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Abstract—This paper presents a novel methodology for the au-
tomatic placement of Power Electronics Building Blocks (PEBBs)
in modular, integrated power corridor designs. These building
blocks are currently arranged manually during the design
process, a method that is time-consuming and suboptimal. To
address this challenge, the placement problem is reduced to a 2D
bin-packing problem, leveraging a hybrid approach combining
Genetic Algorithms and Simulated Annealing. This approach
enables the generation of optimized placements that find the
extremes of arbitrary heuristics, including minimizing routing
distance and power density, effectively improving both design
efficiency and system performance. The proposed methodology
offers a significant step toward automating and optimizing the
layout of power electronic components in complex systems.

Index Terms—Power Electronic Building Block, Power Corri-
dor, Optimization Algorithm.

I. INTRODUCTION

In an era of increasingly sophisticated naval warfare, the
design and efficiency of ship power systems have become
critical factors in maintaining military readiness and opera-
tional effectiveness. The modular integrated power corridor
design for ships represents a significant advancement in naval
engineering, offering a cost-effective yet robust solution to
meet the intensive power needs of future warships [1]. This
innovative approach integrates power transfer, conversion,
isolation, and storage functionalities into standardized, off-hull
fabricated modules that can be easily integrated onboard. The

Fig. 1: Extent of power corridor within a representative ship.
This example is a highly redundant four-corridor example. A
minimum of two corridors is envisioned for redundancy.

potential benefits of this design are substantial. By leverag-
ing modularity, standardization, and off-hull construction, the
power corridor system promises to significantly reduce both
construction and life-cycle costs. Moreover, the standardized

—

Fig. 2: Example manually arranged design

functionality, hardware, and control interfaces of these mod-
ules enhance maintainability and upgradability, crucial factors
in the long-term operational viability of naval vessels. An
example power corridor layout is shown in Fig. 1.

However, to fully realize the advantages of this modular
integrated power corridor design, an optimal placement of
electrical components is essential. This placement must be
both routing-efficient and power-dense, a complex task that,
when performed manually, is time-consuming and prone to
suboptimal outcomes. In early-stage ship design, large de-
sign space exploration can result in thousands of individual
placements, necessitating automatic placements. Therefore,
this project proposes to develop a time-efficient algorithmic
solution capable of producing near-optimal component place-
ments within the power corridor framework.

A. Problem

The core challenge addressed in this project is the optimal
placement of electrical components within the modular inte-
grated power corridor of naval vessels. This challenge can be
primarily conceptualized as a variant of the 2D bin-packing
problem, a well-known optimization problem in operations
research.

In its classical form, the 2D bin-packing problem aims to
efficiently pack a set of rectangular items into a minimum
number of rectangular bins, ensuring no overlap and adherence
to bin boundaries. Our specific scenario adapts this problem
to a single defined bin representing the power corridor.

It is crucial to note that the 2D bin-packing problem is NP-
hard [2], indicating the absence of known efficient algorithms



for optimal solutions. Consequently, our approach necessi-
tates the development and application of heuristic methods
to achieve reasonable, near-optimal solutions within practical
time constraints.

However, the problem extends beyond the traditional bin-
packing paradigm. In addition to efficient placement within
spatial constraints, additional heuristics such as the minimiza-
tion of routing distances between interconnected components
must also be considered. This additional objective significantly
increases the complexity of the problem, requiring a more
sophisticated approach than standard bin-packing algorithms.
To solve this, a hybrid meta-heuristic technique which uti-
lizes both a Genetic Algorithm and Simulated Annealing is
proposed.

B. Genetic Algorithm

Genetic Algorithms are a class of optimization algorithm
inspired by the process of natural selection. They have shown
practical success in finding near optimal solutions to complex
problems with large search spaces. This is done through a
repeated cycle of initialization, crossover, mutation, fitness
computation, selection, and termination. The following de-
scription is primarily based on Kramer (2017) [3].

1) Basic Principles: To understand a Genetic Algorithm,
one must first understand the several core definitions.

« Population: A set of candidate solutions to the problem.
Each individual is a possible solution, generally encoded
as a string of values known as chromosomes.

« Fitness Function: An arbitrary function which, when
given a possible solution, outputs the quality of the
given solution, allowing the algorithm to identify good
solutions.

o Selection: A method of deciding which members of the
population will be used to generate the next population.

o Crossover: A genetic operator which combines two parent
individuals to generate an offspring. It is meant to sim-
ulate genetic recombination and results in a set of new
individuals which have attributes of both “parents”. This
is generally performed by some method of exchanging
genes between two individuals.

e Mutation: A genetic operator which introduces small
random changes to the child chromosomes. This allows
the population to maintain genetic diversity and avoid
premature convergence to suboptimal solutions. This is a
computational analog of biological mutations.

The algorithm employs an iterative optimization approach
that begins with the generation of an initial population com-
prised of randomly instantiated individuals. Following popula-
tion initialization, each solution is evaluated through a fitness
function that quantifies its performance relative to the opti-
mization objectives. A selection mechanism then identifies two
parent solutions based on their respective fitness values. These
selected parents undergo genetic recombination operations to
produce offspring that constitute the subsequent generation’s
population. This evolutionary process — encompassing fitness
evaluation, parent selection, and reproductive operations —

continues iteratively until predetermined termination criteria
are satisfied. The best solution seen thoughout the process is
then returned.

C. Simulated Annealing

Simulated Annealing (SA) is a probabilistic metaheuristic
optimization algorithm that has gained significant attention in
various fields of study, including operations research, artificial
intelligence, and computational physics. Its foundation lies
in the Metropolis-Hastings algorithm, a Monte Carlo method
used to generate sample states of a thermodynamic system.

The algorithm’s name and inspiration derive from the
annealing process in metallurgy, where controlled cooling
of a material leads to the formation of large crystals with
minimal defects. In the context of optimization, this process is
analogous to finding a global minimum in a complex search
space. These definitions are based on material produced by
Henderson [4]

1) Basic Principles: Similarly to Genetic Algorithms, Sim-
ulated Annealing (SA) is built upon a few core definitions.

« State Space: Let S be the set of all possible solutions.

o Energy Function: E(s), where s € S, quantifies the quality
of a solution.

¢ Neighborhood Function: N(s) generates a neighboring
solution.

o Temperature Schedule: T(k), where k is the iteration
number.

o Acceptance Probability: P(AE, T) determines the likeli-
hood of accepting a worse solution based on the energy
difference and a temperature parameter

SA, which also utilizes an iterative optimization approach,
begins with an initial solution and high “temperature” value.
At each iteration, it evaluates a neighboring solution and
decides whether to accept or reject it based on its Energy
value. If the new solution represents an improvement, it
is automatically accepted; however, if the new solution is
inferior, it may still be accepted with a probability given by
P(AE, T), which is typically defined as:

P(AE,T)=e¢ T (1)

The acceptance probability formula, derived from the Boltz-
mann distribution in statistical mechanics, is a key compo-
nent that allows the algorithm to accept suboptimal solutions
with decreasing probability as the temperature drops. This
mechanism is intricately linked to the temperature schedule,
which plays a crucial role in the algorithm’s performance. The
temperature schedule dictates how quickly the algorithm tran-
sitions from exploration to exploitation. Common approaches
to temperature scheduling include:

e Linear cooling: T(k) = Tp — ax k

o Geometric cooling: T(k) = Tp * o

o Logarithmic cooling: T(k) = m
In this case, k is the step number and « is a hyper-parameter to
be tuned for optimal results. Each schedule has its advantages
and is suited to different types of problems.



Under certain conditions, SA can be proven to converge to
the global optimum with probability 1. These conditions being
a sufficiently slow cooling schedule, the ability to reach any
state from any other state in a finite number of moves, and
the probability of selecting any neighbor being greater than
zero. However, in practice, these conditions often conflict with
computational feasibility, leading to the use of faster cooling
schedules that sacrifice theoretical guarantees for practical
performance.

II. RELATED WORKS

This problem bears striking similarities to the place-and-
route (P&R) challenges encountered in Very Large Scale
Integration (VLSI) chip design. In VLSI design, components
(gates, memory blocks, and other circuit elements) must be ef-
ficiently placed while considering both spatial constraints and
the optimization of interconnect routing. Over the past several
decades, researchers have developed numerous approaches to
tackle this complex optimization problem. These techniques
range from deterministic algorithms like force-directed place-
ment and quadratic optimization, to meta-heuristic methods
such as simulated annealing, genetic algorithms, and hybrid
approaches. The success of these methods in VLSI design
provides valuable insights for our problem, as both domains
share core challenges in optimizing component placement
while minimizing interconnection distances and managing
thermal constraints.

A. Deterministic Algorithms

Several researchers have explored deterministic algorithms
for solving packing and placement problems, aiming to
provide consistent and reproducible results [5]-[7]. These
approaches often leverage mathematical programming tech-
niques, heuristics, or specialized data structures to systemat-
ically explore the solution space. Deterministic methods can
offer advantages in terms of predictability and, in some cases,
guaranteed optimality, though they may struggle with scala-
bility for larger problem instances. These works demonstrate
the potential of deterministic algorithms in tackling complex
packing and placement challenges, although they often need to
balance solution quality with computational efficiency, espe-
cially for real-world applications involving numerous objects
or intricate constraints.

1) Hybrid First Fit: Chung et al. [8] presented a deter-
ministic placement algorithm to find near-optimal packings
of rectangular 2D shapes. In their First Fit by Decreasing
Height (FFDH) approach, all the rectangles to be packed
are sorted in descending order based on their height. The
algorithm then places these rectangles into the alloted space
one by one, always positioning the current rectangle as far
left as possible in the lowest strip that can accommodate it
without overlapping previously placed rectangles. If there is
no possible strip to hold it, a new strip is created with the
same height as the block, above the current top block. This
process effectively creates horizontal levels or “blocks” within
the strip. The researchers innovatively extended this approach

by considering these resulting blocks as larger, composite
rectangles. They then subjected these new, larger blocks to a
second round of packing. This two-phase approach allows for
potentially more efficient use of space, as the second packing
phase can exploit gaps left between the initial blocks. By
repacking these larger units, Chung et al. aimed to reduce the
overall height of the strip and improve the packing density,
potentially overcoming some of the limitations of the initial
FFDH placement.

2) Force-based approach: Liao et al. [9] introduced a
novel physical force-driven packing optimization method for
solving Strip Packing Problems (SPP). Their approach begins
with a mathematical optimization model for SPP, focusing
on minimizing the strip length while ensuring all objects fit
without overlap.

The core of their method is the convex hull plus rubber
band compact layout technique. This innovative approach uses
a virtual rubber band to bind all layout objects from the
periphery, causing them to move closer together under elastic
forces. The authors provide a detailed physical analysis of the
forces acting on objects during the layout process, including
rubber band forces and interaction forces between objects, and
implement a time-based simulation of this process.

To enhance the packing process, Liao et al. propose an
improved version of the mate algorithm for rectangle packing.
This algorithm uses minimal rectangles to replace polygon
objects and employs score decision rules to choose the next
packing object, allowing for dynamic adjustment of the pack-
ing sequence.

The packing process in their method unfolds in four stages:
initial packing, rubber band force-driven, uniform force-
driven, and packing adjustment. This multi-stage approach
allows for progressive refinement of the packing arrangement.

To validate their method, the authors conducted compu-
tational experiments, comparing their results with other ap-
proaches in the literature. These experiments demonstrated the
feasibility and effectiveness of their method, showing promis-
ing results in terms of packing density and computational
efficiency.

As a practical application of their research, Liao et al.
developed an auto-layout system using C++ and Box2D,
based on their proposed method. This system demonstrates the
potential for real-world implementation of their force-based
packing approach.

This work represents a significant contribution to force-
based approaches in packing problems, offering a novel per-
spective that combines physical principles with optimization
techniques. The method shows promise in achieving good
packing density with high time efficiency, particularly for
complex 2D irregular polygon packing problems.

Given the need to address additional complexities beyond
packing, such as wiring considerations and specific placement
requirements, we decided to pursue a different approach
altogether, rather than building upon the force-based method of
Liao et al. and the strip-packing-based approaches of Chung
et al. Our research necessitated the development of a more



versatile strategy to accommodate these diverse constraints and
objectives.

B. Randomized Search Algorithms

Previous research in the field of optimization has demon-
strated the efficacy of metaheuristic approaches in solving
complex packing problems [10]. One particularly relevant
study has shown promising results in tackling variations of
the 2D bin-packing problem:

Soke and Bingul [11] explored the use of Genetic Algo-
rithms and Simulated Annealing for two-dimensional non-
guillotine rectangular packing problems. In this context, guil-
lotine packing refers to a placement strategy where all compo-
nents are arranged such that the entire layout can be subdivided
into smaller rectangles through a series of straight cuts that
extend from one edge to another. This constraint ensures that
components can be physically separated by straight-line cuts.
Their work demonstrated the potential of these meta-heuristic
techniques in finding near-optimal solutions for complex pack-
ing scenarios.

Soke and Bingul’s Improved Bottom Left (BL) placement
algorithm begins by positioning each block in the top-right
corner of the designated area. It then drops the block down-
ward until it collides with a previously placed block. From
there, the block slides to the left and continues to fall until it
can no longer move. Thus a placement is defined by the order
of blocks placed.

1) Genetic Algorithm: Soke and Bingul implemented a
Genetic Algorithm (GA) approach as one of their primary
methods for tackling the two-dimensional non-guillotine rect-
angular packing problem. Their GA representation is notable
for its simplicity and effectiveness: each chromosome repre-
sents a specific ordering of the blocks to be placed.

The fitness function, a critical component of any GA, was
carefully designed to optimize for placement density. For a
given ordering m, the fitness F(7) is defined as:

F = 2
(M =—7 @
where T, the trim loss value, is
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Ay, is the area of the main object, and A, is the area of each
placed piece. The inclusion of € prevents division by zero and
facilitates fine-tuning of the selection pressure.

For the selection process, the authors employed the Roulette
Wheel Selection operator. This probabilistic selection method
assigns each individual a selection probability proportional to
its fitness, calculated by dividing its fitness value by the sum
of all fitness values in the population. This approach balances
exploration and exploitation in the search space.

The breeding process to produce the next generation in-
volved extensive experimentation with various crossover tech-
niques. Notably, the Order-Based Crossover (OBX) operator
emerged as the most effective. The OBX operation proceeds
as follows:

1) Randomly sample half of the genes from the first parent
and copy them to the child.

2) Fill the remaining genes from the second parent while
preserving their original order.

This method effectively combines genetic material from
both parents while maintaining the crucial ordering informa-
tion inherent in the packing problem. This is because the
relative ordering of the genes selected between each parent
is the same.

Finally, to introduce further variability and prevent prema-
ture convergence, each child undergoes mutation. The mu-
tation operator simply swaps a random pair of blocks in
the ordering, providing a mechanism for small, potentially
beneficial perturbations in the solution.

This GA approach demonstrates a thoughtful balance be-
tween preserving beneficial ordering information and intro-
ducing variability to explore the solution space. The authors’
systematic evaluation of different components, particularly the
crossover operators, provides valuable insights for researchers
seeking to apply GA to similar combinatorial optimization
problems.

2) Simulated Annealing: Soke and Bingul also explored a
Simulated Annealing (SA) approach as a comparative method
for solving the two-dimensional non-guillotine rectangular
packing problem. Their implementation of SA showcases
several key design choices and parameter considerations.

« Initial Solution and Representation: The authors used the
same representation as in their GA approach, where a
solution is encoded as an ordering of blocks to be placed.
The initial solution was generated randomly.

o Neighborhood Structure: Two different neighborhood ex-
ploration types were investigated

— Swapping move: Exchanges the positions of two ran-
domly selected blocks.

— Shifting move: Removes a randomly selected block and
reinserts it at a random position.

After extensive testing, the swapping move was found

to be more effective and was adopted for the final

implementation.

¢ Cooling Schedule: Two cooling schedules were evaluated:
— Lundy and Mees schedule: Tj,11 = Ty /(1 + oT%)

— Proportional decrement schedule: Ty41 = a1}
The Lundy and Mees schedule demonstrated superior
performance and was chosen for the final algorithm.

o Acceptance Probability: The standard Metropolis crite-
rion was employed for accepting or rejecting new so-
lutions: P(accept) :e#, where AF is the change in
energy (trim loss in this case) and T is the current
temperature.

o Inner Loop Criterion: The authors experimented with
different inner loop termination criteria, testing values of
1, 3, and 5. They found that an inner loop criterion of
3 produced the best results, striking a balance between
exploration at each temperature and overall runtime.



o Termination Condition: The SA algorithm terminated
when the temperature reached a predefined minimum
value or when no improvement was observed for a
specified number of consecutive iterations.

o Parameter Tuning: Considerable effort was devoted to
tuning the SA parameters, including the initial tem-
perature, cooling rate, and termination conditions. The
authors emphasize the importance of this tuning process
in achieving competitive results.

3) Analysis: This paper’s careful consideration of different
neighborhood structures, cooling schedules, and termination
criteria provides valuable insights in solving our problem.
The comparative analysis between SA and GA reveals distinct
advantages and limitations of each approach in the context
of two-dimensional packing problems. Genetic Algorithms
excel at exploring diverse solution spaces through population-
based evolution and can effectively handle multiple objectives
through fitness function design. However, they can be compu-
tationally intensive and may struggle with fine-tuning solutions
in the later stages of optimization. In contrast, Simulated
Annealing offers superior local search capabilities and can
efficiently escape local optima through its temperature-based
acceptance probability, but may miss global optima due to
its single-solution nature and is highly sensitive to parameter
tuning. Understanding these complementary characteristics
allowed us to develop a hybrid approach that leverages GA’s
global exploration capabilities with SA’s local search preci-
sion, enabling optimization beyond mere packing density to
include routing efficiency and thermal distribution considera-
tions.

III. NOVEL HYBRID OPTIMIZATION METHOD
A. Full Problem Statement

The optimization problem addressed in this project focuses
on the automated placement of power electronic components
within a rectangular area of fixed height. The system is com-
prised of three primary component types: DC switches, Power
Electronic Building Blocks (PEBBs), and AC switches, each
with specified rectangular dimensions that must be maintained.
The power flow follows a hierarchical structure, beginning
at DC switches, passing through chains of PEBBs for power
conversion, and terminating at AC switches. The number of
PEBBs in each chain is determined by the system’s voltage and
power requirements, with no predetermined maximum limit
on chain length. The placement area’s physical constraints
require all components to be positioned within the bounded
region without overlap as shown in Figure 3. The electrical
architecture demands specific connection patterns: both DC
and AC switches connect to their respective horizontal bus
bars, which in turn connect to the PEBBs via strictly vertical
connections. These bus bars, which can be positioned at any
height coinciding with their respective switches, may share
the same vertical position and extend horizontally as needed
to reach their connected components. PEBBs within a chain
must maintain sequential connectivity, connecting from DC
bus bars through the PEBB chain to the AC bus bars.

Fig. 3: The left image showcases a valid placement of
components withing the placement area. The right image is
an invalid placement as evident by the overlapping
component placements.
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Fig. 4: Example electrical design to be implemented [12]
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B. Proposed Solution

In this paper a new hybrid optimization method is proposed.
Due to its closeness to the 2D bin-packing problem, the new
approach is motivated by work done by Soke and Bingul [11].
A Genetic Algorithm is first used to optimize for all of the
spatial constraints of the problem. These include, but are not
limited to, packing density and electromagnetic interference.
After achieving a terminating solution in the GA, the solution
is passed through a constrained Simulated Annealing process,
which aims to optimize for routing distance. Finally, several
post-processing mechanisms are applied for ease of implemen-
tation.

An example system is shown in Figure 4.

1) Input: Inputs to the algorithm include input voltage and
power of the DC bus, the required output voltage of the AC
switches and the number of AC phases. Additionally, a user
must describe the dimensions of the room in which the blocks
will be paced. These parameters give the algorithm an idea of
the system being designed.

2) Pre-processing: Before the algorithm begins optimizing
it first uses the input parameters to determine the arrangement
of electrical components. The required voltage determines the
number and length of the PEBB chains between the AC and
DC switches. The required power determines the number of
parallel PEBB chains. Lastly, the required number of phases



determines the number of sets of parallel PEBB chains (one
set for each phase).

3) Optimization: The optimization objectives follow a strict
hierarchy. The primary goal is to minimize the total volume of
the placement area while maintaining all connectivity require-
ments. Given a satisfactory volume, secondary objectives are
considered. These include minimizing the distance between
dc+ and dc- bus bars to reduce electromagnetic interference
(EMI), keeping AC switches and their associated bus bars of
the same phase in close proximity for system simplicity, and
minimizing the total wire length with enhanced weight given
to PEBB-to-PEBB connections. Additionally, the placement
algorithm strives to position DC switches as high as possible
within the placement area when feasible.

4) Output: The algorithm generates a comprehensive visual
representation of the optimized component layout. DC com-
ponents are rendered in green. AC components are displayed
in blue. PEBBs that form functional chains are assigned
matching colors, with each distinct chain receiving a unique
color identifier. This visual grouping immediately conveys the
functional relationships between interconnected components.
The connection infrastructure is differentiated by color as
well, with busbars depicted in green, vertical connections to
busbars depicted in red, and PEBB-to-PEBB interconnections
are shown in black. This visualization serves as both a
technical blueprint for implementation and an analytical tool
for evaluating the effectiveness of the algorithm’s placement
strategy. The color-coded representation allows for intuitive
assessment of component grouping, connection efficiency, and
overall system organization.

5) Placement Algorithm: As a basis on which the rest of the
implementation rests, a new modified BL placement algorithm
is developed. In this placement algorithm, blocks are initially
placed in the top-right corner of the placement area and moved
down and to the left until they can no longer be moved.

Unlike the original algorithm, the highest-placed block is
tracked. Before a block is permanently placed, a check is
performed to determine if this block will be the new highest-
placed block. If this is the case, the block is repositioned by
first placing it in the top left corner and then moved down
and to the right until it can no longer move. All following
blocks will be placed the same way until a new highest block
is found and the direction is reversed again. This helps ensure
two blocks near each other in ordering would also be located
near each other in space. Previously, two connected blocks that
fall across the border of the placement area would be placed
on opposite ends of the structure.

Additionally, the x and y directions are flipped to ensure
the placements utilize the height fully before increasing the
width of the placement. This is due to the practical use of the
placement algorithm: since this placement will be used on a
ship it is more desirable to fill the unoccupied height of the
compartment rather than create a larger horizontal footprint.

6) Genetic Algorithm:

a) Fitness Function.: The Genetic Algorithm utilizes a
fitness function, F'(7), which optimizes for all of the stated
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Fig. 5: Simple placement of three blocks. In this case the
blocks slide to the bottom and slide to the left.
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Fig. 6: A continued placement up to 6 blocks. In this case a
the placement algorithm first tries an initial placement. It
then sees that the r¢ will be placed at a new height. In
response it retries a placement from the left and continues to
do so until it reaches a new height.
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Fig. 7: At the end, the x and y coordinates are flipped in
order to maximize the height used rather than the width.

goals by taking the product of each of the individual goals
weighted by their respective exponents.
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where the overall volume, V, is the total volume of the NiPEC
segment; the busbar routing distance, Dy, is length of the
connections between the DC switches and PEBBS; the wire
routing distance, D,,, is the length of the PEBB-to-PEBB
and PEBB-to-AC switch connections; the DC block distance,
Dy, is the distance between DC switches; the DC height,
Hy., is the height of the DC switches; the AC block distance,
D 4c is the distance between AC switches; the switch width,
W, is the horizontal range of switch blocks, measuring the
distance between the rightmost edge of the rightmost switch
and the leftmost edge of the leftmost switch; and PSO is the
PEBB-switch overlap. The PSO is calculated by finding the
horizontal range of the PEBB block placements and comparing
it to the horizontal range of the switch locations; the overlap
of these ranges are calculated by

PSO = max(sle — P, Pe — Sre) 4)

where Sj. and S, are the left and right edges of the leftmost
and rightmost switches, respectively, and P} and P,. are the
left and right edges of the leftmost and rightmost PEBBs,
respectively. This value is positive when there is no overlap,
and negative with some overlap. To make this value suitable as
a fitness parameter, we take its exponential, making its range
only positive.

V' is the most critical measure, allowing the algorithm to
optimize for densely packed solutions. Minimizing Dy, and
D,, reduces the physical weight of connecting hardware such
as cables and busbars. To minimize electromagnetic interfer-
ence, the bus bars coming from the positive and negative DC
switches should be near each other. The distance of the DC

switches from each other, Dy, is used as a proxy. The DC
distribution bus runs along the top of the NIPEC. To reduce
the routing distance, the DC switches should be placed as
high as possible; thus, minimizing H . is desired. Ideally it is
preferable for AC switches to be near each other, so D 4¢ is
included in the fitness function.

Taking the product of all metrics enabled the algorithm
to optimize all of the metrics at once. Another common
practice is to take the sum of the individual metrics in the
fitness function multiplied by their respective weights, but that
process requires analysis of the relative scale of each of the
parameters, making parameter optimization problem-specific.

b) Breeding: The genetic recombination process imple-
mented is the Order-Based Crossover (OBX) operator, which
is particularly well-suited for permutation-based problems.
This crossover method preserves the relative order of elements
from both parents while ensuring the production of valid
offspring.

The OBX procedure begins with the random selection of
a subset of positions from the first parent. The genes in
these positions are copied directly to the child chromosome,
maintaining their original positions. The remaining genes in
the child chromosome are then filled based on the order of
genes in the second parent, excluding those already present
from the first parent.

Formally, let P, = (pi1,p12,...,P1n) and P =
(p21, P22, ..., D2n) be the two parent chromosomes. These
parents are chosen probabilistically, weighted by their relative
fitness. Let S be a randomly chosen continuous subarray
of indices from 1, 2, ..., n. The child chromosome C is
constructed by first setting C[i] = P;[i] for all i € S, then
filling the remaining positions in C with the elements of P
in order, skipping elements already present in C.

¢) Mutation: Following the Order-Based Crossover
(OBX) operation, a mutation operator is applied with a pre-
defined probability to introduce additional diversity into the
population. The mutation process involves selecting a random
subarray of the child chromosome and shifting it to the right by
a random amount, but only up to the end of the chromosome.

This mutation can be more accurately described as follows:

Let C = (c1,¢2,...,¢n) be the child chromosome after
crossover. Let ¢ and j be randomly chosen indices such that
1 <4 < j < n, defining the subarray to be shifted. Let k£ be
a random integer where 1 < k < n — j + 1, determining the
amount of right shift.

The mutated chromosome C’ is then constructed as:

C/ = (Cl, 3 Cim1,Cj415 oy Cjtrk—1,Ciy ooy Cjy Cjiqky onny Cn) for
7+ k < n. This mutation operator shifts the selected subarray
(¢—1,...,c;) k positions to the right, moving any intervening
elements to the left to fill the gap. This mutation strategy
allows for local rearrangements within the chromosome, po-
tentially discovering new, beneficial orderings of genes. It
provides a mechanism for fine-tuning solutions and exploring
nearby regions of the solution space, complementing the more
substantial changes that can occur through crossover.



d) Checkpoints: Due to the sensitivity of the problem,
once the genetic algorithm generates a weak generation, it is
difficult for the algorithm to return. Any slight mistake in an
ordering can lead to a series of sub-optimal results. Though the
randomized nature allows the algorithm to make sub-optimal
movements to avoid local minima and reach local maxima
and reach global ones, this does not always solve local minima
difficulties. To avoid this, a checkpoint system is implemented.
As the algorithm runs it saves the best individual it has seen
during the entire process. If the algorithm goes through 100
generations without seeing an improvement, it will generate
a new generation based on the best individual. This allows it
to not only explore the search space, but to return to previous
optima if it has gone too far in the wrong direction.

7) Simulated Annealing: Soke and Singul showed that
genetic algorithms showed good results in finding-well packed
solutions. In this application, although the solutions from the
genetic algorithm were well packed, the wiring was subop-
timal. To remedy this, Simulated Annealing was considered.
During the simulated annealing portion of the algorithm, the
packing locations are held constant; instead, only the ordering
of the PEBBs is swapped within this framework, while leaving
the switches in place. This means each placement will have
the exact same volume, allowing us to consider only wiring
distance in the energy function.

a) Energy Function:
E(m) = aDy + Dy (6)

Two tunable parameters, o and 3, are used to optimize for
specific results. Increasing o produced more organized layouts.

b) Sorted Order: To enhance the efficiency of the sim-
ulated annealing process, a strategic pre-processing step is
implemented that focuses on the arrangement of PEBBs. This
approach involves sorting the PEBB placements prior to the
annealing process, while maintaining the order of all other
components. The sorting is done primarily by phase, and
secondarily by the PEBB’s position within its respective daisy-
chain configuration.

This sorting strategy is designed to ensure that PEBBs that
are physically connected via wiring are placed in sequential
order. The rationale behind this approach is to provide the
annealing process with a more favorable starting point, par-
ticularly in terms of wiring efficiency. Grouping connected
PEBBs together in the initial configuration aims to reduce the
likelihood of suboptimal wiring arrangements early in the op-
timization process. However, it is important to note that while
this sorting provides a structured initial state, the stochastic
nature of simulated annealing still allows for exploration of
the full solution space, maintaining the algorithm’s ability to
escape local optima.

c) Exploration: The state transition mechanism in
adopted in the simulated annealing algorithm is the same
mutation function that was previously implemented in the
genetic algorithm approach, described in Section III-B6c.

8) Post-Optimization: Upon closer examination, it becomes
apparent that the initial placement algorithm does not inher-
ently account for gravitational constraints, which are crucial in
practical implementations. To address this limitation, gravity
simulation was implemented. This step adjusts the vertical
positions of the blocks to reflect realistic placement, thus
ensuring no floating blocks.

Secondly, to facilitate the organization of blocks into well-
defined racks or columns, a guillotine cutting algorithm was
employed. This process is crucial for applications where
equipment must be arranged in distinct, vertically aligned
groups. The algorithm proceeds as follows:

Blocks are initially sorted based on their left-edge coor-
dinates. The algorithm identifies the largest block with the
minimum left-edge coordinate, using its width to define the
width of the rack. Within this defined width, the algorithm
packs as many blocks as possible, adhering to the rack’s
dimensional constraints; thus, if a block is less than half the
width of another, you may end up with two blocks side-by-side
in a rack. Any blocks that cannot fit within the current rack
are allocated to subsequent racks. This process is iteratively
applied until all blocks are assigned to racks, resulting in a
columnar organization of the placement.

IV. PARAMETER EXPLORATION

A. Evaluation Methodology

The parameter optimization process relied on dual eval-
uation criteria. The primary quantitative metrics were total
volume and routing distance minimization, while qualitative
assessment was performed through visual inspection of com-
ponent placement. This comprehensive evaluation approach
ensured that the solutions were not only mathematically opti-
mal but also practically implementable in real-world scenarios.

B. Experimental Process

The algorithm’s performance parameters were systemati-
cally refined through extensive testing on representative test
cases. The optimization process focused on configurations fea-
turing 1-4 AC switches, 2-3 distinct paths to each AC switch,
and PEBB chains of lengths 2-4. This balanced test envi-
ronment provided sufficient complexity to evaluate parameter
effectiveness while remaining computationally manageable.
Multiple iterations with varying parameter combinations were
executed to identify optimal weightings. The final parameter
values emerged from this methodical tuning process, demon-
strating superior performance in minimizing component dis-
tances, optimizing chain placements, and maintaining efficient
electrical connections. Final values are shown in Table I for
the genetic algorithm and Table II for the simulated annealing
algorithm. This calibration approach ensured the algorithm
could effectively handle the spatial constraints and connec-
tivity requirements typical in electrical distribution systems,
while maintaining reasonable computational efficiency.



Mutation Rate Effect on Fitness

Lol

N

o

Mutation rate:
Mutation rate: 0.25
Mutation rate: 0.5

1013

6x1071

Best Fitness

4x107#

Mutation rate: 0.75
Mutation rate: 0.9
Mutation rate: 0.99

T T T T
0 100 200 300 400

T T T T
500 600 700 800

Generation

Fig. 8: A mutation rate of 0.75 produced the highest peak results (red line). This example used chains of four PEBBs with
two chains in parallel for each of four AC phases.

TABLE I: Genetic algorithm parameters.

Population Size 100
Number of Generations 800
Mutation Probability 0.75

Busbar Routing Distance 3
Wire Routing Distance 5
DC Block Distance 3
DC Height 1
AC Distance 3
Volume 1
PEBB/Switch Overlap 6.
Switch Width 1

34

TABLE II: Simulated annealing parameters.

Iterations per Temperature 400
Start Temperature 50
End Temperature 1

Cooling Rate 0.992

C. Genetic Algorithm Parameters

A genetic algorithm’s performance is primarily influenced
by population size, generation count, mutation probability,
and a fitness function. While the experiments extended to
1500 generations, the additional computational cost beyond
800 generations did not yield significant improvements in
the solution quality. A population size of 100 individuals
was maintained, which proved sufficient to maintain genetic
diversity while keeping memory requirements manageable.
As shown in Figure 8, a mutation rate of 0.75 provided
the best results. This value helped prevent the algorithm
from becoming too aggressive in its mutations while still
maintaining the ability to escape local optima.

The parameters with the most impact on the results are the
fitness weights. When solutions showed a bias toward certain
characteristics, fine-tuning the parameters helped achieve more
balanced results. This suggests that while generally optimal
parameters were identified, slight adjustments might be bene-
ficial for specific use cases or requirements.

D. Simulated Annealing Parameters

The SA component’s performance was optimized through
careful tuning of three critical parameters. A starting tem-
perature of 50 was established, which was calibrated based
on the quality of initial solutions from the GA phase. This
higher starting temperature allowed for sufficient exploration
of the solution space in the early stages. The final temperature
was set to 1, and a cooling rate of 0.992 was implemented.
This cooling rate was selected to provide a gradual decrease
in temperature, allowing the algorithm to thoroughly explore
promising regions of the solution space while still maintaining
the ability to escape local optima.

E. Fitness Function Exploration

To verify the impact of various parameters, we present a
comparative analysis of the impact of adjusting fitness function
weights on the final layout solutions. The experiments focused
on three configurations: a baseline algorithm with balanced
parameters, a variant with reduced DC height weighting, and
a variant with minimal AC proximity weighting. Results can
be seen in Table III and Figure 9.

TABLE III: Metric values for comparison of weighting
parameter impact

Baseline No DC No AC
DC Height Weight 5 1 0 1
AC Distance Weight e 3 3 0
Busbar Routing Distance 216 370 365
Wire Routing Distance 157 126 178
DC Block Distance 12.25 12.25 12.25
DC Height 0.80 0.15 0.64
AC Distance 173.28 144 484
Volume 1193 2257 2257
PEBB/Switch Overlap 0.09 0.09 0.09
Switch Width 9.8 9.8 9.8




Fig. 9: Comparison of weighting parameter impact: baseline
(top), DC height removed (middle), AC distance removed
(bottom)

Each example was calculated using a population size of
100, 800 generations, and a simulated annealing starting
temperature of 50 with a cooling rate of 0.992.

The baseline algorithm configuration with balanced pa-
rameter weights is shown in the top image of Figure O.
The resulting layout demonstrates a reasonable compromise
between all optimization criteria, with components arranged
to balance DC bus height, AC component proximity, and
overall system volume. The baseline configuration’s fitness
function incorporated multiple weighted parameters, with each
contributing proportionally to guide the optimization process.
This balanced approach served as the reference point for
subsequent parameter adjustments.

The middle image in Figure 9 demonstrates the effect of
reducing the weight assigned to DC bus height in the fitness
function. By decreasing the weight parameter for DC height, a
change in component organization is observed. The algorithm
produced a layout with DC blocks at the very bottom.

The third configuration, shown in the bottom image in
Figure 9, demonstrates the impact of minimizing the AC
proximity parameter on component placement. With reduced
emphasis on AC component proximity, the algorithm gener-
ated a layout in which AC components were more distributed
throughout the available space.

V. CONCLUSIONS

This project presented a novel hybrid optimization approach
for the automated placement of electrical components within
modular integrated power corridors of naval vessels. By com-
bining the global exploration capabilities of Genetic Algo-

rithms with the local search precision of Simulated Annealing,
the developed method successfully addresses the complex
challenge of optimizing component placement while satisfying
multiple objectives and constraints.

The proposed algorithm demonstrated significant advan-
tages over traditional manual placement methods, particularly
in routing efficiency. By systematically optimizing the ar-
rangement of DC switches, Power Electronic Building Blocks
(PEBBs), and AC switches, the algorithm consistently pro-
duced well-organized layouts that matched or exceeded the
quality of hand-designed solutions. The ability to generate
these optimized placements in approximately one minute rep-
resents a substantial improvement over the time-intensive man-
ual design process, enabling rapid design space exploration
during early-stage ship design.

The effectiveness of the hybrid approach was explored
through parameter tuning and testing. The optimal parame-
ter configuration (population size of 100, 800 generations,
mutation probability of 0.75, with specific weightings for
various objectives) provided a balanced optimization frame-
work that prioritized critical aspects of component placement
while maintaining reasonable computational efficiency. The
implementation of strategic features such as the modified
Bottom-Left placement algorithm, checkpoint systems, and
post-optimization processes (gravity simulation and guillotine
cutting) further enhanced the practical applicability of the
solution.

As expected with meta-heuristic approaches, the algorithm’s
performance exhibited some variability due to its stochastic
nature, occasionally producing suboptimal results. This limi-
tation was addressed by increasing the number of generations
proportionally to the problem complexity, though multiple test
runs may still be beneficial in practical implementation sce-
narios. Additionally, the algorithm’s performance predictably
decreased as the number of components increased, reflecting
the exponential growth of the search space.

The primary contribution of this work lies in providing
naval engineers with a powerful tool for quickly generating
accurate design approximations of electrical component place-
ments within power corridors. This capability will significantly
enhance the efficiency of the ship design process, allowing
for more comprehensive exploration of design alternatives and
potentially leading to more optimized vessel configurations.

Future research directions could expand upon this founda-
tion in several ways. The incorporation of thermal considera-
tions would add another critical dimension to the optimization
process, accounting for heat dissipation and cooling require-
ments. Additionally, extending the algorithm to accommodate
new types of components would increase its versatility and
applicability across a broader range of naval power system
configurations. Further refinement of the algorithm’s handling
of larger component sets could also improve its scalability for
more complex power corridor designs.

In conclusion, this research demonstrates the effectiveness
of hybrid meta-heuristic approaches in solving the complex
optimization problem of electrical component placement in



naval power corridors. The developed algorithm provides a
practical, efficient solution that balances multiple competing
objectives while maintaining the essential constraints of the
system.
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