
Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591

A
0

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Automated translation and accelerated solving of differential
equations on multiple GPU platforms
Utkarsh Utkarsh a,∗, Valentin Churavy a, Yingbo Ma b, Tim Besard b, Prakitr Srisuma a,
Tim Gymnich a,c, Adam R. Gerlach d, Alan Edelman a, George Barbastathis a,
Richard D. Braatz a, Christopher Rackauckas a,b,e

a Massachusetts Institute of Technology, Cambridge, MA, USA
b JuliaHub, Cambridge, MA, USA
c Technical University of Munich, Munich, Germany
d United States Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
e Pumas-AI, Dover, DE, USA

A R T I C L E I N F O

Keywords:
Differential equations
Numerical simulation
GPU
Data-parallelism
Computer kernel
HPC

A B S T R A C T

We demonstrate a high-performance vendor-agnostic method for massively parallel solving
of ensembles of ordinary differential equations (ODEs) and stochastic differential equations
(SDEs) on GPUs. The method is integrated with a widely used differential equation solver
library in a high-level language (Julia’s DifferentialEquations.jl) and enables GPU acceleration
without requiring code changes by the user. Our approach achieves state-of-the-art performance
compared to hand-optimized CUDA-C++ kernels while performing 20–100× faster than the
vectorizing map (vmap) approach implemented in JAX and PyTorch. Performance evaluation
on NVIDIA, AMD, Intel, and Apple GPUs demonstrates performance portability and vendor-
agnosticism. We show composability with MPI to enable distributed multi-GPU workflows. The
implemented solvers are fully featured – supporting event handling, automatic differentiation,
and incorporation of datasets via the GPU’s texture memory – allowing scientists to take
advantage of GPU acceleration on all major current architectures without changing their model
code and without loss of performance. We distribute the software as an open-source library,
DiffEqGPU.jl.

1. Introduction

Solving ensembles of the same differential equation with different choices of parameters and initial conditions is common in many
technical computing scenarios such as solving inverse problems [1], performing uncertainty quantification [2–4], and calculating
global sensitivity analysis [3,5]. While such a naturally parallel problem lends itself to being well-suited for acceleration via GPU
hardware, the programming requirements have traditionally been a barrier to the adoption of GPU-parallel solvers by scientists
and engineers who are less programming savvy. The core difficulty of targeting GPUs with general ODE solver software is that
the definition of the ODE is a function given by the user. Thus, high-level ODE solver software has generally consisted of higher-
order functions which take as input a function written in a high-level language such as MATLAB [6], Python (SciPy [7]), or Julia
(DifferentialEquations.jl [8]) to reduce the barrier to entry for scientists and engineers. In order to target GPUs, previous software
such as MPGOS [9] has required users to rewrite their models in a kernel language such as CUDA C++, which has thus traditionally

∗ Corresponding author.
E-mail address: utkarsh5@mit.edu (U. Utkarsh).
vailable online 16 November 2023
045-7825/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cma.2023.116591
Received 17 August 2023; Received in revised form 18 October 2023; Accepted 2 November 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:utkarsh5@mit.edu
https://doi.org/10.1016/j.cma.2023.116591
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116591&domain=pdf
https://doi.org/10.1016/j.cma.2023.116591

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

t
G
m
D
W
e
o
(
t
c
h
T
c

2

b
a
h
a
o
w
o
O
2

l
t
C
r
t

3

3

kept optimized GPU usage out of reach for many scientists. In order to get around this barrier, some software for general GPU-based
ODE solving in high-level languages has targeted array-based interfaces such as found in machine learning libraries like PyTorch [10]
and JAX [11]. However, we demonstrate in this manuscript that such an approach is orders of magnitude less performant than
generating model-specific ODE solver kernels.

In this manuscript, we demonstrate a performant, composable, and vendor-agnostic method for model-specific kernel generation
o solve massively parallel ensembles of ordinary differential equations (ODEs) and stochastic differential equations (SDEs) on
PUs. The ODE solvers support both stiff and non-stiff ODEs, allowing a wide range of compatibility with different classes of
odels. Our software transforms code that targets a widely used differential equation solver library in a high-level language (Julia’s
ifferentialEquations.jl [8]) and automatically generates optimized GPU kernels without requiring code changes by the end user.
e demonstrate an array-based parallelism approach and an automated kernel generation approach, which give a trade-off in

xtensibility and performance. We demonstrate that the kernel generation achieves state-of-the-art performance by on average
utperforming hand-optimized CUDA-C++ kernels provided by MPGOS, and performing 20–100× faster than the vectorized map
vmap) approach implemented in JAX and PyTorch. We showcase the vendor-agnostic aspect of our approach by benchmarking
he results on many major GPU vendors’ cards like NVIDIA, AMD, Intel (oneAPI), and Apple Silicon (Metal) and demonstrate the
omposability with MPI to enable distributed multi-GPU workflows. We show that these solvers are fully featured, supporting event
andling, forward and reverse (adjoint) automatic differentiation, and incorporation of datasets via the GPU’s texture memory.
ogether, this software allows scientists to target all major GPU platforms without loss of performance. To summarize, the key
ontributions of this manuscript are:

• A feature-rich open-source library of massively parallel GPU ODE and SDE solvers without trading the high-level interface and
performance, allowing composability with the rest of the numerical computing ecosystem.

• According to the author’s knowledge, the first known implementation to be completely vendor-agnostic provides a roadmap
of the required groundwork for numerical software to achieve vendor-agnosticism.

• Increased the performance of GPU parallelized stiff ODE solvers, which is enabled by leveraging and extending automatic
differentiation for GPUs by static compilation.

• Multiple algorithm choices lead to insights in performance engineering for the problem: We showcase that traditional
parallelization of numerical solvers such as LSODA, which are known to be performant for large ODEs, are orders of magnitude
slower at solving multiple and small ODEs together on GPUs due to their heavy use of branching behavior. Alternative methods
(Rosenbrock methods) are thus demonstrated as more suitable for the use of ensemble GPU parallelism.

. Related work

While researchers have used GPUs to accelerate computations extensively in applications including molecular simulation,
iological systems, and physics [12–15], these implementations are generally CUDA kernels written for the specific models and thus
re not general ODE solver software. In order to simplify the targeting of GPUs with general ODE solver software, previous attempts
ave generally targeted hardware using array abstraction frameworks such as ArrayFire [16], Thrust [17], VexCL [18], JAX [11],
nd PyTorch [10]. These frameworks allow the user to adapt code written on high-level array abstractions and generate a highly
ptimized code to backends such as OpenCL [19] and CUDA [20]. Boost’s odeint [21–23] allows direct calls to ODE solvers that,
ithout any modification, work with GPU backends such as CUDA and OpenCL. JAX’s Diffrax [24] generates solvers for ensembles
f ODEs on GPUs via JAX’s vectorized map functionality (vmap). PyTorch’s torchdiffeq [25] allows the defining of ensembles of
DEs directly with GPU-based arrays, although their vmap provided by functorch support with ODEs is still primitive as of April
023.

Recent results have demonstrated that using array-based abstractions for generating GPU-parallel ODE ensemble solvers greatly
ags in performance compared to the state of the art. In particular, MPGOS [9] demonstrated that ODEINT was 10–100× slower
han purpose-written ODE solver kernels written in CUDA. In order to achieve this performance, MPGOS requires that the user write
UDA C++ kernels for the ODE definitions, which are then compiled into the solver to reduce the kernel call overhead. Similar
esults were seen with culsoda [12], a CUDA translation of the widely used LSODE solver [26,27], which was similarly limited due
o requiring ODE models to be written in CUDA and compiled into the kernels.

. Numerical methods for differential equations

.1. Non-stiff ordinary differential equations (ODEs)

ODEs are models given by the evolution equation:
𝑑𝑢
𝑑𝑡

= 𝑓 (𝑢, 𝑝, 𝑡), (1)

with the initial condition 𝑢(𝑡0) = 𝑢0 over the time span (𝑡0, 𝑡𝑓), where 𝑢 is the solution, 𝑝 is the parameter, 𝑡 is time, 𝑡0 is the initial
time, and 𝑡𝑓 is the final time. In the subsequent sections of this article, the parameter 𝑝 is omitted from the formulation to avoid
confusion as it is not an important part of our numerical methods and algorithms. There exist many different methods for numerically
solving ODEs [28,29], though generally the most performant method is determined by a property known as the stiffness of the ODE,
which is related to the pseudo-spectra of the Jacobian [30,31].
2

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

s

𝛼

p
e
o
a
m

3

o

w
D
𝜇
s

One of the most common classes of solvers for ODE software are explicit Runge–Kutta methods [32,33]. These methods are
pecified by a coefficient tableau {𝐴, 𝑏, 𝑐}, with ‘‘𝑠’’ stages and order ‘‘𝑘’’, where 𝑘 ≤ 𝑠. It produces the approximation for 𝑢𝑛 = 𝑢(𝑡0+𝑛ℎ)

which is the solution at the current time step 𝑡𝑛, ℎ is the time step (𝑡𝑛+1 = 𝑡𝑛 + ℎ), where ℎ is the time-step, as

𝑘𝑠 = 𝑓

(

𝑢𝑛 +
𝑠
∑

𝑖=1
𝑎𝑠,𝑖𝑘𝑖, 𝑡 + 𝑐𝑠ℎ

)

(2)

𝑢𝑛+1 = 𝑢𝑛 + ℎ
𝑠
∑

𝑖=1
𝑏𝑖𝑘𝑖 (3)

Some examples of Runge–Kutta methods include dopri5 [34] and MATLAB’s ODE suite ode45 [6].
For adaptive step-size control, the Runge–Kutta methods require an extra computation as �̃�(𝑡+ℎ) = 𝑢(𝑡)+ℎ

∑𝑠
𝑖=1 �̃�𝑖𝑘𝑖, where �̃�𝑖 are

another linear combiners, which approximates the solution by one order less than the original solution. The local error estimate can
be written as 𝐸 = ‖�̃�(𝑡 + ℎ) − 𝑢(𝑡 + ℎ)‖ [28,35]. Adaptivity ensures that error remains below certain tolerance, and these tolerances
are absolute (atol) and relative (rtol). Mathematically, the proportion of error against tolerance is

𝑞 =
‖

‖

‖

‖

𝐸
atol + rtol ⋅max{|𝑢(𝑡)|, |𝑢(𝑡 + ℎ)|}

‖

‖

‖

‖

. (4)

The step-size ℎ is accepted for 𝑞 < 1; otherwise, ℎ is reduced and a new step is attempted. The new step-size in Runge–Kutta methods
is proposed through proportional-integral control (PI-control) via ℎnew = 𝜂𝑞𝛽2𝑛−1𝑞

𝛽1
𝑛 ℎ, where 𝛽1, 𝛽2 are tuned parameters [28], 𝑞𝑛−1 is

the previous proportion error, and 𝜂 is the safety factor.

3.2. Stiff ordinary differential equations

3.2.1. Rosenbrock methods
There exist various numerical methods for solving stiff ODEs [6,29]. One of the most common algorithms used in various ODE

solver packages, e.g., Julia, MATLAB, is known as the Rosenbrock method [6,8,29,36]. The general formulas of an 𝑠-stage Rosenbrock
method is given by

𝑘𝑖 = ℎ𝑓

(

𝑢𝑛 +
𝑖−1
∑

𝑗=1
𝛼𝑖𝑗𝑘𝑗 , 𝑡𝑛 + 𝛼𝑖ℎ

)

+ 𝛽𝑖ℎ
2 𝜕𝑓
𝜕𝑡

(𝑢𝑛, 𝑡𝑛) + ℎ
𝜕𝑓
𝜕𝑢

(𝑢𝑛, 𝑡𝑛)
𝑖

∑

𝑗=1
𝛽𝑖𝑗𝑘𝑗 , (5)

𝑢𝑛+1 = 𝑢𝑛 +
𝑠
∑

𝑗=1
𝛿𝑗𝑘𝑗 , (6)

where 𝑢𝑛 is the solution at the current time step 𝑡𝑛, 𝑢𝑛+1 is the solution at the next time step 𝑡𝑛+1, ℎ is the time step (𝑡𝑛+1 = 𝑡𝑛 + ℎ),
𝑖𝑗 , 𝛽𝑖𝑗 , 𝛿𝑗 are the coefficients, and

𝛼𝑖 =
𝑖−1
∑

𝑗=1
𝛼𝑖𝑗 , (7)

𝛽𝑖 =
𝑖

∑

𝑗=1
𝛽𝑖𝑗 . (8)

The Rosenbrock-type methods are ideally suited for GPU compilation because they are devoid of the typical Newton’s method
erformed per step in stiff ODE integrators [29]. The Newton’s method requires multiple linear solves and is computationally
xpensive due to repeated Jacobian calculation due to no reuse of previous matrix factorizations. Rosenbrock methods only require
ne Jacobian evaluation and have a constant number of linear solves per step, where the matrix factorization can be cached to
chieve (𝑁2) computational cost of the linear solves, where 𝑁 is the dimension of the ODE. Since GPUs are efficient in performing
ultiple small tasks in parallel, Rosenbrock methods are expected to achieve massive speedups on GPUs in ensemble simulations.

.2.2. Diagonally implicit Runge–Kutta methods
Another class of algorithms considered in this work is the Diagonally Implicit Runge–Kutta (DIRK) methods. The computation

f a single step is given by

𝑘𝑖 = 𝑓

(

𝑢𝑛 + ℎ
𝑖

∑

𝑗=1
𝑎𝑖𝑗𝜅𝑗 , 𝑡𝑛 + 𝑐𝑖ℎ

)

, (9)

𝑢𝑛+1 = 𝑢𝑛 + ℎ
𝑠
∑

𝑖=1
𝑏𝑖𝜅𝑖, (10)

here 𝑎𝑖𝑗 , 𝑏𝑖, and 𝑐𝑗 are the scalar constants. The class of DIRK methods considered in our benchmarking is the Explicit Singly
iagonal Implicit Runge–Kutta (ESDIRK) methods. ESDIRK methods are characterized by 𝑎11 = 0 and 𝑎𝑖,𝑖 = 𝜇, for some constant
. Particularly, we are interested in Kvaerno methods, a class of A-L stable stiffly-accurate ESDIRK method [37]. The methods are
uitable for benchmarking comparison as these are only available methods in other open-source software such as in Diffrax [24].
3

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

f

w
o
a
t
m
m

3.3. Stochastic differential equations (SDEs)

SDEs are extensions of ODEs which include inherent randomness. SDEs are used as models in many domains such as quantitative
inance [38,39], systems biology [40], and simulation of chemical reaction networks [41]. SDEs are formally defined as

𝑑𝑋𝑡 = 𝑎(𝑋𝑡, 𝑡)𝑑𝑡 + 𝑏(𝑋𝑡, 𝑡)𝑑𝑊𝑡, (11)

where 𝑊𝑡 is a wiener process and 𝑑𝑊𝑡 is a Gaussian random variable 𝑊𝑡+𝑑𝑡−𝑊𝑡 ∼  (0, 𝑑𝑡), where  (0, 𝑑𝑡) is the normal distribution
ith zero mean and variance 𝑑𝑡 [42]. The general interest is in ensembles of SDE solutions for the purpose of calculating moments
r simple analytical functions of moments, such as the mean and variance of the solution, and thus SDEs are a particularly strong
pplication for ensemble parallelization of the solution process. For this reason, methods which have accelerated convergence for
he calculation of the moments, known as high weak order solvers, have gained traction in the literature as a potentially performant
ethod for numerically analyzing such solutions. One such class of methods are the stochastic explicit ‘‘𝑠’’ stage Runge–Kutta
ethods:

𝜂𝑗 = �̃�𝑡 + ℎ
𝑠
∑

𝑗=1
𝜆𝑗𝑖𝑎(𝜂𝑗 , 𝑡 + 𝜇𝑗ℎ) +

𝑚
∑

𝑘=1
𝛥�̃� 𝑘

𝑛

𝑠
∑

𝑗=1
𝜆𝑘𝑗𝑖𝑏(𝜂𝑗 , 𝑡 + 𝜇𝑗ℎ), 𝑗 = 1,… , 𝑠,

�̃�𝑡+ℎ = �̃�𝑡 + ℎ
𝑠
∑

𝑗=1
𝛼𝑗𝑎(𝜂𝑗 , 𝑡 + 𝜇𝑗ℎ) +

𝑚
∑

𝑘=1
𝛥�̃� 𝑘

𝑛

𝑠
∑

𝑗=1
𝛽𝑘𝑗 𝑏(𝜂𝑗 , 𝑡 + 𝜇𝑗ℎ) + 𝑅,

where 𝛼𝑗 , 𝛽𝑘𝑗 , 𝜇𝑗 , 𝜆𝑖𝑗 , 𝛾
𝑘
𝑖𝑗 are the constants that define the particular stochastic Runge–Kutta method and 𝑅 is the fit term [42,43].

Adaptive time-stepping techniques using similar rejection sampling and PI-controller approaches to ODEs have been adapted to
SDE solver software [44].

4. The GPU ecosystem in Julia and cross-platform GPGPU programming

Using high-level languages to program hardware accelerators traditionally means either using a library approach or a domain-
specific-language (DSL) approach. The library approach focuses on providing array abstractions to call optimized high-level operators
written and optimized in another language. Prime examples of this approach are ArrayFire [16] and CuNumpy [45]. Often these
systems provide some mechanism of user extendability, but often it is in terms of the underlying system language and not the host
language. DSL approaches, such as JAX [11], embed a new language into the host language that provides domain-specific concepts
and limits expressibility to a subset of operations that are representable by the DSL. This requires the user to rewrite their application
in ways that are compatible with the DSL.

Compiling a high-level language directly to hardware accelerators like GPUs is challenging because these languages often rely
on accessing the run-time library, managed memory and garbage collection, interpreted execution, and other constructs that are
difficult to use on GPUs or are even in conflict with the hardware design. Numba [46] and JuliaGPU [47] retarget a subset of the
language for execution on hardware accelerators. In contrast to Numba, which is a reimplementation of Python, JuliaGPU repurposes
Julia’s existing CPU-oriented compiler for the purpose of generating code for GPUs.

Over time this has allowed the subset of the language that is directly executable on the GPU to grow and provide the basis
for an effective, performant, and highly accessible programming model for GPUs. This model spans from low-level GPU kernel
programming with direct access to advanced hardware features to the high-level array abstractions [48] provided by Julia.

4.1. Supporting multiple GPU platforms

Originally JuliaGPU only supported hardware accelerators by NVIDIA (CUDA). As hypothesized [47], the same approach could
be extended to target other hardware platforms. Instead of re-implementing a full-fledged compiler for each new platform, the
common infrastructure pieces were abstracted into a single unified compiler interface GPUCompiler.jl [49] and a unified array
interface GPUArrays.jl [50]. Despite its name, GPUCompiler.jl is not limited to only GPU platforms and is also used to target non-GPU
accelerators and specific CPU platforms.

With GPUCompiler.jl offering reusable functionality to configure the Julia compiler and LLVM providing the ability to generate
high-quality machine code, Julia is well-positioned to target different accelerator platforms. Most major GPU platforms are
supported: CUDA.jl [47] for NVIDIA GPUs using the CUDA toolkit, AMDGPU.jl [51] for AMD GPUs through ROCm, oneAPI.jl [52]
for Intel GPUs with oneAPI, and Metal.jl [53] for Apple M-series GPUs with the Metal libraries. These backends are relatively simple
and can be developed and maintained by small teams. Meanwhile, other languages and frameworks often struggle to provide native
support for all but the most popular platforms. In the case of Python, for example, adding a Numba backend involves significant
effort, and as such, Apple GPUs are not yet supported.1 Similarly, as of May 2023, JAX does not support AMD2 or Apple GPUs,3
because it requires special support in the Accelerated Linear Algebra (XLA) compiler. Unless there is sizable traction, scientific

1 https://github.com/numba/numba/issues/5706.
2 https://github.com/google/jax/issues/2012.
3 https://github.com/google/jax/issues/8074.
4

https://github.com/numba/numba/issues/5706
https://github.com/google/jax/issues/2012
https://github.com/google/jax/issues/8074

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

g
F
l

5

w

computing with these languages is not able to leverage different GPU vendors where that could have been beneficial for, e.g., HPC
and AI/ML workloads [54,55].

To facilitate working with multiple GPU platforms, Julia offers a powerful array abstraction that makes it possible to write
eneric code. The abstractions are implemented by each backend, either using native kernels or by reusing existing functionality.
or performance reasons, common operations such as matrix multiplication are implemented by dispatching to vendor-specific
ibraries such as CUBLAS for NVIDIA GPUs and Metal’s Performance Shaders for Apple GPUs. Higher-order operations such as map,
broadcast, and reduce are implemented using native kernels. This makes it possible to compose them with user code, often
obviating the need for custom kernels. Work by Besard et al. [48] has shown that this makes it possible to quickly prototype code
for multiple platforms while achieving good performance. To achieve maximum performance, important operations can still be
specialized using custom kernels that are optimized for the platform at hand and include application-specific knowledge.

4.2. Abstractions for kernel programming

Even though Julia supports multiple GPU platforms, it can quickly become cumbersome to write compatible kernels for each
one. For example, kernels need to adhere to specific device APIs that are offered by the platform. With a variety of device backends
available, a programmer’s dream is to write one kernel that can be instantiated and launched for any device backend without mod-
ifications of the higher-level code, all without sacrificing performance. In Julia, this is possible with the KernelAbstractions.jl [56]
package, which provides a macro-based dialect that hides the intricacies of vendor-specific GPU programming. Kernels can then be
instantiated for different hardware accelerators, including CPUs and GPUs. For GPUs, full support is provided for NVIDIA (CUDA),
AMD (ROCm), Intel (oneAPI), and Apple (Metal). For the GPU ODE solvers presented in this article, KernelAbstractions.jl is used
to target these different backends, essentially from the same high-level kernel code.

The development of the GPU ecosystem was not a separate effort rather, DiffEqGPU.jl has been one of the driving projects of
the Julia GPU ecosystem since the inception of the new approaches (GPUCompiler.jl and KernelAbstractions.jl) in 2019. As such,
the developers of those tools are co-authors of this work, as this is the first application that displays the full vendor-agnostic feature
set that the tooling aims to provide.

5. Massively data-parallel GPU solving of independent ODE systems

This article considers two approaches for parallelizing ensemble problems on GPUs, both of them automatically translating and
compiling the differential equation. The first approach is easily extensible, compatible with any existing solver, and relies on GPU
vectorization. This approach is similar to the other high-level software we described in the introduction, and we will show that this
approach is not performance optimal and has significant overheads. The second strategy reduces this overhead by generating custom
GPU kernels, requiring numerical methods to be programmed within it. A brief overview of the automation is depicted in Fig. 1.
Both of the programs are composable with Julia’s SciML [8] ecosystem, where users can write models compatible with standard
SciML tools such as DifferentialEquations.jl, and DiffEqGPU.jl will automatically generate the functions which can be invoked from
within a GPU kernel. Moreover, SciML is composed of polyglot tools allowing use of its libraries from other languages such as R,
allowing even the use of our GPU-accelerated solvers from other programming languages.4

5.1. EnsembleGPUArray : Accelerating ensemble ODEs with GPU array parallelism

.1.1. Identifying parallelism and problem construction
For an ODE with 𝑛 states, 𝑚 parameters, and 𝑁 required simulations with different parameters, there exist 𝑛 ×𝑁 states to keep

track of. This problem can be formulated as solving one ODE
𝑑𝑈
𝑑𝑡

= 𝐹 (𝑈, 𝑃 , 𝑡) (12)

here

𝑈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢11 𝑢12 ⋯ 𝑢1𝑁
𝑢21 𝑢22 ⋯ 𝑢2𝑁
⋮ ⋮ ⋱ ⋮
𝑢𝑛1 𝑢𝑛2 ⋯ 𝑢𝑛𝑁

⎤

⎥

⎥

⎥

⎥

⎦𝑛×𝑁

, (13)

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝11 𝑝12 ⋯ 𝑝1𝑁
𝑝21 𝑝22 ⋯ 𝑝2𝑁
⋮ ⋮ ⋱ ⋮
𝑝𝑚1 𝑝𝑚2 ⋯ 𝑝𝑚𝑁

⎤

⎥

⎥

⎥

⎥

⎦𝑚×𝑁

, (14)

𝐹 =
[

𝑓 (𝑢, 𝑝1∶𝑚,1, 𝑡) ⋯ 𝑓 (𝑢, 𝑝1∶𝑚,𝑁 , 𝑡)
]

𝑛×𝑁 , (15)

4 https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html.
5

https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 1. Overview of the automated translating and solving of differential equations for GPUs for massively data-parallel problems. The solid lines indicate the
code flow, whereas the dashed lines indicate the extension interactions.

and 𝑝1∶𝑚,𝑗 denotes the 𝑗th column of the 𝑃 matrix. In this form, we can parallelize the computation over GPU threads, where each
thread only accesses and updates the column of 𝑈 in parallel. This allows the computation of the quantities which depend on 𝑈
to happen in parallel. When solving ODEs, these quantities are generally the right-hand side (RHS) of ODE 𝑓 , the Jacobian 𝐽 , and
even the event handling (callbacks). We perform these array-based computations by calling the functions within custom-written
GPU kernels, updating each column of the 𝑈 asynchronously.

5.1.2. Translating ODE solves over GPU using KernelAbstractions.jl
In order to fully leverage the GPU ecosystem in Julia, several changes were made to it to allow DiffEqGPU.jl to have seamless

performance and composability. Changes such as the generalization of SciML kernels from CUDA-specific to backend-agnostic, launch
parameters tuning, and delivering usability of newer backends such as Apple metal are some of the initiatives to make this work
a reality, which in turn is helping the broader community. Hence, our work provides a roadmap for how others can achieve true
vendor agnosticism and the reality of the work necessary.

The GPU kernels are written using KernelAbstractions.jl [56], which allows for the instantiation of the GPU kernels for multiple
backends. KernelAbstractions.jl performs a limited form of auto-tuning by optimizing the launch parameters for occupancy. Since
these kernels have a high residency, preferring a launch across many blocks has been shown to be beneficial. We instantiate the
kernels with the problem defined as normal Julia functions that the kernel is specialized upon. Using a Just-In-Time (JIT) compilation
approach, we thus generate a new kernel where the solver and the problem definition are co-optimized.

After calculating the dependents on 𝑈 is completed, synchronization is required to calculate the next step of the integration.
EnsembleGPUArray essentially parallelizes the operation involving the state 𝑈 within the single time step of the ODE integration.
This simple approach allows composability and easy integration with the vast collection of numerical integration solvers in
DifferentialEquations.jl [8]. An option to simultaneously offload a subset of the solutions to the CPUs provides additional flexibility to
the user to leverage the CPU cores. Moreover, users can take advantage of the multiple GPUs over clusters to perform the simulations
of the ensemble problems via this tutorial.5 Fig. 2 is an overview of the process.

5.1.3. Batched LU: Accelerating ensemble of stiff ODEs
Stiff ODE solvers require repeatedly solving the linear system 𝑊 −1𝑏 where 𝑊 = −𝛾𝐼 + 𝐽 , 𝛾 is a constant real number, and 𝐽

is the Jacobian matrix of the RHS of the ODE. The 𝑊 matrix of the batched ODE problem in Section 5.1.1 has a block diagonal
structure:

𝑊 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝛾𝐼 + 𝐽1
− 𝛾𝐼 + 𝐽2

⋱
−𝛾𝐼 + 𝐽𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, (16)

5 https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/.
6

https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 2. The EnsembleGPUArray flowchart.

where (𝐽𝑘)𝑖𝑗 = 𝜕𝑓 𝑖
𝜕𝑢𝑗𝑘

. The block diagonal system can be efficiently solved by computing the LU factorization, and forward, and

backward substitutions of each block of 𝑊 in the GPU kernel.

5.1.4. Drawbacks of the array ensemble approach
The main drawback of this approach is that each array operation inside of the ODE solver requires a separate GPU kernel launch.

However, in explicit Runge–Kutta methods as described in Sections 3.1 and 3.3, most of the operations are linear combinations and
column-wise parallel applications of the ODE model 𝑓 , and are thus (𝑁) operations. Array-based GPU DSLs are typically designed
to be used with (𝑁3) operations which are common in neural network applications (such as matrix multiplication) in order to
more easily saturate the kernels to overcome the overhead of kernel launch. While the ODE solvers are written in a form that
automatically fuses the linear combinations to reduce the total number of kernel calls, thus reducing the overall cost [57], we will
see in the later benchmarks (Section 6.2) that each of the array-ensemble GPU ODE solvers has a high fixed cost due to the total
overhead of kernel launching.

In addition, the parallel array computations of each step of the solver method need to be completed before proceeding to the
next time step of the integration. Adaptive time-stepping in ODEs allows variable time steps according to the local variation in the
ODE integration, allowing optimal time-stepping. Trivially, the ODE can have different time-stepping behavior for other parameters,
as they form part of the ‘‘forcing’’ function 𝑓 (𝑢, 𝑝, 𝑡). The implicit synchronization of the parallel computations necessitates the same
time-stepping for all the trajectories by virtue of solving all trajectories as a single ODE.

5.2. EnsembleGPUKernel: Accelerating ensemble of ODEs with specialized kernel generation for entire ODE integration

The EnsembleGPUArray requires multiple kernel launches within a time step, which causes large overheads due to the
numerous load and storage operations to global memory. In order to completely eliminate the overhead of kernel launches, a
separate implementation denoted EnsembleGPUKernel generates a single model-specific kernel for the full ODE integration.
For stiff ODEs, the Jacobian can be calculated with Automatic Differentiation (AD) invoked within the kernels. Each thread accesses
the data-augmented ODE to analyze, and the solving of all the ODEs is completely asynchronous. The process is briefly outlined in
Fig. 3 and an example is given in Listing 1.

@kernel function tsit5_kernel(@Const(probs), _us, _ts, dt)
Get the thread index
i = @index(Global, Linear)
get the problem for this thread
prob = @inbounds probs[i]
get the input/output arrays for this thread
ts = @inbounds view(_ts, :, i)
us = @inbounds view(_us, :, i)
Setting up initial conditions and integrator
integrator = init(...)
Perform ODE integration until completion
7

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

T
R
p
i
D
t
l
s
o
c

f
h
l
C
1
d

c
a
c

while cur_time < final_time
step!(integrator, ts, us)
savevalues!(integrator, ts, us)

end
Perform post-processing
...

end

Listing 1: Example of the kernel performing ODE integration

The approach described seems deceptively simple but requires clever maneuvers to successfully compile the kernel on GPU.
Allocating arrays within GPU kernels is not possible, as Julia’s CUDA.jl does not support dynamic memory allocation on the
GPU. However, solving ODEs requires storing intermediate computations, normally using array allocations. The vast features of
DifferentialEquations.jl rely on operations such as broadcast operations, dynamic allocations, and dynamic function invocation
— most of which are GPU incompatible. The solution is to fully stack allocate all intermediate arrays and to perform the ODE
integration within a custom GPU kernel implementing the numerical integration procedure. This restricts the user to the set of the
already defined ODE solvers in the package and requires simple versions of the ODE solvers to be manually written as GPU kernels.

5.2.1. Kernel-specialized ODE solvers
The ODE solvers that are currently available with EnsembleGPUKernel are:

• GPUTsit5: A custom GPU-kernelized implementation of Tsitouras’ 5th-order solver, a Runge–Kutta 5(4) order method [58].
Serves as a go-to choice for solving non-stiff ODEs. Performs well for medium to high tolerances. More efficient and precise
than the popular Dormand-Price 5(4) [28] Runge–Kutta pair, which is a common default solver choice in packages such as
MATLAB [6] and torchdiffeq [25]. Has free 4th-order interpolation support.

• GPUVern7: A custom GPU-kernelized implementation of Verner’s 7th-order solver, a Runge–Kutta 7(6) order method [59].
Performs best at medium and low tolerances. Has a 7th-order lazy interpolation scheme.

• GPUVern9: A custom GPU-kernelized implementation of Verner’s 9th-order solver, a Runge–Kutta 9(8) order pair [59].
Performs best at extremely low tolerances. Has a 9th-order lazy interpolation scheme.

• GPURosenbrock23: A custom GPU-kernelized implementation of an order 2/3 L-Stable Rosenbrock-W method [6,29,36].
Is good for very stiff equations with oscillations at high tolerances. Employs a second-order stiff-aware interpolation. Also
supports Differential Algebraic Equations (DAEs) in mass-matrix form, i.e., 𝑀 𝑑𝑢

𝑑𝑡 = 𝑓 (𝑢, 𝑝, 𝑡), where 𝑀 is the mass matrix.
• GPURodas4: A custom GPU-kernelized implementation of a fourth-order A-stable stiffly stable Rosenbrock method [29,36].

Is suitable for problems at medium tolerances. Employs a third-order stiff-aware interpolation.
• GPURodas5P: A custom GPU-kernelized implementation of a fifth-order A-stable stiffly stable Rosenbrock method [36,60].

Is suitable for problems at medium tolerances. Employs a fourth-order stiff-aware interpolation which has better stability in
the adaptive time-stepping embedding.

hese choices are based on the SciMLBenchmarks, which has extensive comparisons between ODE solvers.6 For stiff ODEs, the
osenbrock-type methods are ideally suited for GPU compilation because they are devoid of the typical Newton’s method performed
er step in stiff ODE integrators [29]. On CPU, implicit ODE solvers achieve top performance by using the property that the
nverted Jacobian of Newton’s method does not need to be exact, and thus efficient integrators such as CVODE [61] and those in
ifferentialEquations.jl adaptively reuse the same Jacobian factorization from multiple time steps. For sufficiently large equations,

his trades the (𝑁3) factorization operation for more iterations of Newton’s method with the same inverse factor and thus (𝑁2)
inear solves. However, these properties do not transfer well to the GPU setting since (a) branching within a GPU warp is resolved
uch that every concurrent solve requires the same number of iterations, thus leading to more linear solves than necessary for most
f the systems at each step and (b) the systems are sufficiently small so that the factorization is not the dominating factor in the
ompute cost.

Rosenbrock methods only require one Jacobian evaluation and have a constant number of linear solves per step, where the matrix
actorization can be cached to a single factorization per time step. This more static integration procedure is also compensated by
igher stage order (i.e., convergence rate on highly stiff ODEs and DAEs) and smaller leading truncation error coefficients, effectively
eading to less steps being required to reach the same error. For this reason, Rosenbrock methods are the most efficient solver on
PU for sufficiently small ODEs (approximately less than 20), competitive until the LU-factorization cost becomes dominant (around
00 ODEs). Some prior research has shown results with ODE extrapolation methods where the LU factorization does not have the
ominating cost and hence no suitable gains from its parallelization other than parallelizing multiple computations of LU [62].

Integration of automatic differentiation: Automatic differentiation is a way to compute exact derivatives of mathematical
omputer programs [63]. With the change to high-order Rosenbrock methods, having accurate Jacobians (non-finite difference) is
necessary requirement for Rosenbrock methods to achieve high-order convergence [29]. Thus, while previous LSODA approaches

ould get away with finite difference approximations through the relaxation in nonlinear solver steps, our approach, which would be

6 https://docs.sciml.ai/SciMLBenchmarksOutput/stable/.
8

https://docs.sciml.ai/SciMLBenchmarksOutput/stable/

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 3. The EnsembleGPUKernel flowchart.

more GPU performant due to the greatly reduced branching, requires mixing this automatic differentiation to achieve full accuracy
and performance. Integration of solvers is done with forward-mode automatic differentiation within a GPU kernel. In particular, we
extended the LU factorization in the nonlinear solve step to statically compile seamlessly for arbitrary size of the ODE.

Given the extra advantages of the GPU and the fact that the embarrassingly parallel context is limited to this size of systems, we
will see that Rosenbrock methods are outperformed by the Newton-based stiff ODE solvers quite handily.

5.2.2. Kernel-specialized SDE solvers
Currently, DiffEqGPU.jl only supports fixed time-stepping in SDEs with EnsembleGPUKernel.

• GPUEM: A custom GPU-kernelized fixed time-step implementation of Euler–Maruyama method [42]. Supports diagonal and
non-diagonal noise.

• GPUSIEA: A custom GPU-kernelized fixed time-step implementation of weak order 2.0 [64], stochastic generalization of
midpoint method. Supports only diagonal noise.

6. Benchmarks and case studies

6.1. Setup

To compare different available open-source programs with GPU-accelerated ODE solvers, we benchmark them with several
NVIDIA GPUs: one being a typical compute node GPU, Tesla V100, and the other being a high-end desktop GPU, Quadro RTX
5000. Performance comparison of the kernel-based ODE solvers with different GPU vendors is also carried out. Except for Apple
having an integrated GPU, we use dedicated desktop GPUs. For NVIDIA, we benchmark on Quadro RTX 5000 (11.15 TFLOPS), Vega
64 for AMD (10.54 TFLOPS), A770 (19.66 TFLOPS) for Intel, and M1 Max (10.4 TFLOPS) for Apple. The DE problems involve single
precision (Float32) on GPUs. The CPU benchmarks are executed using double precision (Float64), and are timed on an Intel Xeon
Gold 6248 CPU @ 2.50 GHz with 16 enabled threads. Using double precision on CPUs is faster than the single precision for our
use-case and processor.

To facilitate the seamless transition from CPU to GPU without requiring any modifications to the original code, EnsembleG-
PUKernel was developed to mimic the SciML ensemble interface. Nevertheless, this GPU-aspect-hiding approach always passes
the problem to the GPU and returns the result to the CPU, reducing overall performance. To avoid conversion overheads and for
a fair comparison among other software, we developed a lower-level API7 that closely resembles other APIs. The timings for each
software only report time spent solving the ensemble ODE. The benchmarking literature discusses the topic of reporting times for
benchmarking and uses the minimum as an approximation of the ideal value, the least noisy measurement. Hence, the timings
for the programs written in Julia are measured using BenchmarkTools.jl, taking the best timing. The Julia-based benchmarks were
tested on DiffEqGPU.jl 1.26, CUDA.jl 4.0, oneAPI.jl 1.0, and Metal.jl 0.2.0, all using Julia 1.8. The test with AMD GPUs was done
with AMDGPU.jl 0.4.8, using Julia 1.9-beta3.

The timings script for MPGOS has been borrowed from their available open-source codes.8 They have been tested with CUDA
toolkit 11.6 and C++ 11. The programs are run at least ten times for JAX and PyTorch. The JAX-based programs are run on 0.4.1

7 https://docs.sciml.ai/DiffEqGPU/dev/tutorials/lower_level_api/.
8 https://github.com/nnagyd/ode_solver_tests.
9

https://docs.sciml.ai/DiffEqGPU/dev/tutorials/lower_level_api/
https://github.com/nnagyd/ode_solver_tests

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 4. A comparison of time for an ODE solve for CPU vs. GPU. The EnsembleGPUKernel performs the best with up to 100× acceleration and a lower cutoff
to take advantage of parallelism.

Table 1
Summary of mean slowdowns of ODE integrators, benchmarking on stiff problems with different
hardware (lower the better).

Time-stepping GPU (Kernel) GPU (Array) CPU

Adaptive (Nonstiff) 1.0× 48.2× 22.2×
Fixed (Nonstiff) 1.0× 377.6× 110.3×
Adaptive (Stiff) 1.0× 180.0× 132.3×

with Diffrax 0.2.2. Programs based on PyTorch are tested with PyTorch nightly 2.0.0.dev20230202, and a custom installation of
torchdiffeq to extend support to vmap is used.9 Both programs are tested on Python 3.9. The complete benchmark suite can be
found at https://github.com/utkarsh530/GPUODEBenchmarks.

6.2. Establishing efficiency of solving ODE ensembles with GPU over CPU

Prior researches [9,23] demonstrate that solving low-dimensional ODEs over parameters and initial conditions (massively
parallel) exposes superior parallelism in GPUs over CPUs. The benchmarking is performed on GPUs with single precision and CPU
multithreading with double precision to take advantage of respective optimized floating point math. Indeed, the EnsembleGPUK-
ernel supports our claim of lower overhead compared to EnsembleGPUArray and being up to 100× faster. For the benchmark
problem GPU parallelism becomes superior to CPU parallelism at approximately 100–1000 trajectories (Fig. 4). The solver used
to benchmark the Lorenz Attractor [65] is Tsitouras’ 5(4) Runge–Kutta method [58], both with adaptive and fixed time-stepping.
Similarly, we also perform the benchmarking of stiff ODE integrators with the Robertson equation [66], using the Rosenbrock23
methods [36]. Fig. 5 showcases the performance of the solvers. Table 1 lists the relative slowdowns of both non-stiff and stiff ODE
integrators obtained using EnsembleGPUKernel.

GPU performance at <1000 trajectories: Massive parallel simulations are needed to utilize GPU cores and amortize overhead
costs fully. Fig. 4 shows that overheads are essentially constant regardless of thread count. In this range, the computations are
not latency hiding; one essentially measures the kernel launch time. Hence, one would not expect superior GPU parallelism in
comparison to CPU at lower trajectories because CPUs are usually free of these overheads.

6.3. Solving billions of ODEs together: Scaling EnsembleGPUKernel with MPI

The Message Passing Interface (MPI) [67,68] can be directly used with Julia using MPI.jl [69]. Additionally, there exists support
for CUDA by using a CUDA-aware MPI backend. As a testimonial of scalability, 2,147,483,648 (∼2 billion) ODE solutions on the
Lorenz problem were calculated using eight V100 GPU cluster nodes, in which seven GPUs amounting to 35,840 CUDA cores
explicitly performed the computation of approximately 306 million ODEs. The wall-clock time of this simulation was approximately

9 https://github.com/utkarsh530/torchdiffeq/tree/u/vmap.
10

https://github.com/utkarsh530/GPUODEBenchmarks
https://github.com/utkarsh530/torchdiffeq/tree/u/vmap

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 5. A comparison of the time of an ODE solve for CPU vs. GPU. The EnsembleGPUKernel performs the best with up to 100× acceleration and a lower cutoff
to take advantage of parallelism.

50 s, which includes other latencies such as package loading, compilation, and GC times. The runtime of the MPI call (creating buffers
and transferring arrays to GPUs) and solving ODEs was around 13 s. The runtime of only the ODE solve of 306 million trajectories
was around 1.6 s.10 We also note in our observations that the methods are scalable, and are limited by the global memory of the
GPU required for storing the solutions, which can be roughly calculated by calculating the memory requirements of the number of
time-points required multiplied by the different number of parameters in the simulation. Subsequently, the methods are prophesied
to scale well with multiple nodes in a cluster.

6.4. Comparison with other GPU-accelerated ODE programs

Selecting the problem for fair benchmarking on different implementations of GPU-based solvers is a task in itself, owing to
the different use cases, motivations, and optimizations of these libraries. Choosing systems with low-dimensional ODEs, such as
the Lorenz equation, is a suitable candidate owing to the simplicity 𝑓 (𝑢, 𝑝, 𝑡) of definition, which alludes to any optimizations in
calculating 𝑓 (𝑢, 𝑝, 𝑡). The right-hand side solely involves additions/subtractions and multiplications, in which each floating-point
operation will be interpreted as a complete FMA (Fused Multiply Accumulate) instruction. For our benchmarking purposes, 𝜎 = 10.0,
𝛾 = 8

3 , and 𝜌 in the Lorenz equation [65] is uniformly varied from (0.0, 21.0) generating 𝑁 instances of independent, parallel ODE
solves, which is also the number of trajectories in DiffEqGPU.jl API.

The results for fixed and adaptive time-stepping are shown in separate Figs. 6 and 7 for equitable comparison. There is not any
common ODE solver between these packages, so we use methods belonging to the class of 4th, 5th order Runge–Kutta methods,
which perform similarly in the benchmarks [8]. ‘‘Tsit5’’ was used in both Julia and JAX, ‘‘Cash-Karp’’ for MPGOS, and ‘‘Dopri5’’ for
PyTorch. Fixed time-stepping implicitly assures a constant work/thread, which is ideal for GPUs. However, adaptive time-stepping
within ODE integrators adjusts time steps to ensure stability and error control. This generally results in faster ODE integration
times than fixed time-stepping, but may cause thread divergence as effectively different time-stepping across threads, eventually
amounting to contrasting work per thread. The slowdown of different packages with respect to our implementation with different
NVIDIA GPUs is listed in Tables 2 and 3. While our solvers are able to reach and sometimes outperform speed of light measure
(C++, MPGOS), we observe a greater acceleration of approximately 20–100× in comparison to JAX and 100–200× for PyTorch,
both of which rely on vectorized map style of parallelism. The authors were not able to compile adaptive time-stepping results for
PyTorch, as vmap currently does not support all the internal operations required by the PyTorch code base. Notably, the array
abstraction parallelism approach of PyTorch and JAX performs similarly to the demonstrated efficiency of EnsembleGPUArray,
providing clear evidence that the performance difference is due to the fundamental approach itself and not due to efficiencies or
inefficiencies in the implementation of the approach.

Similarly, we benchmark the solvers with stiff ODEs. A usual test case for stiff ODEs is the Robertson equation [66], which models
a chemical reaction between three species. The rate of the reactions varies at drastically different time scales, which subsequently
gives rise to the stiffness characteristic of the problem. We also additionally benchmark with an other massively parallel stiff

10 These latencies could be reduced by using a GPU with larger memory or a multi-GPU per node, which was not done in our demonstration due to hardware
availability.
11

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 6. A comparison of the time for an ODE solve with other programs with fixed time-stepping. EnsembleGPUKernel is able to reach and sometimes outperform
speed of light measure (MPGOS) and is approximately faster by 20–100× in comparison to JAX and 100–200× for PyTorch.

Fig. 7. A comparison of the time for an ODE solve for with other programs with adaptive time-stepping. EnsembleGPUKernel is able to reach and sometimes
outperform speed of light measure (MPGOS) and approximately faster by 20–100× in comparison to JAX.

ODE solver, ginSODA [70], which uses Python as a front-end for their CUDA-C++ kernels. Fig. 8 summarizes the benchmarks
when compared with JAX, Julia’s EnsembleGPUArray, and ginSODA. The performance trend remains congruent with non-stiff ODE
problems, indicating an average speed-up of 76–130× for JAX, 129–280× for Julia’s EnsembleGPUArray, and 170–409× for ginSODA
(see Table 4). According to the author’s knowledge, the stiff ODE solvers are the first most extensive and the state-of-the-art massively
parallel kernel-based solvers available for GPU acceleration.

6.5. Vendor agnosticism with performance: Comparison with several GPU platforms

With vendor-agnostic GPU kernel generation, researchers can choose major GPU backends with ease. Our benchmarks in Fig. 9
and Fig. 10 demonstrate that overhead is minimal in our ODE solvers and users can expect performance one-to-one with mentioned
Floating Point Operations per Second (FLOPS) in GPUs mentioned in Section 6.1. To elude other performance impacts such as thread
divergence and equitable selection of the dimension of the ODE, we simulate the Lorenz problem with fixed time-stepping. We run
12

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 8. A comparison of the time for a stiff ODE solve with other programs with adaptive time-stepping. EnsembleGPUKernel is faster than JAX and
EnsembleGPUArray by approximately 76–130×.

Table 2
A summary of the range of slowdowns of the benchmarks in Figs. 6 and 7 (lower is better), with
results compiled on a desktop GPU. The slowdowns are computed by varying the number of
trajectories. The Julia-based solvers achieve the best acceleration on average.

Software Time-stepping

Fixed Adaptive

DiffEqGPU.jl (Julia) 1.0× 1.0×
MPGOS (C++) 2.2–5.3× 0.5–2.3×
Diffrax (JAX) 88.9–274.0× 28.0–124.0×
torchdiffeq (PyTorch) 196.4–3617.7× –

Table 3
A summary of the range of slowdowns of the benchmarks in Figs. 6 and 7 (lower the better),
with results compiled on a server GPU. The slowdowns are computed by varying the number of
trajectories. The Julia-based solvers achieve the best acceleration on average.
Software Time-stepping

Fixed Adaptive

DiffEqGPU.jl (Julia) 1.0× 1.0×
MPGOS (C++) 0.6–10.0× 0.6–6.9×
Diffrax (JAX) 57.4–322.3× 30.2–46.8×
torchdiffeq (PyTorch) 98.8–3693.9× –

Table 4
A summary of the range of slowdowns of the benchmarks in Fig. 8 (lower the better), with results
compiled on a server GPU for stiff ODEs. The slowdowns are computed by varying the number
of trajectories. The Julia-based solvers achieve the best acceleration on average.
Software Time-stepping

Adaptive

EnsembleGPUKernel (Rodas5P) 1.0×
EnsembleGPUKernel (Kvaerno5) 0.85–1.0×
EnsembleGPUKernel (Rosenbrock23) 1.2–1.6×
EnsembleGPUArray (Kvaerno5) 129.1–279.9×
Diffrax (Kvaerno5) 76.6–130.0×
ginSODA (LSODA) 170.4–409.4×
13

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 9. A comparison of the time for an ODE solve for fixed time-stepping, measured on different GPU platforms. The non-stiff ODE solver GPUTsit5 is used
here. We measure the time (lower the better) versus the number of parallel solves. Here, the NVIDIA GPUs perform the best owing to the most-optimized library
and matured ecosystem with JuliaGPU.

Fig. 10. A comparison of the time for an ODE solve for adaptive time-stepping, measured on different GPU platforms. The stiff ODE solver GPURosenbrock23
is used here. We measure the time (lower the better) versus the number of parallel solves. Here, the NVIDIA GPUs perform the best owing to the most-optimized
library and matured ecosystem with JuliaGPU.

the benchmarks on major vendors: NVIDIA, AMD, Intel, and Apple. The peak flops are listed in Section 6.1. To our knowledge, this
is the first showcase of GPU-parallel software for solving DEs that supports more than NVIDIA GPUs.

6.6. Event handling and automatic differentiation

Software for simulating dynamical systems allows for injecting discontinuous events and termination of integration with a
specified criterion causing discontinuities within the integration. Event handling in differential equations is used to produce non-
differentiable points in continuous dynamical systems. Mathematically, an event within an ODE can be specified as a tuple of
functions, 𝑔, ℎ (‘‘condition’’ and ‘‘affect’’), where satisfying the ‘‘condition’’ 𝑔(𝑢, 𝑝, 𝑡) = 0 triggers the ‘‘affect’’ ℎ(𝑢, 𝑝, 𝑡), changing 𝑢, 𝑡
or terminating the integration. As a demonstration of event capabilities with EnsembleGPUArray and EnsembleGPUKernel,
we demonstrate the famous surface-ball collision (bouncing ball) dynamics simulated on GPUs in Fig. 11.
14

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 11. A simulation of bouncing ball problem on GPU. The blue trajectory is the displacement and the red trajectory is the velocity, across time. This
demonstrates the ability to inject code within ODEs via callbacks. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Additionally, the GPU kernels are automatic differentiation (AD) compatible, both with forward with reverse mode, allowing for
GPU-parallel forward and adjoint sensitivity analysis. Tutorials in the library demonstrate the usage of AD for parameter estimation
with minibatching.11

6.7. Texture memory interpolation

As the mathematical model used to simulate a dynamical system is oftentimes a low-fidelity approximation of the true physical
phenomena, practitioners often account for non-modeled behavior via lookup tables and interpolation of datasets. These datasets
may be derived from real-world experimentation and/or higher-fidelity simulation. For cases where the interpolant is a function of
the system state, interpolation is required at each time step for each system in the ensemble. A simple example of this is the above
bouncing ball problem, extended to include drag forces imparted on the ball via the interpolation of a spatially varying wind field.
Furthermore, a user may need to interpolate digital terrain elevation data for ground collision event handling, in which the textured
memory defined in Listing 2 can be used.

// Building textured memory of the dataset
texture = CuTexture(CuTextureArray(dataset))
// Passing the textured memory as parameter of the problem
prob = ODEProblem(f_rhs, u0, tspan, (p, texture))
// Performing the solve, with 0 CPU offloading.
sol = solve(prob, alg, EnsembleGPUKernel(0), ...)

Listing 2: An outline of using texture memory with DifferentialEquations.jl

In addition to exploiting parallelism for time-stepping as described above, GPU texture memory can be leveraged when
interpolation is required with multiple benefits. In particular, for NVIDIA GPUs, texture memory provides interpolation, nearest-
neighbor search, and automatic boundary handling for the cost of a single memory read. Benchmarking with texture memory results
in 2× faster simulation, when we replace a compute-bound operation such as interpolation on GPU with texture-memory.

Furthermore, texture memory is advantageous for situations where the memory access pattern is not known a priori, which is
often the case for state-dependent interpolation. Texture memory, however, requires uniformly spaced data.

6.8. Accelerating stochastic processes with GPUs

The expectation of SDE solutions is a key metric in many model analyses due to the randomness of the simulation process. Such
a calculation is generally done through Monte Carlo estimation via generating many trajectories of SDE solution, typically requiring

11 https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-with-DiffEqGPU.
15

https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-with-DiffEqGPU

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 12. The parameter parallel simulation time for the linear SDE defined in Section 6.8.1 (lower the better). The GPU parallelism supercedes CPU parallelism
at about 1000 trajectories.

tens of thousands of trajectories for suitable convergence due to the (
√

𝑁) convergence rate to the expectation. The generation
of these trajectories is independent of each other, thus fitting the form of ensemble parallelism with the same initial condition and
parameter values, with the only difference being the seed supplied to the Pseudorandom Number Generator (PRNG).

6.8.1. Asset price model in quantitative finance
As a rudimentary example, we examine the ensemble simulation of a linear SDE, popularly known as Geometric Brownian

Motion (GBM), which is the common Black–Scholes model used in asset pricing in quantitative finance [38,39]. The benchmarks
in Fig. 12 demonstrate that simulations on GPU are faster than CPU on average by 8×. GPU parallelism dominates CPU parallelism
over approximately 1000 trajectories. We note that the decreased performance difference from the ODE case is likely due to the less
optimized implementation of the kernel PRNG implementations.

6.8.2. Stochastic chemical reaction networks
Additionally, we benchmark the SDE solvers over a real case study of Chemical Reaction Networks (CRN) generated when

microorganisms such as bacteria respond to stimuli, which causes a change in its gene expression through sigma factors [71]. These
biological processes are inherently noisy in nature, and it is simulated by transforming the CRN to an SDE via the Chemical Langevin
Equation (CLE) [41]. The non-dimensionalized model has notably 4 states, 8 Wiener noise variables, and 6 parameters, making it
suitable for our case study as our GPU DE solvers are suited for problems with low-dimensional states. The simulation of the process
on the GPU in shown in Fig. 13. The benchmark investigates the generation of trajectories of solutions for different parameters akin
to parameter sweeps, which are widely used in parameter estimation and uncertainty quantification. Each of the parameters is
uniformly sampled and the set of the Cartesian products of parameters is simulated, generating approximately >1,000,000 unique
trajectories. The benchmarks shown in Fig. 14 quantitatively shows that our GPU implementation for SDEs is 4.5× faster than
multithreading over a CPU, averaged over different trajectories.

7. Discussion

We have demonstrated that many programs written for standard CPU usage of DifferentialEquations.jl can be retargeted to
GPUs via DiffEqGPU.jl and achieve state-of-the-art (SOA) performance without requiring changes to user code. This solution
democratizes the SOA by not requiring scientists and engineers to learn CUDA C++ in order to achieve top performance. One
key result of the paper is that we demonstrate that all approaches which used array abstraction GPU parallelism, PyTorch, JAX, and
EnsembleGPUArray, achieve similar performance and are orders of magnitude less efficient than the kernel generation approach
of EnsembleGPUKernel and MPGOS. This suggests that the performance difference is due to a limitation of the array abstraction
parallelization formulation, and demonstrates a concrete application where kernel generation is required for achieving SOA. It has
previously been noted that ‘‘machine learning systems are stuck in a rut’’ where many deep learning architectures are designed
to only use the kernels included by current machine learning libraries (PyTorch and JAX) [72]. Our results further this thesis by
16

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. 13. An example simulation plot of the system vs. time. The model is written with Catalyst.jl and automatically works with GPU solvers, showcasing the
ability to simulate complex models seamlessly on GPU.

Fig. 14. The parameter parallel simulation time (lower the better) of the SDE simulation of Fig. 13. Overall, the comparison showcases the scalability of speedups
of using GPUs instead of CPUs, having suitable gains for trajectories as small as 1000.

demonstrating that orders of magnitude performance improvements can only be achieved by leaving the constrained array-based
DSL of pre-defined kernels imposed by such deep learning frameworks.

Despite being the performant alternative of EnsembleGPUArray, there are opportunities for improvements with EnsembleG-
PUKernel. For example, while using stack-allocated arrays provides a workaround to using arrays inside GPU kernels, they are
not suitable for higher-dimensional problems due to the limited memory of static allocations. The model might compile, but there
might not be any realizable speedups. Flexibility in terms of supporting mutation within the ODE function can be extended as well.
This could be achieved by using mutable static arrays, which require special tricks to compile them with the GPU kernels. The
user is also limited in terms of using features such as broadcast and calls to BLAS. Support for other differential equation problems
such as differential algebraic equations (DAEs) and stiff SDEs remains an area of contribution. Experimental support exists for event
17

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

i
r
r

D

A

P
a
D
f

h
S
2
S
P
g
a
t
‘
a
A
d
t
p

A

d
a
h
v

G
d
S

R

a
f
F

handling, however, some callbacks can generate GPU-incompatible code due to limitations in the Julia compiler. Improvements to
the compiler’s escape analysis and effects modeling are currently being implemented, and are expected to resolve this issue.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Adam R. Gerlach reports financial support was provided by Air Force Office of Scientific Research. Chris Rackauckas
eports financial support was provided by JuliaHub. Yingbo Ma reports financial support was provided by JuliaHub. Tim Besard
eports financial support was provided by JuliaHub.

ata availability

The link is in the manuscript.

cknowledgments

We thank Mosè Giordano for developing an extension of our work to allow for using DiffEqGPU.jl on Graphcore Intelligence
rocessing Unit (IPU) architectures. This work is omitted from our manuscript as it is a different development effort and has
n alternative front-end, making it difficult to compare to the GPU architectures. However, his work allows for using the same
iffEqGPU.jl solver kernels recompiled to IPU targets, demonstrating similar good performance. We additionally thank Torkel Loman

or his help with stochastic differential equation models.
The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing HPC resources that

ave contributed to the research results reported within this paper. This material is based upon work supported by the National
cience Foundation, United States under grant no. OAC-1835443, grant no. SII-2029670, grant no. ECCS-2029670, grant no. OAC-
103804, and grant no. PHY-2021825. We also gratefully acknowledge the U.S. Agency for International Development through Penn
tate for grant no. S002283-USAID. The information, data, or work presented herein was funded in part by the Advanced Research
rojects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001211 and DE-AR0001222. We also
ratefully acknowledge the U.S. Agency for International Development through Penn State for grant no. S002283-USAID. The views
nd opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
hereof. This material was supported by The Research Council of Norway and Equinor ASA through the Research Council project
‘308817 - Digital wells for optimal production and drainage’’. The research was sponsored by the U.S. Air Force Research Laboratory
nd Air Force Office of Scientific Research Lab Task #21RQCOR083 in addition to the United States Air Force Artificial Intelligence
ccelerator accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
ocument are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
he U.S. Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
urposes notwithstanding any copyright notation herein.

ppendix A. Artifact identification

The manuscript aims to explore the parallel solving of the ensembles of ordinary differential equations (ODEs) and stochastic
ifferential equations (SDEs) with GPUs. The methods automate the process by generating optimized GPU kernels without requiring
ny model changes by the user. The methods outperform the vectorized map approach adopted by JAX and PyTorch and even
andwritten CUDA C++ kernels, becoming state-of-the-art for solving ensemble ODEs/SDEs. The solution is high-performant with
endor-agnosticism, working with NVIDIA, AMD, Intel, and Apple GPUs.

The paper evaluates the performance of the ODE and SDE solvers with benchmarking with CPU multithreading using Intel Xeon
old 6248 CPU @ 2.50 GHz with 16 enabled threads. The composability of the methods with Julia’s SciML ecosystem is also
emonstrated by simulating a stochastic process based on a chemical reaction network model, written in a Julia-based Domain
pecific Language (DSL) Catalyst.jl.

Further, we also benchmark against GPU-accelerated programs performed with ODE solvers. The GPUs used are Tesla V100 and
TX 500. Our case study used the software:

• EnsembleGPUArray (Julia’s DifferentialEquations.jl)
• MPGOS (CUDA C++)
• JAX (Python)
• PyTorch (Python)

The EnsembleGPUArray based code is written in Julia and is a part of DiffEqGPU.jl, the MPGOS program is written in C++,
nd the benchmarking scripts for JAX and PyTorch are written in Python. A standard workflow to integrate the polyglot software
or benchmarking is done via bash scripts, which invoke the benchmarking scripts and store the execution times in a ‘‘.txt’’ file.
inally, the plotting scripts for these benchmarks are written in Julia to visualize the numbers obtained through benchmarking.
18

The description of the models used in benchmarking is provided in the next section.

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

i
d

A

A.1. Models: Ordinary differential equations

A.1.1. Lorenz problem
The first test problem is the Lorenz attractor:

𝑑𝑦1
𝑑𝑡

= 𝜎(𝑦2 − 𝑦1), (A.1)
𝑑𝑦2
𝑑𝑡

= 𝜌𝑦1 − 𝑦2 − 𝑦1𝑦3, (A.2)
𝑑𝑦3
𝑑𝑡

= 𝑦1𝑦2 − 𝛾𝑦3, (A.3)

which contains three parameters: 𝜎 = 10, 𝛾 = 8∕3, and 𝜌 = 21. The integration is performed for 𝑡 ∈ [0, 1] with time-step 𝑑𝑡 = 0.001,
essentially generating 1000 fixed time-steps. The initial conditions are 𝑦 = [1, 0, 0].

A.1.2. Bouncing-ball problem
The problem simulated in the callbacks example is the bouncing ball problem which has the kinetics:

𝑑𝑥
𝑑𝑡

= 𝑣, (A.4)
𝑑𝑣
𝑑𝑡

= −𝑔, (A.5)

function affect!(integrator)
Flips the sign of velocity
by coefficient of restitution
integrator.u[2] = -integrator.e*integrator.u[2]

end

function condition(u, t, integrator)
returns true when the distance
to the ground is evaluated as zero
u[1] # == 0

end

Listing 3: Implementation of callbacks

with 𝑔 = 9.8 m∕s2 and 𝑒 is the coefficient of restitution, which varies across the simulation. The problem is simulated for time
nterval [0, 15]. Completing the problem requires specification of how the object behaves when the ball hits the ground, which is
one via event handling as described in Listing 3.

.1.3. Robertson equation
The test problem used for stiff ODEs is the Robertson Equation:

𝑑𝑦1
𝑑𝑡

= −0.04𝑦1 + 104𝑦2𝑦3, (A.6)
𝑑𝑦2
𝑑𝑡

= 0.04𝑦1 − 104𝑦2𝑦3 − 3×107𝑦22, (A.7)
𝑑𝑦3
𝑑𝑡

= 3×107𝑦22. (A.8)

The integration is performed for 𝑡 ∈ [0.0, 105] with the initial time-step of ℎ = 0.0001. The initial conditions are 𝑦 = [1, 0, 0].

A.2. Models: Stochastic differential equations

A.2.1. Linear SDE
The asset-price model is simply expressed as

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝑉 𝑋𝑡𝑑𝑊𝑡 (A.9)

where 𝑋𝑡 is the state to be simulated with initial condition 𝑋𝑡0 = [0.1, 0.1, 0.1], 𝑟 = 1.5 is the risk-free rate of interest, and 𝑉 = 0.01
is the volatility.
19

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

d

Table A.5
Range of parameters used in parameter-parallel SDE solutions.

Parameter Range

𝑆 0.1 ≤ 𝑆 ≤ 100.0
𝐷 0.1 ≤ 𝐷 ≤ 100.0
𝜏 0.1 ≤ 𝜏 ≤ 100.0
𝜈0 0.01 ≤ 𝑆 ≤ 0.2
𝑛 2 ≤ 𝑆 ≤ 4
𝜂 0.001 ≤ 𝑆 ≤ 0.1

A.2.2. Biological Chemical Reaction Network (CRN) simulating generalized stress response model of bacterial sFigma factors
The biological CRN models the regulation of sigma factors via sigma factor circuits, which critically regulate gene expression

uring the bacterial stress response. These phenomena are stochastic in nature. The resulting process can be expressed as the SDE:

𝑑[𝜎] =
(

𝜈0 +
(𝑆[𝜎])𝑛

(𝑆[𝜎])𝑛 + (𝐷[𝐴3])𝑛 + 1
− [𝜎]

)

𝑑𝑡 + 𝜂

√

𝜈0 +
(𝑆[𝜎])𝑛

(𝑆[𝜎])𝑛 + (𝐷[𝐴3])𝑛 + 1
𝑑𝑊1 − 𝜂

√

[𝜎]𝑑𝑊2, (A.10)

𝑑[𝐴1] =
(

[𝜎]
𝜏

−
[𝐴1]
𝜏

)

𝑑𝑡 + 𝜂
√

[𝜎]
𝜏

𝑑𝑊3 − 𝜂

√

[𝐴1]
𝜏

𝑑𝑊4, (A.11)

𝑑[𝐴2] =
(

[𝐴1]
𝜏

−
[𝐴2]
𝜏

)

𝑑𝑡 + 𝜂

√

[𝐴1]
𝜏

𝑑𝑊5 − 𝜂

√

[𝐴2]
𝜏

𝑑𝑊6, (A.12)

𝑑[𝐴3] =
(

[𝐴2]
𝜏

−
[𝐴3]
𝜏

)

𝑑𝑡 + 𝜂

√

[𝐴2]
𝜏

𝑑𝑊7 − 𝜂

√

[𝐴3]
𝜏

𝑑𝑊8, (A.13)

which is generated through the Chemical Langevin Equation (CRE). The parameters are the set (𝑆,𝐷, 𝜏, 𝑣0, 𝑛, 𝜂). The range of
parameters is specified in Table A.5. The simulation is performed for the time-span [0, 1000] with 𝑑𝑡 = 0.1 and initial condition
[[𝜎], [𝐴1], [𝐴2], [𝐴3]] being [𝜈0, 𝜈0, 𝜈0, 𝜈0].

The benchmarking measures the execution time of the methods in seconds. The timings are compared against the number
of parallel solves (trajectories). Apart from benchmarks, we also present compatibility of the methods with standard scientific
computing methodologies such as event-handling, automatic differentiation, HPC cluster scaling with MPI, and incorporation
of the use of scientific datasets via textured memory. The methods are free to use via the open-source library, DiffEqGPU.jl,
hosted on GitHub. The specific examples of the case studies and benchmarks are available on the complete benchmark suite:
https://github.com/utkarsh530/GPUODEBenchmarks.

Together, these evaluations allow the paper to convey the SOA performance of the methods, scalability with distributed and
multiple GPU vendors, reusability by retargeting existing CPU-targeted user’s code to GPUs, and composability with other tools of
the high-level programming language.

Appendix B. Auxiliary model testing and benchmarks

This section addresses the generalizability of the results of the GPU solvers with different differential equation models.

B.1. Model description

B.1.1. OREGO
The first test problem is the Oregonator (Orego) [73,74].

𝑑𝑦1
𝑑𝑡

= −𝑘1(𝑦2 + 𝑦1(1 − 𝑘2𝑦1 − 𝑦2)), (B.1)

𝑑𝑦2
𝑑𝑡

=
𝑦3 − (1 + 𝑦1)𝑦2

𝑘1
, (B.2)

𝑑𝑦3
𝑑𝑡

= 𝑘3(𝑦1 − 𝑦3). (B.3)

The initial conditions are 𝑦 = [1, 2, 3] and 𝑘 = (77.27, 8.375 × 10−6, 0.161). The time span for integration is 𝑡 ∈ [0, 30] s.

B.1.2. HIRES
The second test problem is HIRES [75]:

𝑑𝑦1
𝑑𝑡

= −1.71𝑦1 + 0.43𝑦2 + 8.32𝑦3 + 0.0007, (B.4)
𝑑𝑦2
𝑑𝑡

= 1.71𝑦1 − 8.75𝑦2, (B.5)
𝑑𝑦3 = −10.03𝑦 + 0.43𝑦 + 0.035𝑦 , (B.6)
20

𝑑𝑡 3 4 5

https://github.com/utkarsh530/GPUODEBenchmarks

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

B

𝑑𝑦4
𝑑𝑡

= 8.32𝑦2 + 1.71𝑦3 − 1.12𝑦4, (B.7)
𝑑𝑦5
𝑑𝑡

= −1.745𝑦5 + 0.43𝑦6 + 0.43𝑦7, (B.8)
𝑑𝑦6
𝑑𝑡

= −280.0𝑦6𝑦8 + 0.69𝑦4 + 1.71𝑦5 − 0.43𝑦6 + 0.69𝑦7, (B.9)
𝑑𝑦7
𝑑𝑡

= 280.0𝑦6𝑦8 − 1.81𝑦7, (B.10)
𝑑𝑦8
𝑑𝑡

= −280.0𝑦6𝑦8 + 1.81𝑦7. (B.11)

The initial conditions are:

𝑦 = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0057]. (B.12)

The time span for integration is 𝑡 ∈ [0.0, 321.8122] s.

.1.3. POLLU
The third test problem is the pollution (POLLU) problem [76]:

𝑑𝑦1
𝑑𝑡

= −𝑘1𝑦1 − 𝑘10𝑦11𝑦1 − 𝑘14𝑦1𝑦6 − 𝑘23𝑦1𝑦4 − 𝑘24𝑦19𝑦1 + 𝑘2𝑦2𝑦4 + 𝑘3𝑦5𝑦2 + 𝑘9𝑦11𝑦2 + 𝑘11𝑦13 + 𝑘12𝑦10𝑦2 (B.13)

+ 𝑘22𝑦19 + 𝑘25𝑦20, (B.14)
𝑑𝑦2
𝑑𝑡

= −𝑘2𝑦2𝑦4 − 𝑘3𝑦5𝑦2 − 𝑘9𝑦11𝑦2 − 𝑘12𝑦10𝑦2 + 𝑘1𝑦1 + 𝑘21𝑦19, (B.15)
𝑑𝑦3
𝑑𝑡

= −𝑘15𝑦3 + 𝑘1𝑦1 + 𝑘17𝑦4 + 𝑘19𝑦16 + 𝑘22𝑦19, (B.16)
𝑑𝑦4
𝑑𝑡

= −𝑘2𝑦2𝑦4 − 𝑘16𝑦4 − 𝑘17𝑦4 − 𝑘23𝑦1𝑦4 + 𝑘15𝑦3, (B.17)
𝑑𝑦5
𝑑𝑡

= −𝑘3𝑦5𝑦2 + 2𝑘4𝑦7 + 𝑘6𝑦7𝑦6 + 𝑘7𝑢9 + 𝑘13𝑦14 + 𝑘20𝑦17𝑦6, (B.18)
𝑑𝑦6
𝑑𝑡

= −𝑘6𝑦7𝑦6 − 𝑘8𝑦9𝑦6 − 𝑘14𝑦1𝑦6 − 𝑘20𝑦17𝑦6 + 𝑘3𝑦5𝑦2 + 2𝑘18𝑢16, (B.19)
𝑑𝑦7
𝑑𝑡

= −𝑘4𝑦7 − 𝑘5𝑦7 − 𝑘6𝑦7𝑦6 + 𝑘13𝑦14, (B.20)
𝑑𝑦8
𝑑𝑡

= 𝑘4𝑦7 + 𝑘5𝑦7 + 𝑘6𝑦7𝑦6 + 𝑘7𝑦9, (B.21)
𝑑𝑦9
𝑑𝑡

= −𝑘7𝑦9 − 𝑘8𝑦9𝑦6, (B.22)
𝑑𝑦10
𝑑𝑡

= −𝑘12𝑦10𝑦2 + 𝑘7𝑦9 + 𝑘9𝑦11𝑦2, (B.23)
𝑑𝑦11
𝑑𝑡

= −𝑘9𝑦11𝑦2 − 𝑘10𝑦11𝑦1 + 𝑘8𝑦9𝑦6 + 𝑘11𝑦13, (B.24)
𝑑𝑦12
𝑑𝑡

= 𝑘9𝑦11𝑦2, (B.25)
𝑑𝑦13
𝑑𝑡

= −𝑘11𝑦13 + 𝑘10𝑦11𝑦1, (B.26)
𝑑𝑦14
𝑑𝑡

= −𝑘13𝑦14 + 𝑘12𝑦10𝑦2, (B.27)
𝑑𝑦15
𝑑𝑡

= 𝑘14𝑦1𝑦6, (B.28)
𝑑𝑦16
𝑑𝑡

= −𝑘18𝑦16 − 𝑘19𝑦16 + 𝑘16𝑦4. (B.29)
𝑑𝑦17
𝑑𝑡

= −𝑘20𝑦17𝑦6, (B.30)
𝑑𝑦18
𝑑𝑡

= 𝑘20𝑦17𝑦6, (B.31)
𝑑𝑦19
𝑑𝑡

= −𝑘21𝑦19 − 𝑘22𝑦19 − 𝑘24𝑦19𝑦1 + 𝑘23𝑦1𝑦4 + 𝑘25𝑦20, (B.32)
𝑑𝑦20
𝑑𝑡

= −𝑘25𝑦20 + 𝑘24𝑦19𝑦1. (B.33)

𝑘 =[0.35, 26.6, 12300.0, 0.00086, 0.00082, 15000.0, 0.00013, 24000.0, 16500.0, 9000.0, 0.022, 12000.0, 1.88, 16300.0, 4.8𝑒6, (B.34)

0.00035, 0.0175, 1.0×108, 4.44×1011, 1240.0, 2.1, 5.78, 0.0474, 1780.0, 3.12]. (B.35)
21

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

T

B

m
p
F
d

B

w
a
a

A

a
i

C

o
r
v

Fig. B.15. A comparison of the time for an ODE solve (lower the better) with different stiff ODE problems having different sizes. The average speedup over CPU
parallelism at 8192 trajectories is approximately 10×.

𝑦 =[0.0, 0.2, 0.0, 0.04, 0.0, 0.0, 0.1, 0.3, 0.017, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007, 0.0, 0.0, 0.0]. (B.36)

he time span for integration is 𝑡 ∈ [0.0, 60.0] s.

.2. Preserving performance with different ODE models

In this section, we benchmark the ODE solvers on different stiff problems, each having varying dynamics and sizes of the
odel. We benchmark our solvers with three problems Appendices B.1.2, B.1.1, B.1.3. To allow GPU parallelism to sufficiently
arallelize computations so as to overcome overheads such as kernel launch times, 8192 trajectories of the solution are computed.
ig. B.15 showcases the average speedup of approximately 10× on all problems in comparison to the CPU parallelism. The benchmark
emonstrates the scalability of the solvers with different ODE problems.

.3. Benchmarking different GPU solvers with AMD GPUs

Section 6.4 covers benchmarking with different software with NVIDIA GPUs. Here, we present our results for AMD GPUs,
hich are currently fully supported by PyTorch and Julia’s DiffEqGPU.jl. Fig. B.16 shows the comparison of the Lorenz problem,
chieving at least 100× speedup. This demonstrates that the performance is independent of the GPU vendor and does not employ
ny specialized techniques such as CUDA GEMM kernels, allowing scientists to employ a variety of GPUs for their computation.

ppendix C. Reproducibility of experiments

The methods are written in Julia, and are part of the repository, https://github.com/SciML/DiffEqGPU.jl. The benchmark suite
lso consists of the raw data, such as simulation times and plots mentioned in the paper. The supported OS for the benchmark suite
s Linux.

.1. Installing Julia

The first step is to install Julia. The user can download the binaries from the official JuliaLang website https://julialang.
rg/downloads/. or alternatively use the convenience of a Julia version multiplexer, https://github.com/JuliaLang/juliaup. The
ecommended OS for installation is Linux. The recommended Julia installation version is v1.8. To use AMD GPUs, please install
1.9. The Julia installation should also be added to the user’s path.
22

https://github.com/SciML/DiffEqGPU.jl
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://github.com/JuliaLang/juliaup

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
Fig. B.16. A comparison of the time for an ODE solve for other programs with fixed time-stepping, using AMD GPUs. Here, the EnsembleGPUKernel is at
least 100× faster than EnsembleGPUArray and PyTorch.

C.2. Setting up DiffEqGPU.jl

C.2.1. Installing backends
The user must install the GPU backend library for testing DiffEqGPU.jl-related code.

julia> using Pkg
julia> #Run either of them
julia> Pkg.add("CUDA") # NVIDIA GPUs
julia> Pkg.add("AMDGPU") #AMD GPUs
julia> Pkg.add("oneAPI") #Intel GPUs
julia> Pkg.add("Metal") #Apple M series GPUs

C.2.2. Testing DiffEqGPU.jl
DiffEqGPU.jl is a test suite that regularly checks functionality by testing features such as multiple backend support, event

handling, and automatic differentiation. To test the functionality, one can follow the below instructions. The user needs to specify the
‘‘backend’’ for example ‘‘CUDA’’ for NVIDIA, ‘‘AMDGPU’’ for AMD, ‘‘oneAPI’’ for Intel, and ‘‘Metal’’ for Apple GPUs. The estimated
time of completion is 20 min.

$ julia --project=.
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.precompile()

Finally test the package by this command

$ backend="CUDA"
$ julia --project=. test_DiffEqGPU.jl $backend

Additionally, the GitHub discussion https://github.com/SciML/DiffEqGPU.jl/issues/224#issuecomment-1453769679 highlights
the use of textured memory with ODE solvers, accelerated the code by 2× over CPU.

C.2.3. Continuous integration and development
DiffEqGPU.jl is a fully featured library with regression testing, semver versioning, and version control. The tests are performed

on cloud machines having a multitude of different GPUs, https://buildkite.com/julialang/diffeqgpu-dot-jl/builds/705. These tests
approximately complete in 30 min. The publicly visible testing framework serves as a testimonial of compatibility with multiple
platforms and said features in the paper.
23

https://github.com/SciML/DiffEqGPU.jl/issues/224#issuecomment-1453769679
https://buildkite.com/julialang/diffeqgpu-dot-jl/builds/705

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

M

$
j
j

i

$

.

$
$
j
j
j
j

f

$
B
$
$

C

v

$
I
s
n
u

c

H

$

w

C.3. Testing GPU-accelerated ODE benchmarks with other programs

C.3.1. Benchmarking Julia (DiffEqGPU.jl) methods
CUDA.jl needs to be installed for benchmarking as it is the only backend compatible with the ODE solvers in JAX, PyTorch, and

PGOS. To do so, enter

julia
ulia> using Pkg
ulia> Pkg.add("CUDA")

n the Julia Terminal.
Clone the benchmark suite repository to start benchmarking;

git clone https://github.com/utkarsh530/GPUODEBenchmarks.git

We will instantiate and pre-compile all the packages beforehand to avoid the wait times during benchmarking. The folder
/GPU_ODE_Julia contains all the related scripts for the GPU solvers,

cd ./GPUODEBenchmarks
julia --project=./GPU_ODE_Julia --threads=auto
ulia> using Pkg
ulia> Pkg.instantiate()
ulia> Pkg.precompile()
ulia> exit()

It may take a few minutes to complete (<10 min). After this, we can generate the timings of ODE solvers written in Julia. There
is a script to benchmark ODE solvers for the different number of trajectories to demonstrate scalability and performance. The script
invocation and timings can be generated through

$ bash ./run_benchmark.sh -l julia -d gpu -m ode

which might take about 20 min to finish. The flag -n N can be used to specify the upper bound of the trajectories to benchmark.
By default 𝑁 = 224, where the simulation runs for 𝑛 ∈ 8 ≤ 𝑛 < 𝑁 , with the multiples of 4.

The data will be generated in the data/Julia directory, with two files for fixed and adaptive time-stepping simulations. The
irst column in the ‘‘.txt’’ file will be the number of trajectories, and the section column will contain the time in milliseconds.

Additionally, to benchmark ODE solvers for other backends:

N = $((2**24))
enchmark
backend = "Metal"
./runner_scripts/gpu/run_ode_mult_device.sh $N $backend

.3.2. Benchmarking C++ (MPGOS) ODE solvers
Benchmarking MPGOS ODE solvers requires the CUDA C++ compiler to be installed correctly. The recommended CUDA Toolkit

ersion is ≥11. The installation can be checked through

nvcc
f the installation exists, it will return
omething like this:
vcc fatal : No input files specified;
se option --help for more information

If nvcc is not found, the user needs to install CUDA Toolkit. The NVIDIA website lists out the resource https://developer.nvidia.
om/cuda-downloads for installation.

The MPGOS scripts are in the GPU_ODE_MPGOS folder. The main executed code is the file GPU_ODE_MPGOS/Lorenz.cu.
owever, the MPGOS programs can be run with the same bash script by changing the arguments as

bash ./run_benchmark.sh -l cpp -d gpu -m ode

hich will generate the data files in data/cpp folder.
24

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
C.3.3. Benchmarking JAX (Diffrax) ODE solvers
Benchmarking JAX-based ODE solvers require installing Python 3.9 and conda. First, install all the Python packages for

benchmarking:

$ conda env create -f environment.yml
$ conda activate venv_jax

which should install the correct version of JAX with CUDA enabled and the Diffrax library. The GitHub https://github.com/google/
jax#installation is a guide to follow if the installation fails.

For our purposes, the solvers can be benchmarked by

$ bash ./run_benchmark.sh -l jax -d gpu -m ode

C.3.4. Benchmarking PyTorch (torchdiffeq) ODE solvers
Benchmarking PyTorch-based ODE solvers is a similar process as for JAX:

$ conda env create -f environment.yml
$ conda activate venv_torch

torchdiffeq does not fully support vectorized maps with ODE solvers. To circumvent this, we extended the functionality by
rewriting some library parts. To download the revision:

(venv_torch)$ pip uninstall torchdiffeq
(venv_torch)$ pip uninstall torchdiffeq
(venv_torch)$ pip install git+https://github.com/utkarsh530/torchdiffeq.git@u/vmap

Then run the benchmarks by

$ bash ./run_benchmark.sh -l pytorch -d gpu -m ode

C.4. Comparing GPU acceleration of ODEs with CPUs

The benchmark suite can also be used to test the GPU acceleration of ODE solvers in comparison with CPUs. The process for
generating simulation times for GPUs can be done by following Appendix C.3.1. CPU simulation times for ODEs can be generated
by the bash script:

$ bash ./run_benchmark.sh -l julia -d cpu -m ode

The simulation times will be generated in data/CPU. Each of the workflows takes about 20 min to finish.

C.5. Benchmarking GPU acceleration of SDEs with CPUs

The SDE solvers in Julia are benchmarked by comparison to the CPU-accelerated simulation. Generate simulation times for GPU
by using

$ bash ./run_benchmark.sh -l julia -d gpu -m sde

Generate the simulation times for CPU-accelerated codes through

$ bash ./run_benchmark.sh -p julia -d cpu -m sde

The results will be generated in data/SDE and data/CPU/SDE, taking about 10 min to complete.
25

https://github.com/google/jax#installation
https://github.com/google/jax#installation
https://github.com/google/jax#installation

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.

c
n

$
j
#
j

S

#
#
#
#
#
#
#
#

#
e
e
#
e

s
m

s
t

C

t
v
J

$
$
j
j
j

$

p
w
$
p
$
p
$
p
$

$

C.6. Composability with MPI

Julia supports Message Passing Interface (MPI) to allow Single Program Multiple Data (SPMD)-type parallel programming. The
omposability of the GPU ODE solvers enables seamless integration with MPI, enabling scaling the ODE solvers to clusters on multiple
odes:

julia --project=./GPU_ODE_Julia
ulia> using Pkg
install MPI.jl
ulia> Pkg.add("MPI")

An example script solving the Lorenz problem for approximately 1 billion parameters is available in the MPI folder. A
LURM-based script is

!/bin/bash
Slurm Sbatch Options
Reqeust no. of GPUs/node
SBATCH --gres=gpu:volta:1
1 process per node
SBATCH -n 5 -N 5
SBATCH --output="./mpi_scatter_test.log-%j"
Loading the required module

MPI.jl requires memory pool disabled
xport JULIA_CUDA_MEMORY_POOL=none
xport JULIA_MPI_BINARY=system
Use local CUDA toolkit installation
xport JULIA_CUDA_USE_BINARYBUILDER=false

ource $HOME/.bashrc
odule load cuda mpi

run hostname > hostfile
ime mpiexec julia --project=./GPU_ODE_Julia ./MPI/gpu_ode_mpi.jl

.7. Plotting results

The plotting scripts to visualize the simulation times are located in the runner_scripts/plot folder. These scripts replicate
he benchmark figures in the paper. The benchmark suite contains the simulation data generated by authors, which can be used to
erify the plots. Various benchmarks can be plotted, which are described in the different sections. The plotting scripts are based on
ulia. As a preliminary step:

cd GPUODEBenchmarks
julia project=.
ulia> using Pkg
ulia> Pkg.instantiate()
ulia> Pkg.precompile()

The plot comparison between Julia, C++, JAX, and PyTorch mentioned in the paper can be generated by using the command:

julia --project=. ./runner_scripts/plot/plot_ode_comp.jl

The plot will be saved in plots folder.
Similarly, the other plots in the paper can be generated by running the different scripts in the folder runner_scripts/plot.

lot performance of GPU ODE solvers
ith multiple backends
julia --project=. ./runner_scripts/plot/plot_mult_gpu.jl
lot GPU ODE solvers comparsion with CPUs
julia --project=. ./runner_scripts/plot/plot_ode_comp.jl
lot GPU SDE solvers comparsion with CPUs
julia --project=. ./runner_scripts/plot/plot_sde_comp.jl
lot CRN Network sim comparsion with CPUs
julia --project=. ./runner_scripts/plot/plot_sde_crn.jl

To plot data generated by running the scripts, specify the location of the data as the argument to the mentioned command:
26

julia --project=. ./runner_scripts/plot/plot_mult_gpu.jl /path/to/data/

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
References

[1] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005.
[2] C. Kühn, C. Wierling, A. Kühn, E. Klipp, G. Panopoulou, H. Lehrach, A.J. Poustka, Monte Carlo analysis of an ODE model of the sea urchin endomesoderm

network, BMC Syst. Biol. 3 (2009) 83.
[3] S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret.

Biol. 254 (1) (2008) 178–196.
[4] N. Metropolis, S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc. 44 (247) (1949) 335–341.
[5] B. Iooss, P. Lemaître, A review on global sensitivity analysis methods, in: G. Dellino, C. Meloni (Eds.), Uncertainty Management in Simulation-Optimization

of Complex Systems: Algorithms and Applications, Springer, Boston, MA, 2015, pp. 101–122.
[6] L.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18 (1) (1997) 1–22, http://dx.doi.org/10.1137/S1064827594276424.
[7] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., SciPy 1.0:

Fundamental algorithms for scientific computing in Python, Nature Methods 17 (3) (2020) 261–272.
[8] C. Rackauckas, Q. Nie, DifferentialEquations.jl – A performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Softw.

5 (1) (2017) http://dx.doi.org/10.5334/jors.151.
[9] F. Hegedűs, Program package MPGOS: Challenges and solutions during the integration of a large number of independent ODE systems using GPUs,

Commun. Nonlinear Sci. Numer. Simul. 97 (2021) 105732.
[10] X. Li, T.-K.L. Wong, R.T.Q. Chen, D.K. Duvenaud, Scalable gradients and variational inference for stochastic differential equations, in: Symposium on

Advances in Approximate Bayesian Inference, PMLR, PMLR, 2020, pp. 1–28.
[11] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX:

composable transformations of Python+NumPy programs, 2018, URL http://github.com/google/jax.
[12] Y. Zhou, J. Liepe, X. Sheng, M.P.H. Stumpf, C. Barnes, GPU accelerated biochemical network simulation, Bioinformatics 27 (6) (2011) 874–876.
[13] M. Fernando, D. Neilsen, E. Hirschmann, Y. Zlochower, H. Sundar, O. Ghattas, G. Biros, A GPU-accelerated AMR solver for gravitational wave propagation,

in: SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), IEEE Computer Society, IEEE, Dallas, Texas,
2022, pp. 1078–1092.

[14] T. Zhao, S. De, B. Chen, J. Stokes, S. Veerapaneni, Overcoming barriers to scalability in variational quantum Monte Carlo, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, Association for Computing Machinery, New York, NY, USA, 2021,
http://dx.doi.org/10.1145/3458817.3476219.

[15] S. Le Grand, A.W. Götz, R.C. Walker, SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations,
Comput. Phys. Comm. 184 (2) (2013) 374–380.

[16] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrishnan, K. Patel, J. Melonakos, ArrayFire: A GPU acceleration platform, in: Modeling and
Simulation for Defense Systems and Applications VII, Vol. 8403, SPIE, SPIE, Baltimore, Maryland, USA, 2012, pp. 49–56.

[17] N. Bell, J. Hoberock, Thrust: A productivity-oriented library for CUDA, in: GPU Computing Gems, Jade Edition, Elsevier, Boston, 2012, pp. 359–371.
[18] D. Demidov, VexCL: Vector expression template library for OpenCL, 2012.
[19] J.E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard for heterogeneous computing systems, Comput. Sci. Eng. 12 (3) (2010) 66.
[20] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application

developers have been waiting for? Queue 6 (2) (2008) 40–53.
[21] K. Ahnert, M. Mulansky, Odeint–solving ordinary differential equations in C++, in: AIP Conference Proceedings, Vol. 1389, American Institute of Physics,

American Institute of Physics, Halkidiki, Greece, 2011, pp. 1586–1589.
[22] K. Ahnert, D. Demidov, M. Mulansky, Solving ordinary differential equations on GPUs, in: Numerical Computations with GPUs, Vol. 1, Springer, 2014,

pp. 125–157.
[23] D. Nagy, L. Plavecz, F. Hegedűs, The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs,

Commun. Nonlinear Sci. Numer. Simul. 112 (2022) 106521.
[24] P. Kidger, On Neural Differential Equations (Ph.D. thesis), University of Oxford, 2021.
[25] R.T. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst. 31 (2018).
[26] A.C. Hindmarsh, ODEPACK, A systemized collection of ODE solvers, in: R.S. Stepleman (Ed.), Scientific Computing, North-Holland, Amsterdam, 1983, pp.

55–64.
[27] A.C. Hindmarsh, L.R. Petzold, Algorithms and software for ordinary differential equations and differential-algebraic equations, Part II: Higher-order methods

and software packages, Comput. Phys. 9 (2) (1995) 148–155.
[28] E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Vol. 8, Springer, Berlin, Heidelberg, 1993, http:

//dx.doi.org/10.1007/978-3-540-78862-1.
[29] E. Hairer, G. Peters, Solving Ordinary Differential Equations II, Springer, Berlin Heidelberg, 1991.
[30] L.F. Shampine, S. Thompson, Stiff systems, Scholarpedia 2 (3) (2007) 2855.
[31] D.J. Higham, L.N. Trefethen, Stiffness of ODEs, BIT Numer. Math. 33 (1993) 285–303.
[32] C. Runge, Über die numerische auflösung von differentialgleichungen, Math. Ann. 46 (2) (1895) 167–178.
[33] W. Kutta, Beitrag zur Näherungsweisen Integration Totaler Differentialgleichungen (Ph.D. thesis), Ludwig Maximilian University of Munich, Germany,

1901.
[34] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math. 6 (1) (1980) 19–26.
[35] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Vol. 61, SIAM, Philadelphia, PA,

USA, 1998.
[36] H.H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Comput. J. 5 (4) (1963) 329–330, http://dx.doi.

org/10.1093/comjnl/5.4.329.
[37] A. Kværnø, Singly diagonally implicit Runge–Kutta methods with an explicit first stage, BIT Numer. Math. 44 (3) (2004) 489–502.
[38] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (3) (1973) 637–654.
[39] R.C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci. 1 (1973) 141–183.
[40] D.J. Wilkinson, Stochastic Modelling for Systems Biology, CRC Press, Boca Raton, FL, USA, 2018.
[41] D.T. Gillespie, The chemical Langevin equation, J. Chem. Phys. 113 (1) (2000) 297–306.
[42] P.E. Kloeden, E. Platen, Stochastic Differential Equations, Springer, Berlin Heidelberg, 1992.
[43] A. Tocino, R. Ardanuy, Runge–Kutta methods for numerical solution of stochastic differential equations, J. Comput. Appl. Math. 138 (2) (2002) 219–241.
[44] C. Rackauckas, Q. Nie, Stability-optimized high order methods and stiffness detection for pathwise stiff stochastic differential equations, in: IEEE High

Performance Extreme Computing Conference (HPEC), IEEE, Waltham, MA, USA, 2020, pp. 1–8.
[45] R. Okuta, Y. Unno, D. Nishino, S. Hido, C. Loomis, CuPy: A NumPy-compatible library for NVIDIA GPU calculations, in: Proceedings of Workshop on

Machine Learning Systems (LearningSys) in The Thirty-First Annual Conference on Neural Information Processing Systems, NIPS, Long Beach, CA, USA,
27

2017, URL http://learningsys.org/nips17/assets/papers/paper_16.pdf.

http://refhub.elsevier.com/S0045-7825(23)00715-6/sb1
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb4
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb5
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb5
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb5
http://dx.doi.org/10.1137/S1064827594276424
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb7
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb7
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb7
http://dx.doi.org/10.5334/jors.151
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb10
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb10
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb10
http://github.com/google/jax
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb12
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb13
http://dx.doi.org/10.1145/3458817.3476219
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb15
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb15
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb15
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb17
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb18
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb19
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb20
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb20
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb20
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb24
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb25
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb27
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb27
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb27
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1007/978-3-540-78862-1
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb29
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb30
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb32
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb34
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb35
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb35
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb35
http://dx.doi.org/10.1093/comjnl/5.4.329
http://dx.doi.org/10.1093/comjnl/5.4.329
http://dx.doi.org/10.1093/comjnl/5.4.329
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb37
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb38
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb39
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb40
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb41
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb42
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb43
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb44
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb44
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb44
http://learningsys.org/nips17/assets/papers/paper_16.pdf

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116591U. Utkarsh et al.
[46] S.K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT compiler, in: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM ’15, no. Article 7, Association for Computing Machinery, New York, NY, USA, 2015, pp. 1–6, http://dx.doi.org/10.1145/2833157.2833162.

[47] T. Besard, C. Foket, B. De Sutter, Effective extensible programming: Unleashing Julia on GPUs, IEEE Trans. Parallel Distrib. Syst. 30 (4) (2018) 827–841.
[48] T. Besard, V. Churavy, A. Edelman, B. De Sutter, Rapid software prototyping for heterogeneous and distributed platforms, Adv. Eng. Softw. 132 (2019)

29–46.
[49] T. Besard, JuliaGPU/GPUCompiler.jl: v1.8.0, 2023, http://dx.doi.org/10.5281/zenodo.7807140.
[50] T. Besard, JuliaGPU/GPUArrays.jl: v8.6.4, 2023, http://dx.doi.org/10.5281/zenodo.7807091.
[51] J. Samaroo, V. Churavy, A. Smirnov, T. Hodgson, W. Phillips, L. Räss, A. Ramadhan, J. Barmparesos, J. TagBot, M. Schanen, T. Besard, T. Arakaki, S.

Antholzer, Alessandro, A. Montoison, C. Elrod, M. Raayai, T. Hu, JuliaGPU/AMDGPU.jl: v0.4.8, 2023, http://dx.doi.org/10.5281/zenodo.7641665.
[52] T. Besard, oneAPI.jl, 2023, http://dx.doi.org/10.5281/zenodo.7789142.
[53] T. Besard, M. Hawkins, Metal.jl, 2023, http://dx.doi.org/10.5281/zenodo.7789146, If you use this software, please cite it as below.
[54] K. Obenschain, D. Schwer, A. Sharma, Initial assessment of the AMD MI50 GPGPUs for scientific and machine learning applications, in: Research Poster

Presented at ISC High Performance 2020, 2020.
[55] C. Brown, A. Abdelfattah, S. Tomov, J. Dongarra, Design, optimization, and benchmarking of dense linear algebra algorithms on AMD GPUs, in: IEEE

High Performance Extreme Computing Conference (HPEC), IEEE, Waltham, MA, USA, 2020, pp. 1–7.
[56] V. Churavy, D. Aluthge, J. Samaroo, A. Smirnov, J. Schloss, L.C. Wilcox, S. Byrne, M. Waruszewski, A. Ramadhan, Meredith, S. Schaub, N.C. Constantinou,

J. Bolewski, M. Ng, T. Besard, B. Arthur, C. Kawczynski, C. Hill, C. Rackauckas, J. Cook, J. Liu, M. Schanen, O. Schulz, Oscar, P. Haraldsson, T. Arakaki,
T. Chor, JuliaGPU/KernelAbstractions.jl: v0.9.1, 2023, http://dx.doi.org/10.5281/zenodo.7770454.

[57] G. Wang, Y. Lin, W. Yi, Kernel fusion: An effective method for better power efficiency on multithreaded GPU, in: IEEE/ACM International Conference
on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing, IEEE, IEEE, Hangzhou, China, 2010, pp.
344–350.

[58] C. Tsitouras, Runge–Kutta pairs of order 5 (4) satisfying only the first column simplifying assumption, Comput. Math. Appl. 62 (2) (2011) 770–775.
[59] J.H. Verner, Numerically optimal Runge–Kutta pairs with interpolants, Numer. Algorithms 53 (2) (2010) 383–396.
[60] G. Steinebach, Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks within the Julia Differential Equations package, BIT

Numer. Math. 63 (2) (2023) 27, http://dx.doi.org/10.1007/s10543-023-00967-x.
[61] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, SUNDIALS, ACM Trans. Math. Software 31 (3) (2005)

363–396, http://dx.doi.org/10.1145/1089014.1089020.
[62] Utkarsh, C. Elrod, Y. Ma, K. Althaus, C. Rackauckas, Parallelizing explicit and implicit extrapolation methods for ordinary differential equations, in: IEEE

High Performance Extreme Computing Conference (HPEC), IEEE, Waltham, MA, USA, 2022, pp. 1–9, http://dx.doi.org/10.1109/HPEC55821.2022.9926357.
[63] G. Corliss, C. Faure, A. Griewank, L. Hascoet, U. Naumann, Automatic Differentiation of Algorithms: From Simulation to Optimization, Springer Science

& Business Media, 2002.
[64] A. Tocino, J. Vigo-Aguiar, Weak second order conditions for stochastic Runge–Kutta methods, SIAM J. Sci. Comput. 24 (2) (2002) 507–523.
[65] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2) (1963) 130–141.
[66] H.H. Robertson, Numerical integration of systems of stiff ordinary differential equations with special structure, IMA J. Appl. Math. 18 (2) (1976) 249–263.
[67] D.W. Walker, J.J. Dongarra, MPI: A standard message passing interface, Supercomputer 12 (1996) 56–68.
[68] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., Open MPI: Goals,

concept, and design of a next generation MPI implementation, in: Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th
European PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11, Springer, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004, pp. 97–104.

[69] S. Byrne, L.C. Wilcox, V. Churavy, MPI.jl: Julia bindings for the Message Passing Interface, in: Proceedings of the JuliaCon Conferences, Vol. 1, JuliaCon,
Online, 2021, p. 68.

[70] M. S. Nobile, P. Cazzaniga, D. Besozzi, G. Mauri, ginSODA: Massive parallel integration of stiff ODE systems on GPUs, J. Supercomput. 75 (12) (2019)
7844–7856.

[71] T. Loman, How Bacteria Tune Mixed Positive/Negative Feedback Loops to Generate Diverse Gene Expression Dynamics (Ph.D. thesis), University of
Cambridge, U.K., 2022.

[72] P. Barham, M. Isard, Machine learning systems are stuck in a rut, in: Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 177–183, http://dx.doi.org/10.1145/3317550.3321441.

[73] A.M. Zhabotinsky, Belousov-zhabotinsky reaction, Scholarpedia 2 (9) (2007) 1435.
[74] R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys. 60 (5) (1974)

1877–1884.
[75] E. Schäfer, A new approach to explain the ‘‘high irradiance responses’’ of photomorphogenesis on the basis of phytochrome, J. Math. Biol. 2 (1) (1975)

41–56.
[76] J.G. Verwer, Gauss–Seidel iteration for stiff ODEs from chemical kinetics, SIAM J. Sci. Comput. 15 (5) (1994) 1243–1250.
28

http://dx.doi.org/10.1145/2833157.2833162
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb47
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb48
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb48
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb48
http://dx.doi.org/10.5281/zenodo.7807140
http://dx.doi.org/10.5281/zenodo.7807091
http://dx.doi.org/10.5281/zenodo.7641665
http://dx.doi.org/10.5281/zenodo.7789142
http://dx.doi.org/10.5281/zenodo.7789146
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb54
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb54
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb54
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb55
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb55
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb55
http://dx.doi.org/10.5281/zenodo.7770454
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb58
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb59
http://dx.doi.org/10.1007/s10543-023-00967-x
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1109/HPEC55821.2022.9926357
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb63
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb63
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb63
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb64
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb65
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb66
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb67
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb68
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb69
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb69
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb69
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb71
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb71
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb71
http://dx.doi.org/10.1145/3317550.3321441
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb73
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00715-6/sb76

	Automated translation and accelerated solving of differential equations on multiple GPU platforms
	Introduction
	Related Work
	Numerical Methods for Differential Equations
	Non-stiff Ordinary Differential Equations (ODEs)
	Stiff Ordinary Differential Equations
	Rosenbrock Methods
	Diagonally Implicit Runge–Kutta Methods

	Stochastic Differential Equations (SDEs)

	The GPU ecosystem in Julia and cross-platform GPGPU programming
	Supporting multiple GPU platforms
	Abstractions for kernel programming

	Massively Data-Parallel GPU Solving of Independent ODE Systems
	EnsembleGPUArray: Accelerating Ensemble ODEs with GPU Array Parallelism
	Identifying parallelism and problem construction
	Translating ODE solves over GPU using KernelAbstractions.jl
	Batched LU: Accelerating Ensemble of Stiff ODEs
	Drawbacks of the Array Ensemble Approach

	EnsembleGPUKernel: Accelerating Ensemble of ODEs with specialized kernel generation for entire ODE integration
	Kernel-Specialized ODE Solvers
	Kernel-Specialized SDE solvers

	Benchmarks and Case studies
	Setup
	Establishing efficiency of solving ODE ensembles with GPU over CPU
	Solving billions of ODEs together: Scaling EnsembleGPUKernel with MPI
	Comparison with other GPU-accelerated ODE programs
	Vendor agnosticism with performance: Comparison with several GPU platforms
	Event handling and automatic differentiation
	Texture memory interpolation
	Accelerating stochastic processes with GPUs
	Asset Price Model in Quantitative Finance
	Stochastic Chemical Reaction Networks

	Discussion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Artifact Identification
	Models: Ordinary Differential Equations
	Lorenz Problem
	Bouncing-ball problem
	Robertson Equation

	Models: Stochastic Differential Equations
	Linear SDE
	Biological Chemical Reaction Network (CRN) simulating generalized stress response model of bacterial sFigma factors

	Appendix B. Auxiliary model testing and benchmarks
	Model Description
	OREGO
	HIRES
	POLLU

	Preserving performance with different ODE models
	Benchmarking different GPU solvers with AMD GPUs

	Appendix C. Reproducibility of Experiments
	Installing Julia
	Setting up DiffEqGPU.jl
	Installing backends
	Testing DiffEqGPU.jl
	Continuous Integration and Development

	Testing GPU-accelerated ODE Benchmarks with other programs
	Benchmarking Julia (DiffEqGPU.jl) methods
	Benchmarking C++ (MPGOS) ODE solvers
	Benchmarking JAX (Diffrax) ODE solvers
	Benchmarking PyTorch (torchdiffeq) ODE solvers

	Comparing GPU acceleration of ODEs with CPUs
	Benchmarking GPU acceleration of SDEs with CPUs
	Composability with MPI
	Plotting Results

	References

