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ABSTRACT

Indirect dry-interface liquid cooling for electronics offers a modular and lightweight ap-
proach to thermal management. As part of development for the Navy’s integrated Power and
Energy Corridor (NiPEC), multiple computational thermal analyses of this cooling method
have been conducted but not yet tested against experimental results. NiPEC involves the
deployment of converter units referred to as integrated Power Electronics Building Blocks
(iPEBBs), which experience heat generation from four rows of MOSFET switches and a
transformer. The goal of thermal simulations is to predict the liquid flow rate through a
cold plate given a heat flux which will keep the iPEBBs below 100°C. Experimental data
on indirect liquid cooling of a layered substrate was collected with varied power, temper-
atures and flow rates. The data was verified through a STAR-CCM+ CFD simulation by
David Hernandez, then used as a training and test set for a physics-informed neural net-
work (PINN) model by Aniruddha Bora. The PINNs simulations were shown to improve in
consistency and accuracy when trained on data gathered in the experimental trials. The col-
lected experimental data set is available to the public for training and testing computational
models.
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1 Introduction

The electrification of marine vessels has been an attractive idea for decades from both envi-
ronmental and tactical perspectives, yet its actual implementation has only recently begun.
With concerns over climate change and pollution escalating, the International Maritime Or-
ganization (IMO) committed in 2018 to decarbonizing shipping, pursuing a 70% greenhouse
gas emission reduction by 2050 [1].

Five years later, the IMO accelerated their timeline, striving to reach net-zero greenhouse
gas emissions close to 2050 [2]. The United States Navy made their intentions of moving
toward electrification clear in the 2019 Naval Power and Energy System Technology Devel-
opment Roadmap (NPES) [3]. The report states “electricity allows moving large amounts
of energy from one place to another, controllably and quickly, making the energy resource
(power generated by prime movers) extremely fungible” [3]. Silent running, increased maneu-
verability, support of high-power modules, and reduction of emissions through electrification
are desirable qualities across industrial and marine applications.

Energy storage and management was long pointed to as the barrier to electrification of
commercial shipping, but more updated studies have demonstrated challenges are shifting
towards operational instead of technological [4], [5]. However, Naval applications of elec-
trification still require further technological development. In 2022, a five year program was
proposed by the Office of Naval Research (ONR) to develop the Power Electronic Power
Distribution System (PEPDS) [6]. Figure 1 shows a ship hull section with one proposed
NiPEC layout.

To meet Navy system requirements, research is being conducted around the Navy in-
tegrated Power Electronics Building Block (iPEBB), Navy integrated Power and Energy
Corridor (NiPEC), control, and simulation. iPEBBs are the modular, lightweight, self-
contained base unit for electrical distribution that NiPEC utilizes to build out safe and
resilient high-power shipboard energy systems, shown in Fig. 2. The PEPDS program is
looking to culminate in a megawatt-level test bed, which requires additional research into
thermal management of iPEBBs while maintaining the modular and lightweight specifica-
tions.

The traditional methods of thermal management, direct liquid cooling and finned air-
to-air heat exchangers, violate the design constraints of an iPEBB. Liquid connections to
the iPEBBs are prohibited, and the units must be robust, compact, and under 35 lbs [6].
One iPEBB must be able to dissipate 9.6kW of heat generated in the transistor system and
1.2kW of heat generated by the high frequency transformer while staying under 100°C [7], [9].
The location of the heat-generating components are highlighted in Fig. 2. Recent research
has been conducted towards meeting these challenging requirements through indirect liquid
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Figure 1: Schematic showing proposed segment of the power electronics arrangement within
a ship hull, modified from [7]. iPEBBs are stacked in a server rack configuration.

cooling, including thermal modeling and simulation [9], [10]. Dry-interface liquid cooling
uses a cold plate in contact with the iPEBB to remove heat, and relies on the low contact
resistance between the cold plate and the iPEBB provided by thermal interface materials.
Computational fluid dynamic (CFD) modeling of the indirect liquid cooling solution yielded
promising results, but has not been experimentally validated.

The PEPDS initiative also looks to further simulation capabilities. Physics-informed
neural networks (PINNs) could offer a faster and more powerful simulation with predictive
powers for unconventional thermal management systems such as indirect liquid cooling [11].
Experimental data must be collected to validate this emerging computational tool.

1.1 Thesis Objective

There are still many unknown elements within the NiPEC design, including the behavior of
developmental electronic components inside the iPEBB. Until the testbed design is finalized,
the ability to quickly and effectively iterate on the cooling system is critical. CFD and
PINNs are both powerful tools for informing the dry-interface cooling system parameters
based on the most current requirements of the iPEBB. Experimental data verifying CFD for
an analogous system will improve confidence of simulation results. PINNs have the potential
to provide accurate simulation results at higher speeds if the training and test data encompass
the range of expected cooling conditions in the system. Neither experimental data sets have
been previously collected for dry interface liquid cooling of a layered substrate based on the
most recent iPEBB design.

Thermal experiments on dry-interface liquid cooling were conducted to validate a compu-
tational fluid dynamic model built in STAR-CCM+ and a physics-informed neural network
(PINN) assessment. The experimental data serve as a training and testing set for the PINNs
model, and were used to assess the CFD model. Inlet temperature, flow rate, and power were
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Figure 2: iPEBB design showing location of Silicon Carbide (SiC) MOSFETs and high
frequency transformer, from [8]. The MOSFET bridges are the main source of thermal
energy within the iPEBB.

varied with steady-state system temperatures recorded. Results from this analysis were used
to comment on the predictive power of PINNs modeling and validity of physical assumptions
behind the simulations. As specifications for the iPEBBs evolve, improved and verified mod-
eling will allow for more effective design iteration. PINNs simulation and physics-informed
deep operator networks (DeepONets) also have applications to a wider variety of thermal
management systems once further developed.
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2 Background

2.1 Indirect Liquid Cooling of iPEBBs

The Navy iPEBB relies on Silicon-Carbide (SiC) power transistors to support high loads and
faster switching than current silicon-based technologies and a high frequency transformer
to electrically isolate the distribution side from the load side of the iPEBB [6]. The SiC
MOSFET bridges are expected to collectively generate 9.6 kW of heat through conduction
and switching losses. The high frequency transformer is expected to generate up to 1.2 kW
of heat, and provides the 100°C operational constraint [7|. The total heat flux that must be
removed from the iPEBB is 3.3 W /cm? across the top and bottom surfaces.

The iPEBB base units are anticipated to be vertically stacked to build out a configurable
shipboard power system. The indirect liquid cooling system must be fully integrated into
the stack and still allow for quick replacement of each individual unit. Indirect liquid cooling
is uncommon in these applications because contact resistance between the heat source and
cooling mechanism drastically decreases efficiency. Thermal interfaces are being explored to
reduce this inefficiency, but it still presents a significant challenge.

Within that stack, the current design for indirect liquid cooling is to have a thermal
interface between the concentrated heat loads of each iPEBB and the cooling plate. Pyrolytic
Graphite Sheets (PGS) under low pressure (below 10 psi) were explored as potential thermal
interface material for this specific application [10]. A mechanical load must be maintained
between the iPEBB surface and the cold plate to lower the thermal resistance of the PGS, and
the mechanism and cold plate must be incorporated into the modular stack. The mechanical
load must also have a quick-release mechanism for the removal and replacement of iPEBBs
[12]. This unique configuration currently relies on simulation to predict cooling behavior.

2.2 Modeling

2.2.1 Adiabatic Theory

The simplest thermal model for the indirect liquid cooling is the adiabatic model which
equates the heat flow in from the source to heat flow removed by the cooling system. The
thermal network being examined is shown in Fig. 3. Note that convection to air is approx-
imated as having significantly larger thermal resistance than conduction and therefore left
out of the thermal network.

This model will underestimate the velocity or the temperature difference as it neglects
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Figure 3: Diagram showing simplified thermal resistor network of the experiment. By ne-
glecting heat exchange with the environment, heat flow @);,, is equated to ), of the system
to relate the flow rate and the temperature drop between the inlet and outlet of the cold
plate liquid.

heat flux from the ambient environment. It also neglects any heat added due to viscous
effects in the liquid cooling loop.
The rate of heat flow out of the system, Q,., is calculated as:

Qouwt = me, AT = pAvc, AT (1)

where p represents density of water, A is the interior cross-sectional area of the pipe, v is
water velocity, ¢, is the specific heat capacity of water under constant pressure, and AT is
the temperature difference between the inlet and outlet.

The inlet to outlet temperature drop, AT can be related to velocity or mass flow rate,
m, under adiabatic conditions as:

me, pAvc,

AT

(2)

The thermal resistance from the surface of the stack to the cold plate is estimated as a
summation of the conductive resistances across each layer, calculated as:

L
Rconduction - m (3)

where L is length in the path parallel to heat flux, k is thermal conductivity, and A is the
cross-sectional area perpendicular to heat flow.
The thermal resistance from the bulk of the cold plate to the steel tubing is estimated

as: l ( / )
n\ro /71

. == 4

Rconductzon,cyl oLk ( )

where o and 7 are outer and inner radius of the cylindrical shell respectively, and L is the
length of the shell. Both conductive resistance relationships are derived from Fourier’s law
for heat conduction.

Several simplifying assumptions were employed, including adiabatic boundaries and uni-
form in-plane temperature were used to quickly estimate the temperature profile. This rough
estimate provides basic intuition for how the experimental set up was expected to behave,
and adds confidence to the evaluation of simulation results.
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2.2.2 CFD Simulation

Simcenter STAR-CCM+ is commercial computational fluid dynamics simulation software
which utilizes finite element analysis (FEA) to model complex systems. The system is physi-
cally discretized into a mesh, and within each finite element, governing differential equations
are numerically solved. FEA is generally accepted as the standard for the computation
thermal analysis.

CFD has been applied previously to indirect liquid cooling design. Experimental vali-
dation of CFD modeling for indirect liquid cooling of electronics has also been carried out.
Cheng et al. in 2006 found that CFD simulation results were within 2% of the measurement
results for indirect liquid cooling of a compact multichip module with a thermal grease inter-
face [13]. Though the experimental conditions differ from the iPEBBs cooling experimental
design, the physics being simulated have significant overlap. The Liu et al. study successfully
combined data-driven FEA, validated by experimentation, with a Gaussian process-based
(GP) surrogate model to rapidly converge on an optimal cooling plate geometry for batter-
ies [14]. The physics-based simulation was found to be 90% faster than the experimental
method and accurately predicted the maximum battery temperature. CFD is expected to
produce highly accurate results with low uncertainty, and is therefore used to validate the
data set and as a standard against PINNs.

2.2.3 PINNs

Physics-Informed Neural Networks (PINNs) operate at the intersection of physics-based mod-
eling and machine learning, offering promising solutions for a wide range of scientific and
engineering problems. PINNs leverage neural networks to learn complex relationships within
data while incorporating fundamental physical principles into the learning process. PINNs
are emerging as a tool to simulate complex physical systems, including fluid dynamics, solid
mechanics, and electromagnetics, due to their ability to efficiently solve nonlinear partial
differential equations (PDEs). However, as the solution is based on optimization, the models
tend to require careful tuning and can be sensitive to the initial conditions and hyperparam-
eters. PINNs can settle on local solutions instead of globally optimal solutions, leading to
outliers. Modifications have been developed by researchers to make PINNs simulations more
robust to these sensitivities [15]-[18]. Furthermore, PINNs are configured to solve specific
partial differential equations based on a set of parameters, which means that any alteration
in the design parameters necessitates retraining the network to accommodate the new con-
ditions. To circumvent such issues and to tackle with the family of solutions for different
parameters, Lu et al. came up with the idea of a deep operator network (DeepONet) that
allows to maps between two functional spaces [19], [20].

The development of PINNs has been motivated by the limitations of traditional compu-
tational methods in capturing complex systems physics and handling noisy or sparse data.
Traditional numerical methods typically use grid-based discretization and iterative solving
processes, which can become computationally intensive as the dimensionality rises or when
dealing with problems that span multiple scales. In contrast, PINNs offer a data-driven
model that learns directly from observations, removing the need for mesh generation and
iterative solving. By incorporating physical principles as constraints during training, PINNs
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can effectively regularize the learning process, leading to more accurate predictions and im-
proved generalization capabilities even when given small data sets. These qualities make
PINNSs especially powerful for analyzing complex thermodynamic systems, and have been
found to even be effective with unknown boundary conditions [21], [22]. PINNs simulations
have not yet been applied to indirect dry-interface liquid cooling systems, so learning and
test data sets are required to train the model. This thesis provides the experimental training
and test data for use in development of PINNs models of power electronics dry-interface
liquid cooling.
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3 Experimental Design

3.1 Experimental Rig

As iPEBBs are still in development, a modified version of the pressure proximity rig de-
signed and built by Joushua Padilla in his 2023 Master’s thesis was used as the basis of
experimentation [10]. The pressure proximity rig shown in Fig. 4 consists of a cold plate,
two aluminum plates, PGS as thermal interfaces, and four power resistors to deliver heat.

Figure 4: Experimental rig with four power resistors (shown in orange) adhered to a layered
substrate which is in thermal contact with a cold plate.

Threaded fasteners are used to create pressure between the layered substrate, the cold
plate, and the power resistors to reduce the thermal resistance of PGS to a known value
based on the pounds per square inch of the system. Temperature sensors are placed at five
points on the physical rig, labeled in the side view of Fig. 5. Two holes were milled 40 mm
into the side of the middle aluminum plate to measure the internal temperature of the stack.
Three more temperature sensors were included to measure the ambient temperature, and
the inlet and outlet temperature of the water flowing through the cold plate.

3.2 Sensors and Data Collection

Temperature data from the three different types of thermal sensors was collected through
an Arduino Leonardo as shown in Fig 6, and the serial output for each trial was logged with
PuTTY. The data was then analyzed in MATLAB. While using the same type of thermal
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Figure 5: Graphic showing placement of temperature sensors from an exploded side view
and top view on the experimental rig. Additional details on temperature sensors labeled (a)
through (h) are given in Table 1. Sensors (c), (d), and (e) were placed 40 mm in from the
edge of the aluminum plates. Additional material information is given in Appendix A.

sensor throughout the system would have been ideal, different environmental and spatial
constraints lead to the selection of the three sensor types. Additional boards were required
to connect the Adafruit thermocouples and the Vernier surface thermistors.

Information for all five types of sensors is compiled in Table 2. The digital temperature
sensors made by Analog Devices were sealed in a Sparkfun waterproof housing. All experi-
mental measurements were conducted in the 0°C to 55°C range and the Vernier sensors were
not subjected temperatures higher than 40°C, so the reported uncertainty is applicable. The
three different temperatures vary most critically in uncertainty. Both the pressure and flow
rate sensors were reported to have large uncertainty, but lengths were taken to reduce this
uncertainty. The flow rate sensor was calibrated by measuring water volume over a known
period of time across five different flow rates. Increments of known weight were used to

Table 1: Type and Location of Thermal Sensors shown in Fig. 5

Sensor  Name Type

(a) Ambient K-type Thermocouple

(b) Resistor K-type Thermocouple
(c) Face K-type Thermocouple
(d) Iny Surface Thermistor

(e) Iny Surface Thermistor

(f) Edge K-type Thermocouple
(g) Outlet  Digital Temperature Sensor
(h) Inlet  Digital Temperature Sensor
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Figure 6: Graphic showing temperature sensor electronic architecture for connecting three
different types of sensors to an Arduino Leonardo for data collection. Temperature sensor
range and accuracy is given in Table 2. The Analog Devices DS18B20 digital temperature
sensors were used in a Sparkfun waterproof housing.

Arduino Arduino Leonardo

calibrate and re-zero the pressure sensor.

3.3 Experimental Trials

The physical experimental set up is shown below in Fig. 7. @);, represents the heat flux
delivered by the two power supplies to the power resistors in the experimental stack. ..
represents the heat flux removed by the chiller-circulator from the experimental stack through
the cold plate. Water was used as the liquid in the chiller-circulator cold plate loop.

Two Extech Adjustable Switching Mode Power Supplies were wired to two resistors each,
providing up to 520 Watts to the experimental stack. The cold plate in the experimental
stack was connected through tubing to an IKA RC 2 Basic Chiller-Circulator, which was
used to control inlet temperature and flow rate. The Digiten flow sensor was placed in the
outlet flow path to measure the volumetric flow rate of the system.

To verify experimental repeatability, ten minute trials were taken three times over the
course of several days for the lowest and highest power of the data set at three different flow
rates. Once repeatability was established, the experimental conditions were expanded to a

Table 2: Complete sensor list with uncertainty and range used in experimental trials

Measurement  Units Sensor Range  Uncertainty
Pressure psi TekScan I-Scan 5151 Mat 0-150 3-9% [23]
Flow rate  L/min Digiten FL-408 1-30 +0.6 [24]

Temperature °C Adafruit K-Type Thermocouple -250-400 +2° [25]

Temperature  °C Vernier Surface Thermistor 0-40 +0.03° |26]

Temperature  °C Analog Devices DS18B20 -10-85  40.5° [27]
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Figure 7: Graphic showing the experimental set up. The power resistors shown in orange
on the experimental stack were heated by two Extech Adjustable Switching Mode Power
Supplies. Water was circulated through the cold plate in the stack and the IKA RC 2 Basic
Chiller-Circulator with controllable inlet temperature and flow rate. The heat flows in and
out of the system are labeled as Q;, and Q.

total of four different powers, five different flow rates, and three inlet temperatures. The
wide variety of experimental conditions were selected to provide a robust training and test
data set for the PINNs model.

3.4 Simulation of Experimental Rig

Two different thermal simulation methods of the experimental rig were employed: CFD and
PINNs. These simulations had differing constructions, boundary conditions, and experi-
mental trials. Both simulations were given the same values for material properties in the
experimental set up, included in Appendix A.

In the CFD simulation constructed by graduate student David Hernandez of the experi-
mental set up (Fig. 8), natural convection along the sides and face was modeled with air as
an ideal gas. The bottom of the cold plate was treated as adiabatic. Uniform flow velocity
and temperature profiles were also assumed. This numerical simulation is expected to be
more accurate than the adiabatic theoretical estimate. Inlet temperature, heat flow into the
system, and flow rate were given to predict temperature at points (b) through (g) of the
experimental rig shown in Fig. 5. Nine total trials were run with heat flow of 150W, 200W,
and 260W; flow rate of 1.4, 2.34, and 3.26 L /min; and inlet temperature of 15°C. The results
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Figure 8: CFD simulation courtesy of David Hernandez with a heat flow in of 200W, inlet
temperature of 15°C, and flow rate of 2.34 L/min. This image is from one of nine runs
compared to experimental data and PINNs simulation results. The resutls from all nine
CFD runs are given in Appendix B.

from these trials are included in Appendix B.

Postdoctoral Researcher Aniruddha Bora constructed a two-dimensional slice of the test
system in python and simulated with PINNs using TensorFlow. The top and bottom sur-
faces were assumed to be adiabatic, and Robin boundary conditions were prescribed for the
edge surfaces. Temperature was also prescribed for the water at each location in the two-
dimensional slice as flow was not simulated. Using the convective heat transfer coefficient
between the cold plate and the water predicted from the simulation, water flow rate was
calculated to compare with experimental results. Similar to the CFD model, temperature
at points (a) through (h) of the experimental rig shown in Fig. 5 were predicted. In a
manuscript currently under preparation, Dr. Bora further explains the PINNs formulation
and explores other assumptions including different boundary conditions [28|.
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4 Results and Discussion

4.1 Repeatability of Experiment

Establishing repeatability across trials is critical for validation of the experimental set up.
Shifting ambient conditions as well as sensor error leads to variation across trials but the
variation was not found to be significant.

It is assumed that each ten minute trial is taken at steady state, meaning temperature
is expected to be constant and independent of time across trials. In Fig. 9, the temperature
readings for each sensor are plotted against time for a trial with experimental conditions of
260W, 15°C inlet temperature, and 2.4 L/min flow rate. Sensor noise is visualized, with the
most precise sensors having the smallest noise and the least precise having the largest noise.
There are no significant trends in temperature across the ten minute trial, indicating that
the steady state assumption is valid.
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Figure 9: Graph real time sensor readings across a ten minute trial with the experimental
conditions of 260W, 15°C inlet temperature, and 2.4 L/min flow rate. As stated in Table 2,
the K-type thermocouples have the largest error which is visible in the sensor noise of those
four probes: ambient, resistor, face, and side. Discrete steps in temperature are observed
due to behavior of the K-type thermocouple amplifier [25].
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To determine experimental repeatability, experiments at the edge cases of highest and
lowest power were conducted at each different flow rates three times. These trials were
taken in a randomized order over several days. For each trial, the steady state temperature
averaged across ten minutes at four points is plotted against inlet velocity in Fig 10. Figure
10a shows trials with a heat flow in of 150W and Fig. 10b shows trials with a heat flow in of
260W. As expected, the inlet temperature remains near-constant at 15°C while the rest of
the system cools down as flow rate increases. Higher temperatures are observed for a heat
flow in of 260W. Trials generally show low variation except on face temperature, which was
measured with the K-type thermocouple. As stated in Table 2, the K-type thermocouple
has the highest uncertainty out of the three temperature sensors used, which accounts for
much for the observed variation. There are no other trends in variation, and the experimental
results were found to be repeatable across different days and conditions. Due to low variation
between repeated trials, data points for each trial are not always visibly distinguishable in
Fig 10.
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Figure 10: Graphs comparing measured system temperatures for three repeated trials at (a)
heat flow Q;, of 150W; (b) heat flow Q;, of 260W. The inlet temperature is prescribed at
15°C, and is consistent across all nine trials. The other three temperatures are observed to
decrease with slower liquid cooling flow rate and lower power across all trials. The highest
variation in trials is observed on the face, which is measured with the high-uncertainty K-type
thermocouple. As the other three locations have significantly less difference between trials
and were measured with more accurate temperature sensors, the thermocouple sensor error
largely accounts for observed face temperature variation. Plotted data points for repeated
trials with lower variation are visibly near-indistinguishable.

Aside from sensor noise, experimental error is also introduced through variation of am-

bient conditions, error in the power supplies, and potential non-linear behavior in the fluid
system. There is also uncertainty around the material properties of PGS from variability in

31



the pressure of the experimental rig since thermal conductivity of PGS is pressure dependent.
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4.2 Analysis of PINNs With and Without Experimental
Data

One major advantage of PINNs is the ability to give the simulation constraints from experi-
mental data for faster convergence and more accurate results. The PINNs simulations were
run with the given experimental conditions and the heat equation. The simulations were
then run again but with the inclusion of experimental temperature data for the edge and the
face of the stack. Figure 11 shows how the PINNs models improve when given experimental
data with (a) more accurate flow rate and (b) temperature predictions, and also smaller
uncertainty. This is true across a variety of experimental conditions.

CFD is the current standard for thermal-fluid simulation. Comparing the generated tem-
perature profiles on the cross section of the stack in Fig. 12 indicates that PINNs, despite
being trained with experimental data, may yield results that deivate from physical expecta-
tions. In fact, the PINNs simulation trained on experimental data produced a temperature
distribution less similar to CFD than the PINNs simulation without training data. A possible
factor contributing to this deviation was setting the thermal resistance of each stack layer as
constant even though there is uncertainty in those thermal properties. The temperatures on
the edge and face predicted by PINNs were closer to the experimental results than the CFD
prediction. However, the asymmetric profile and large temperature difference between the
water and cold plate are inconsistent with CFD and theory. CFD also consistently predicted
temperature differences between points on the body more accurately, confirming that the
CFD simulation profile reflects the experimental set.

33



-

oo
-
oo

[l 200W 3.3L/min 15°C

[ 260W 1.4L/min 10°C [l 200W 3.3L/min 15°C

[ 260W 1.4L/min 10°C

1.6 [1150W 1.4L/min 15°C J 16 in 10° i
o 2 3mn 20 o 1A 100
I260W 3.31./min 20°C [E260W 3.3L/min 20°C
14 E 14 E
° -3
< 1.2 L g 1.2 J
4 [
3 K
. . o B AP
3 i 5
: :
UT: 0.8 "E 0.8
4 7}
z z
o 0.6 Z06
o
0.4 0.4
0.2 0.2
0 —1 —1 0 —1 —
No Training Data Trained on Data No Training Data Trained on Data

(a) (b)

Figure 11: Graphs comparing the predicted values by PINNs, normalized by experimental
values for (a) flow rate; (b) middle stack temperature. Error bars represent 95% confidence
intervals, calculated with error propagation for experimental and simulation results. The
expected flow rate is included in all PINNs simulations trained on experimental data but
only included in two for simulations not trained on data. One trial included the expected
middle stack temperature for both models with and without training data, but accuracy
increased for the simulations given data.
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Figure 12: Three cross sections from thermal simulations: (top) Simcenter STAR-CCM+
CFD for 200W 15°C 2.34 L/min, courtesy of David Hernandez; (middle) PINNs without
data for 260W 20°C 2.34 L/min; (bottom) PINNs with experimental data for 260W 20°C
2.34 L/min. Though the absolute temperatures are expected to differ, the distributions are
expected to remain similar. The PINNs simulation not given experimental data has a more
similar thermal profile to CFD than the PINNs simulation trained on experimental data.
Note the differing colormap scales of the three temperature distributions.
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4.3 Comparison of Experimental Results and PINNs to
CFD

Experimental results, PINNs, and CFD are generally in agreement, as seen in Fig. 13. Nine
different CFD simulations were ran by David Hernandez. Flow rate, inlet temperature,
and heat flow in were prescribed for each run, and the simulation predicted temperatures
at points (b) through (g) labeled in Fig. 5. Due to inherent randomness in the PINNs
simulation, each experimental conditions was run three times then averaged. The PINNs
were constrained to the experimentally measured outlet temperature, and used to predicted
flow rate and temperature at points (c¢) through (f) in Fig. 5. Quu: is therefore compared
across all three data sets as it encompasses the predictions made by both simulations.

All three simulations had results close to the adiabatic case of Q,; = Q;n, with CFD and
experimental results staying slightly below as expected. Q..: is expected to be slightly less
than @;, due to heat flow from the experimental system into the environment, not accounted
for in Q.. Larger variations of @),,; were observed in PINNs simulation because it is based
on optimization and will sometimes settle at locally but not globally optimized solution.

CFD predicted the temperature drop from the face to the middle of the stack more
accurately, shown in Fig. 14a. However, Fig. 14b shows that none of the three data sets
followed the same trend for the temperature drop across different flow rates.

Figure 15 presents a bar graph of experimental measurements alongside the predictions
generated by CFD and PINNs for temperature at four points on the experimental stack: (d)
Iny, (e) Iny, (f) Edge, and (c) Face. The trials were recorded at 15°C inlet temperature, 150
W, and 1.4 L/min flow rate. The location of the four points are shown in Fig. 5. The PINNs
model was trained on experimental edge and face temperatures and matched experimental
results for those two points within a 95% confidence interval. Conversely, the CFD model
exhibits a discrepancy from the experimental setup across all four points. This outcome is
partially due to uncertainties surrounding the thermal resistances of the materials within
the experimental rig.
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Figure 13: Graph of calculated heat flow out against measured heat flow into the system
for experimental results, CFD, and PINNs. A line is drawn for Q,,; = Q;,, the adiabatic
condition. All three data sets follow the theory as expected, but larger variation is seen in
the PINNs data. A significant outlier is seen in the PINNs simulation, which is inherently
a stochastic process and will sometimes settle on a non-optimal solution, highlighting the
necessity of multiple trials.
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Figure 14: Comparison of the temperature drop across the face and middle of the stack: (a)
by heat flow rate; (b) by inlet velocity. Experimental results, CFD, and PINNs simulations
all follow a similar upward trend by heat flow rate, but not for inlet velocity. Discrepancies
between experimental and simulated results is partially due to sensor error and uncertainty
in material thermal properties. Specifically, PGS thermal conductivity is pressure dependent
and was only recently characterized at lower pressures [10].
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Figure 15: Bar graph showing the experimental measurement as well as CFD and PINNs
predictions for temperature at four points on the stack: (d) Iny, (e) Ing, (f) Edge, and
(c) Face, as labeled in Fig. 5. The experimental conditions were 15°C inlet temperature,
150 W, and 1.4 L/min flow rate. The PINNs model was trained on the experimental edge
and face temperature, so it is expected that the experimental value is included in the 95%
confidence interval for PINNs. In three cases, the PINNs model predicted values closer to the
experimental set up than the CFD model. This is not surprising as the thermal resistance

of each material in the experimental rig is not known precisely, though both models were
given the same initial estimates.

39



5 Conclusions and Future Work

While effective solutions to power electronic cooling have been developed, the design con-
straints around cooling an iPEBB require a new approach. Previous research proposed using
dry-interface liquid cooling with pressurized PGS as the thermal interface to meet these de-
sign constraints [10]. As the iPEBB continues evolving, rapid thermal simulation accelerates
the design and testing process. Experimental data of an analogous physical model to the
iPEBB was collected in this thesis under a variety of conditions. The data served to validate
CFD as well as train and test new PINNs simulations.

The simulation utilizing PINNs and training data generated temperatures at designated
points which aligned closely with experimental results. However, the high accuracy of those
specific locations came at the cost of an unrealistic temperature distribution across the entire
body, leading to lower accuracy at non-prescribed locations. The PINNs were also subject
to outliers and were most accurate when averaged over several trials, with the standard
deviation across trials decreasing when trained on experimental data. CFD produced precise
results with temperature drops matching experimental results more closely, both across the
inlet and outlet and from the face to middle of the stack. Still, the absolute temperatures
predicted by CFD do not match experimental results exactly. The discrepancies in both
PINNs and CFD may be partially accounted for by uncertainty in material thermal properties
of the stack. The CFD model also produced a more realistic temperature distribution, which
is expected as fluid flowing through the system was included in the simulation. The PINNs
model prescribed the fluid temperature and solely simulated heat flow. While both the PINNs
and CFD models exhibit strengths and limitations in predicting temperature distributions
within the system, the discrepancies between simulated and experimental results underscores
the necessity for experiment data sets. The collected experimental data set in this thesis is
publicly available for the training and testing of computational models.

Ongoing research aims to improve the agreement between the simulated and observed
temperature profiles in PINNs. Developments include experimenting with various boundary
conditions and modifying the neural network architectures. This additional research will be
discussed in the future manuscript of Bora et al. [28].

Future work would also include research using DeepONet /Operator-based networks, en-
abling generalization across parameters and conditions. Constructing a DeepONet would
also allow faster simulations for rapid evaluation of iPEBB cooling designs. Neural networks
are becoming a powerful simulation tool, and the evaluation approach employed in this thesis
is applicable to a broad range of complex systems.
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Appendix A

Material Properties

The total effective resistance is approximately as the sum of the conductive resistances across
each layer, which are shown in Table 3.

Table 3: Geometry and Properties of Materials in the Experimental Rig

Material Thermal Conductivity (W/mK)  Dimensions (mm)

6061-T6 Al 152 [29] 152.4 x 152.4 x 6.35
PGS (4.2 psi) 0.842 [10] 152.4 x 1524 x 0.2
MIC 6 Al 142 [30] 152.4 x 152.4 x 6.35
304 SS 16.2 [30] OD 9.525, ID 8.105
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Appendix B

CFD Simulation Results

Simulation results, courtesy of MIT graduate student David Hernandez, are listed in Table
4. All temperatures at locations (c¢) through (h) are in °C. Sensor locations are labeled in
Fig. 5. Inlet temperature, flow rate, and @), were prescribed.

Table 4: CFD Simulation Results

Qin (W) Flow rate (kg/s) (c) Face (d)In; (e)Iny (f) Edge (h) Inlet (g) Outlet

150 0.0234 21.258 19.972 19.680  19.078 15 16.487
150 0.0391 20.186  18.887 18.690  18.006 15 15.886
150 0.0545 19.794  18.488 18.348  17.611 15 15.631
200 0.0234 23.343  21.629 21.239  20.436 15 16.982
200 0.0391 21.915 20.182 19.921 19.008 15 16.181
200 0.0545 21.392  19.651 19.464  18.481 15 15.841
260 0.0234 25.846  23.617 23.110  22.067 15 17.576
260 0.0391 23.989  21.737 21.397  20.211 15 16.536
260 0.0545 23.309  21.046 20.803  19.525 15 16.093
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