the domain of interest, 𝑎(𝛩, 𝑣)
is the bilinear form

𝑎(𝛩, 𝑣) = −∫

1

0

𝜕𝛩
𝜕𝜉

𝜕𝑣
𝜕𝜉

𝑑𝜉 − 𝜈(𝑣𝛩)𝜉=1, (99)

nd 𝑙(𝑣) is the linear form

(𝑣) = ∫

1

0
𝑣𝜆𝑑𝜉 + 𝜈𝜎𝜏𝑣|𝜉=1. (100)

n the linear FEM, the solution 𝛩 is approximated as being piecewise
inear. Here �̃� denotes the FEM solution, which can be written as

̃ (𝜉, 𝜏) =
𝑁
∑

𝑖=1
�̃�𝑖(𝜏)𝜙𝑖(𝜉), (101)

here the coefficient �̃�𝑖(𝜏) is the time-dependent dimensionless tem-
erature at node 𝑖 approximated using the linear FEM, and 𝜙𝑖(𝜉) is a
riangular function serving as a nodal basis whose value is 1 only at
ode 𝑖 and 0 at all other nodes 𝑗 ≠ 𝑖. Similarly, 𝑣 can be approximated
s

(𝜉, 𝜏) =
𝑁
∑

𝑣𝑗 (𝜏)𝜙𝑗 (𝜉). (102)

𝑗=1
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Table 1
Default parameters in the simulations.

Parameter Value Unit Reference

𝜌 917 kg/m3 Velardi and Barresi (2008)
𝜌𝑎 63 kg/m3 Velardi and Barresi (2008)
𝑘 2.30 W/m K Velardi and Barresi (2008)
𝐶𝑃 1967.8 J/kg K Velardi and Barresi (2008)
𝛥𝐻sub 2.84 × 106 J/kg Velardi and Barresi (2008)
𝐻𝑤 242,345 W/m3 Park et al. (2021)
𝑝𝑏𝑤 0.04 – Park et al. (2021)
𝑝ice 0.96 – Assumed to be 1 – 𝑝𝑏𝑤
𝑝𝑤 0.92 – Park et al. (2021)
ℎ 65 W/m2 K Hottot et al. (2006)
𝐿 0.042 m Park et al. (2021)
𝑇0 236.85 K Gitter et al. (2019)
𝑇𝑏0 236.85 K Gitter et al. (2019)
𝑇𝑚 256.15 K Gitter et al. (2019)
𝑇𝑏,max 281.85 K Park et al. (2021)
𝑟 1 K/min Park et al. (2021)
𝑁 20 – –
𝑛 50 – –

Substitute (101) and (102) into (98) and rearrange into the matrix form

𝐌
𝑑𝐱2
𝑑𝜏

= 𝐀2𝐱2 + 𝐛2(𝜏), (103)

where 𝐌 ∈ R𝑁×𝑁 is the mass matrix associated with time derivatives,
2 ∈ R𝑁×1 collects the finite element solution �̃�, 𝐀2 ∈ R𝑁×𝑁 is the

matrix associated with the bilinear form (99), and 𝐛2 ∈ R𝑁×1 is the
vector associated with the linear form (100). The entries 𝑀𝑖,𝑗 of 𝐌,
(𝐴2)𝑖,𝑗 of 𝐀2, and (𝑏2)𝑖 of 𝐛2 are

𝑀𝑖,𝑗 = ∫

1

0
𝜙𝑖𝜙𝑗𝑑𝜉, (104)

(𝐴2)𝑖,𝑗 = 𝑎(𝜙𝑖, 𝜙𝑗 ), (105)

(𝑏2)𝑖 = 𝑙(𝜙𝑖). (106)

The system of ODEs (103) can also be integrated using ode15s in
MATLAB.

For 𝜏 ≥ 𝜏𝑚, the model can be treated with the same approach
described and used for the FDM.

5. Results and discussion

This section presents and discusses results obtained from simulating
the exact, approximate analytical, FDM, and FEM solutions. Table 1
tabulates the default parameters used in this work.

5.1. Analysis of the exact solution

We firstly analyze the exact solution to the freeze-drying model.
The exact solution is theoretically the most accurate solution, which
is ideal for model-based designs that require extremely high accuracy.
During the heating stage, the exact solution is given by (71) for CFD and
HFD, and (74) for MFD. For the sublimation stage, the exact solution
is expressed by (89) and (90).

Figs. 2–4 reveal the exact solutions for the temperature profile and
sublimating interface position of the frozen material for CFD, MFD,
and HFD, respectively. The temperature profile for CFD is similar to a
parabolic curve (Fig. 2), which is a key assumption used to derive the
approximate solution in Section 3.2. The temperature is highest at the
bottom (𝑥 = 0.042 m) and becomes flat at the top (𝑥 = 0 m). The heating
stage stops when the top surface temperature reaches the sublimation
point of 256.15 K. The heating time is about 0.73 h before sublimation
occurs, and the drying time is 17 h. The temperature for MFD increases
linearly from the initial temperature of 236.85 K to the sublimation
point of 256.15 K (Fig. 3). The temperature does not vary spatially
7

s

as the microwave irradiation heats the frozen material uniformly. The
heating and drying times are about 1.00 h and 3.90 h, respectively. In
comparison with CFD, the heating time is higher, but the overall drying
time can be shortened by about 77%. The temperature for HFD appears
to be a combination of the MFD and CFD profiles (Fig. 4). The heating
and drying times are about 0.57 h and 3.04 h, respectively. The total
drying time is reduced by 82% compared with CFD and 22% compared
with MFD. The reduction in the drying time is consistent with values
reported in the literature (Gitter et al., 2018; Bhambhani et al., 2021;
Park et al., 2021).

The exact solution for CFD and HFD derived in Section 3.1 contains
two infinite series, (69) and (70). Including more terms (𝑛) in the
infinite series improves the accuracy of the solution but increases
the computational cost, with each term requiring the solution of the
transcendental Eq. (65). In fact, only a few terms in the infinite series
are required to obtain a highly accurate solution. By using HFD as
an example, Fig. 5 shows that the first term (𝑛 = 1) is much larger
than any other terms in the series. For 𝜏 = 0, the contribution from
the second term is about 1%–2% of the first term, with much smaller
contribution from the rest. For 𝜏 ≥ 0.2, only the first term in the series
has a significant contribution, whereas other terms vanish to 0 (within
machine precision) quickly, and this decrease becomes more abrupt as
time progresses (higher values of 𝜏). This behavior is consistent with the
result discussed by Mills (1995). Fig. 6 provides more insight into the
errors between the solution with 𝑛 = 1 (sometimes known as one-term
solutions) and solution with 𝑛 = 50. The maximum error of around 0.2
K (less than 0.1% of the actual initial temperature, 236.85 K) occurs at
𝜏 = 0, and this error rapidly decreases with time, which is consistent
with the contribution of each term shown in Fig. 5. From this analysis,
only the first term in the infinite series is needed to obtain accurate
solutions for this system. The only exception could be when extremely
high accuracy is required for small values of 𝜏, in which case adding the
second or third term into the series could be an option. This analysis
also justifies that 𝑛 = 50 used in Figs. 2 and 4 is sufficient to produce
results that are accurate within machine precision. To avoid confusion,
the exact solution refers to the analytical solution with 𝑛 = 50 and the
ne-term solution refers to the analytical solution with 𝑛 = 1 in the rest
f this article.

.2. Analysis of the approximate solution

The approximate solution derived using the integral method in
ection 3.2 for CFD and HFD during the heating stage is given by (88).
ts temperature profiles in Fig. 7 are visually nearly identical to the
xact solution (Figs. 2 and 4). The difference between the approximate
nd exact solutions is about 0.2–0.3 K (Fig. 8), which is only 0.1% of the
ctual temperature. For CFD, the approximate and exact heating times
re 0.7366 and 0.7316 h, respectively. For HFD, the approximate and
xact heating times are 0.5729 h and 0.5689 h, respectively. The error
etween the approximate and exact heating times is less than 1%.

As shown and described above, the approximate solution derived
y the integral method provides a highly accurate prediction of the
emperature profiles and heating times for both CFD and HFD. Since
he approximate solution is much simpler and can be written in closed
orm, it is useful for tasks where a large number of parameters need
o be varied, including parametric studies, optimization, and opti-
al control of the freeze-drying system, which is demonstrated in

ection 5.4.

.3. Comparison between the analytical and numerical solutions

The freeze-drying model can be solved numerically using the FDM
nd FEM as explained in Section 4. Here the numerical solutions are
ompared with the analytical solutions to cross-validate the obtained

olutions.
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Fig. 2. Exact solutions for CFD with 𝑛 = 50 for the (a) spatiotemporal evolution of the frozen material temperature during the heating stage and (b) time evolution of the interface
position during the sublimation stage.
Fig. 3. Exact solutions for MFD for the (a) spatiotemporal evolution of the frozen material temperature during the heating stage and (b) time evolution of the interface position
during the sublimation stage.
The temperature differences between the analytical and numerical
solutions during the heating stage are analyzed first. In this error
analysis, the results for HFD are presented only because HFD is the
most generic and complicated scenario; CFD is a special case of HFD in
which 𝜆 = 0, and MFD has a very simple analytical solution in which
the temperature increases linearly with time. The numerical solutions
(both FDM and FEM) are different from the exact solution by about
10−3 K (Fig. 9a), indicating that the FDM and FEM solutions are highly
accurate. The error between the approximate and numerical solutions
ranges between 0.1–0.25 K (Fig. 9b), which is similar to the error
between the exact and approximate solutions (Fig. 8).

Table 2 compares the heating and drying times predicted by all the
solutions. For CFD and HFD, the error between the numerical and exact
solutions is about 10−4 h, which is too small to be detected in the
real system. The accuracy of the approximate solution is as discussed
in Section 5.2. For MFD, the error between the numerical and exact
solutions is within machine precision.

Every solution method presented in this article is highly accurate for
all freeze-drying modes (CFD, MFD, and HFD). The exact solution con-
tains infinite terms and requires solving a transcendental equation to
8

Table 2
Heating and drying times predicted by the exact, approximate, FDM, and FEM
solutions.

Solution technique Heating time (hours) Total dying time (hours)

CFD MFD HFD CFD MFD HFD

Exact solution 0.7316 0.9980 0.5689 16.9930 3.8988 3.0364
Approximate solution 0.7366 – 0.5729 16.9978 – 3.0402
FDM solution 0.7317 0.9980 0.5690 16.9930 3.8988 3.0364
FEM solution 0.7316 0.9980 0.5690 16.9931 3.8988 3.0365

obtain the coefficient for each term in the infinite series. The advantage
of the numerical solutions is that it can be applied to more complicated
models in which the analytical solutions are not readily available.
Finally, the approximate solution may not be as accurate as the exact or
numerical solution, but is much cheaper to implement while providing
high accuracy (error < 1%). Consequently, the approximate solution
can be useful in tasks in which the solution is embedded in a more
complicated calculation, e.g., optimization and model-based control, as
demonstrated in the next section.
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Fig. 4. Exact solutions for HFD with 𝑛 = 50 for the (a) spatiotemporal evolution of the frozen material temperature during the heating stage and (b) time evolution of the interface
position during the sublimation stage.
Fig. 5. Contribution of the first ten terms in the infinite series defined in (a) Problem B2 and (b) Problem C for HFD. The value of each term is evaluated at the bottom surface
during the heating stage.
5.4. Case studies

We have shown in the previous sections that the approximate
analytical solution can provide highly accurate prediction of spatiotem-
poral evolution of temperature during the primary drying stage. In ad-
dition, the simple closed-form expression does not require solving any
transcendental equation or numerical treatment. As such, the approx-
imate solution is highly suitable for incorporation into optimization-
based design and control problems. This section presents some exam-
ples of using the approximate solution for solving such problems.

5.4.1. Parameter estimation
A key parameter in freeze-drying modeling is the heat transfer

coefficient (ℎ𝑏; 𝜈 in dimensionless form) as it governs the heat transfer
characteristics in the system (Fissore et al., 2018; Wegiel et al., 2018).
Various techniques for fitting the heat transfer coefficient to experi-
mental data have been explored, with one of the most commonly used
techniques based on measurement of the weight loss of ice and bottom
temperature as a function of time during sublimation (Pikal et al., 1984;
Fissore et al., 2015; Wegiel et al., 2018).
9

An alternative fast and simple way to estimate the heat transfer co-
efficient uses the approximate solution (88). Unlike past techniques, the
only information needed is accurate temperature measurement during
the heating process (𝛩(𝜏)); i.e., no phase change data are required.
If there is only one data point, the heat transfer coefficient can be
estimated simply by solving

𝛩exp = 𝜎𝜏exp −
(

1 + 2
𝜈est

)((

𝜆
2
− 𝜎

2
−

3𝜈est𝛩0
2𝜈est + 6

)

× 𝑒
(

− 3𝜈est
𝜈est+3

)

𝜏exp − 𝜆
2
+ 𝜎

2

)

+ 𝜉2
((

𝜆
2
− 𝜎

2
−

3𝜈est𝛩0
2𝜈est + 6

)

𝑒
(

− 3𝜈est
𝜈est+3

)

𝜏exp − 𝜆
2
+ 𝜎

2

)

,

(107)

where 𝛩exp is the measured temperature, 𝜏exp is the corresponding time,
𝜈est is the estimated heat transfer coefficient, and the other parameters
are the properties of that experimental system. Eq. (107) can be solved
easily by plotting the right-hand side as a function of 𝜈est to see where
its value is equal 𝛩exp or by using a nonlinear solver. It is common
to have more than one temperature data point from the experiment,
which can be used to give a more accurate value of 𝜈 by solving the
est
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Fig. 6. Time evolution of the temperature difference between the solution with 𝑛 = 1
nd solution with 𝑛 = 50 for HFD during the heating stage. Errors are measured using
he ∞-norm.

ptimization problem

est = arg min
𝜈

𝑛𝑑
∑

𝑙=1
(𝛩exp,𝑙 − 𝛩approx,𝑙(𝜈))2, (108)

here 𝑛𝑑 is the total number of data points available, 𝛩exp,𝑙 denotes the
ndividual measured temperature (one data point), and 𝛩approx,𝑙 is the
pproximate temperature calculated by (88) at the time corresponding
o 𝛩exp,𝑙. Eq. (108) minimizes the 2-norm of the error between the
ctual and approximate temperature profiles, which can be solved by
eading the minimum from a plot of the right-hand side of (108) or by
sing a nonlinear optimization solver.

To demonstrate, the above technique was employed to estimate the
eat transfer coefficient using the experimental data in Velardi and Bar-
esi (2008). In their experiment, the shelf temperature was increased
ith the rate of 0.25 K/min from 228.5 K to 268.15 K, the measured

emperature of the frozen material considering the potential bias in
easurement was around 235.11–238.20 K at 0.77 h after the heating

tarted, the initial thickness was 7.15×10−3 m, and no microwave term
𝜆 = 0) was considered. Other parameters are as tabulated in Table 1.
y substituting this information into (107) and solving the equation
sing MATLAB’s fsolve, the estimated heat transfer coefficient is
bout 10.44–35.82 W/m2 K, which agrees well with the mean value of
0.25 W/m2 K used in Velardi and Barresi (2008) and is consistent with
he typical range of a heat transfer coefficient in freeze drying (Hottot
t al., 2005).

.4.2. Optimal control
Primary drying is usually the longest and most expensive step in

reeze drying, and hence this stage is the main focus of process control
nd optimization (Velardi and Barresi, 2008; Pisano et al., 2010).
roductivity is maximized by minimizing the drying time required
uring primary drying (Fissore et al., 2018), which can be achieved
y maximizing the shelf temperature to shorten the heating stage
nd maximize the rate of sublimation. Practical constraints are to
nsure that (1) the temperature of the product is not so high that the
yophilized cake collapses, and (2) the rate of vapor production does
ot exceed the condenser capacity to avoid vapor accumulation and
hoked flow, which can lead to overpressure in the chamber (Fissore
t al., 2018; Bano et al., 2020). Model-based dynamic optimization (aka
ptimal control) has been formulated and numerical solved for primary
10

rying in CFD (Bano et al., 2020) to manipulate the shelf temperature
Table 3
Parameters used in the optimal control problem.

Parameter Value Unit

𝑟max 1 K/min
𝐻𝑤,min 180,000 W/m3

𝐻𝑤,max 320,000 W/m3

(𝑑𝑠∕𝑑𝑡)max 0.0273 cm/min

to minimize the drying time while maintaining the product temperature
and rate of vapor production below their limits.

This section illustrates the use of the simplified model and corre-
sponding analytical solutions for fast and efficient optimal control of
primary drying. The problem formulation is similar to that of Bano et al.
(2020) with three main differences: (1) HFD is considered rather than
CFD, (2) the microwave term (𝐻𝑤) is included as another manipulated
variable (in addition to the shelf temperature, 𝑇𝑏), and (3) our approx-
imate analytical solution is used rather than the numerical solution.
In our model, the evolution of the sublimating interface 𝑑𝑠∕𝑑𝑡 is the
speed of sublimation, and thus can be used to reflect the rate of vapor
production. The optimal control problem can be formulated as

min
𝑇𝑏(𝑡),𝐻𝑤(𝑡)

𝑡𝑓 (109)

subject to

Eqs. (2)–(12),

0 ≤ 𝑟 ≤ 𝑟max, (110)

𝑇𝑏 ≤ 𝑇𝑏,max, (111)

𝐻𝑤,min ≤ 𝐻𝑤 ≤ 𝐻𝑤,max, (112)
𝑑𝑠
𝑑𝑡

≤
(𝑑𝑠
𝑑𝑡

)

max
, (113)

where 𝑡𝑓 is the final time or total drying time, 𝑟max is the highest
temperature ramp-up rate, 𝑇𝑏,max is the maximum shelf temperature
iven in Table 1, 𝐻𝑤,min and 𝐻𝑤,max are the minimum and maximum

microwave power, and (𝑑𝑠∕𝑑𝑡)max is the maximum sublimation rate.
The first set of constraints (2)–(12) ensures that the governing equation,
initial condition, and boundary conditions are all satisfied throughout
the process; (2)–(7) describe the heating stage; (9)–(12) govern the
sublimation stage; and (8) is the switching criterion. The constraint
(110) defines the upper limit of the shelf temperature ramp-up rate.
Eq. (111) ensures that the shelf temperature does not exceed the max-
imum value. Eq. (112) specifies the bounds on the microwave power.
Lastly, the constraint (113) limits the sublimation rate to ensure that
the rate of vapor production does not exceed the condenser capacity.
The parameters used specifically for the optimal control problem are in
Table 3.

The usual approach for solving optimal control problems is to
discretize the PDE and ODE constraints, parameterize the time-varying
manipulated variables, and solve the resulting optimization problem
numerically (e.g., by using fmincon in MATLAB). During the heating
tage in our problem, we can alternatively replace (2)–(7) with the
pproximate analytical solution (88), which is an algebraic equation.
his substitution transforms the PDE and ODE constraints into an
lgebraic equation, reduces the number of equations, and eliminates
he use of any numerical discretization. For the sublimation stage,
he original Eqs. (9)–(12) are maintained as this problem focuses on
ontrolling the rate of vapor production 𝑑𝑠∕𝑑𝑡 rather than the exact

position of the interface 𝑠, and so the analytical expression of 𝑠 is not
needed.

To minimize the drying time, the shelf temperature should be
increased as fast as possible, and the microwave power should be
maximized, forcing the constraints (110) and (112) to be active at the
beginning. If the shelf temperature reaches its maximum value 𝑇𝑏,max,
the constraint (111) becomes active, and thus 𝑟 becomes zero as the

shelf temperature cannot be increased further. When the sublimation
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Fig. 7. Approximate solutions for (a) CFD and (b) HFD for the spatiotemporal evolution of the frozen material temperature during the heating stage.

Fig. 8. Time evolution of the temperature difference between the approximate and exact solutions for (a) CFD and (b) HFD during the heating stage. Errors are measured using
the ∞-norm.

Fig. 9. Time evolution of the temperature difference between (a) the numerical and exact solutions, and (b) the numerical and approximate solutions for HFD during the heating
stage. Errors are measured using the ∞-norm.
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Fig. 10. Time evolution of the optimal (a) shelf temperature and (b) microwave power which minimizes the drying time during the primary drying stage in HFD.
Table 4
Parameters used in the parameter space analysis.

Parameter Range Increment Unit

𝐻𝑤 180,000 to 320,000 20,000 W/m3

𝑟 0.25 to 1 0.25 K/min
𝐿 3 to 6 0.5 cm

rate 𝑑𝑠∕𝑑𝑡 reaches the upper bound, the constraint (113) becomes
active. The optimal temperature and microwave power profiles can
be determined by identifying the active constraints and then solving
those algebraic equations using a nonlinear algebraic equation solver,
e.g., fsolve in MATLAB. This simulation-based technique eliminates
the need for an optimization solver, resulting in a more computationally
efficient solution to the optimal control problem (Berliner et al., 2022).

The optimal values of the shelf temperature and microwave power
are shown in Fig. 10. The optimal shelf temperature increases linearly
at the maximum ramp-up rate of 1 K/min from the initial tempera-
ture of 236.85 K to the maximum value of 281.85 K, and then the
temperature is kept at its upper bound until the end of the drying
process (Fig. 10a). The optimal microwave power is constant at its
maximum value of 320,000 W/m3 during the heating stage before
decreasing abruptly to around 250,000 W/m3 when sublimation starts
to prevent excessive vapor production. After that, the microwave power
reduces linearly to compensate for an increase in the shelf temperature,
and eventually becomes stable at about 230,000 W/m3 when the shelf
temperature is constant (Fig. 10b). With the optimal shelf temperature
and microwave power, the minimum drying time is about 3.1 h, with
all process constraints satisfied throughout the primary drying.

5.4.3. Parameter space analysis
The accuracy of each solution is reported in Sections 5.1–5.3. This

section investigates the computational performance of each solution
technique for parameter space analysis, which requires a significant
amount of simulation runs. The effects of the shelf temperature ramp-
up rate (𝑟), microwave power (𝐻𝑤), and sample depth/height (𝐿) on
the drying time are explored. Table 4 tabulates the ranges and values
of the parameters considered in this study, which results in a total of
224 simulation cases. Other parameters are set to the default values in
Table 1.

The simulations were performed in MATLAB R2022a on a computer
equipped with an AMD Ryzen™ 9 5900HS CPU and 32 GB RAM on
Windows 10 64 bits. The wall-clock times measured using the tic
and toc functions and the maximum errors in drying time prediction
12
Table 5
Wall-clock times and maximum errors in drying time prediction of the exact, one-term,
FDM, FEM, and approximate solutions for the parameter space analysis.

Solution technique Wall-clock time (s) Maximum error (%)

Exact solution 200.23 –
One-term solution 6.00 2.77 × 10−5

FDM solution 4.56 2.13 × 10−4

FEM solution 4.46 2.30 × 10−3

Approximate solution 1.00 0.43

(compared to the exact solution) are reported in Table 5. Simulating the
exact solution (𝑛 = 50) is extremely slow because it requires solving the
transcendental equation (65), which is computationally expensive; for
𝑛 = 50, the number of transcendental equations to be solved is 50. Even
for the one-term solution (one transcendental equation), the simulation
time is higher than for the numerical and approximate solutions. The
fastest solution technique is the approximate solution, which takes 25%
as much time as the numerical solutions, 17% as much time as the
one-term solution, and 0.5% as much time as the exact solution. In
terms of deviation from the exact solution, the one-term solution is
most accurate, followed by the FDM, FEM, and approximate solutions,
respectively. The maximum error of the approximate solution among
all 224 cases is less than 0.5%, which is highly accurate and sufficient
for applications; e.g., for the drying time of 2 h, the error is only 1 min.

The maximum drying time among all 224 cases is about 5 h, which
occurs for the lowest microwave power, lowest shelf temperature ramp-
up rate, and largest sample size as expected (Fig. 11a). On the other
hand, the minimum drying time is about 2.4 h, which occurs for the
highest microwave power, highest shelf temperature ramp-up rate,
and smallest sample size (Fig. 11d). Increasing the microwave power
from 180,000 to 320,000 W/m3 while the other two variables are
fixed reduces the drying time by about 1.5–2 h. Increasing the shelf
temperature ramp-up rate can decrease the drying time by about 1 h,
which mostly influences the heating stage. The drying time is affected
slightly (<30 min) when varying the sample size from 3 to 6 cm. Within
this parameter space, the microwave power is the most significant
design variable, agreeing with the result reported in Park et al. (2021).

All the results and case studies in this work have the maximum error
of the approximate solution less than 1%. This error is relatively small
compared to model uncertainties and measurement errors (Pikal et al.,
2005; Velardi and Barresi, 2008); hence, the approximate solution

can be confidently used to guide the design of a freeze-drying system



Computers and Chemical Engineering 177 (2023) 108318P. Srisuma et al.
Fig. 11. Drying times required for primary drying in HFD under different conditions considered in the parameter space analysis. The microwave power 𝐻𝑤 ranges from 180,000
to 320,000 W/m3 with an increment of 20,000 W/m3. The shelf temperature ramp-up rate 𝑟 ranges from 0.25 to 1 K/min with an increment of 0.25 K/min. The sample height
𝐿 ranges from 3 to 6 cm with an increment of 0.5 cm.
within the given parameter space and design conditions. In actual
implementation, error in the approximate solution can be reduced by
employing parameter estimation using experimental data as discussed
in Section 5.4.1. The uncertainty in the approximate solution is small
enough that its presence would not significantly affect the performance
of a model-based monitoring and control system (Fissore et al., 2018).

6. Conclusion

Exact and approximate analytical solutions are derived for a mech-
anistic model of microwave-assisted freeze drying, which can also
be applied to conventional and hybrid freeze drying. The exact so-
lution can be derived using the superposition principle, separation
of variables, and Duhamel’s theorem, which involves infinite series
and solving a transcendental equation. Alternatively, the approximate
solution obtained via the heat-balance integral can be written as a
simple closed-form expression and does not entail any transcendental
equation.

In terms of accuracy, the exact solution is most accurate, up to ma-
chine precision, and so can be used as a reference solution to validate
any numerical/approximate results. The approximate solution produces
the maximum error in drying time and temperature predictions of
less than 1% in the given parameter space. Regarding computational
performance, the approximate solution can be computed fastest among
all the solution techniques, which is about 4-fold and 200-fold faster
than the numerical and exact solutions, respectively. With its high
accuracy and computational performance, the approximate solution
offers an efficient tool for design and optimization of the lyophilizer,
which is demonstrated for parameter estimation, optimal control, and
parameter space analysis.
13
Future work could consider more complicated models which may
simulate microwave irradiation more accurately and take into account
additional parameters such as pressure and concentration, so that opti-
mization and control of the process can be done with higher degrees of
freedom. Mathematical modeling of secondary drying in microwave-
assisted freeze drying is also important as it can be another mean of
optimizing the whole freeze-drying process.
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