
Understanding Git

Nelson Elhage Anders Kaseorg

Student Information Processing Board

October 21, 2008

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 1 / 41

The Git model

Outline

1 The Git model

2 Using Git

3 Collaboration with Git

4 Rewriting history

5 And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 2 / 41

The Git model

The Git model

A Git repository contains four kinds of objects.

An object is either a blob (file), a tree (directory), a commit
(revision), or a tag.

Every object is uniquely identified by a 40 hex digit number, which is
the SHA-1 hash of its contents.

Don’t worry—identifiers can be abbreviated by truncation, or
referenced with human-readable names.

Some objects refer to other objects using their identifiers.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 3 / 41

The Git model

Objects

A blob object is a file’s contents.
A tree object is a directory—a list of zero or more directory entries,
each of which has

a name
a UNIX mode
a tree id or blob id

A commit object contains
a tree id
zero or more parents, which are commit ids
an author (name, email, date)
a committer (name, email, date)
a log message

A tag object contains
a tag name
a tagger (name, email, date)
a reference to another object (usually a commit)
an optional log message

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 4 / 41

The Git model

A commit

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 5 / 41

The Git model

More commits

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 6 / 41

The Git model

A Git repository

A Git repository is a collection of refs—branches and tags. (Branches
are also known as heads.)

A ref is a named mutable pointer to an object (usually a commit).

HEAD → refs/heads/master
refs/heads/master → commit fec6ed...
refs/heads/ftrace → commit ce5c1e...
refs/tags/v2.6.8 → commit e8ce2f...
refs/tags/v2.6.27 → tag 4b5127...

The repository automatically stores the directed acyclic graph of
objects rooted at these refs.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 7 / 41

The Git model

Branches

Git was designed to enable lightweight branching and merging.

Each repository can have any number of branches.

Branches are just refs—pointers into the DAG of commits—and these
pointers themselves are not versioned.

So you don’t need to be afraid of making throwaway branches for
experiments.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 8 / 41

The Git model

Consequences of the Git model

Git tracks the history of your whole project, not the history of
individual files.

Best practice is to keep projects that are logically separate in separate
Git repositories.

Git does not track renames as metadata in the repository.

Instead, renames are automatically detected based on content when
this information is needed.

A commit ID cryptographically certifies the integrity of the entire
history of the repository up to that commit.

Git has powerful tools for rewriting history—but this requires
communication with everyone that has pulled any affected commits
from your repository.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 9 / 41

Using Git

Outline

1 The Git model

2 Using Git

3 Collaboration with Git

4 Rewriting history

5 And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 10 / 41

Using Git

Getting a Git repository

git init Create an empty Git repository in the current directory.
By default it will have one branch named master.

git clone url Clone the Git repository from url . This may be over
HTTP, SSH, or the Git protocol, or it may be a path to
another local repository.

Both of these operations will create a working copy.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 11 / 41

Using Git

Working copy

Every working copy has its own Git repository in the .git
subdirectory (with arbitrarily many branches and tags).

The most important ref is HEAD, which refers to the current branch.

The .git subdirectory also stores the index: a staging area for
changes on top of HEAD that will become part of the next commit.

Finally, the files outside of .git are the working tree.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 12 / 41

Using Git

Git workflow

Changes made to the working tree can be added to the index.

The index can be committed to the current branch (where it will then
become the new HEAD).

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 13 / 41

Using Git

Constructing commits

git add file Add or update file from the working tree into the
index.

git reset file Unstage changes to file in the index, without
touching the working tree.

git checkout file Undo modifications to file in the working tree by
reading it back from the index.

git rm file Delete file from the index and the working tree.

git mv oldfile newfile Shortcut for mv oldfile newfile plus the
appropriate additions and removals in the index.

git status Display the files changed in the index and in the
working tree.

git commit Make a commit out of the current index.

git commit -a Shortcut for adding all modified files to the index
and committing.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 14 / 41

Using Git

Referring to objects

fc8da7a06bb66b707e7f5406657d5a3b7ee42c66 You can always refer to
an object by its full SHA-1 ID, but this gets unwieldy very
quickly.

fc8da7 You can use a truncated SHA-1 as long as it is unambiguous.

refname You can refer to a branch or tag by name.

commit ^ Append a ^ to get the (first) parent of a commit.

commit ^2 The second parent of a commit, etc.

commit ~4 Short for commit ^^^^—the great-great-grandparent of a
commit.

commit :filename The given file or directory inside commit ’s tree.

. . . and more (see git help rev-parse for a full description of the
syntax).

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 15 / 41

Using Git

Displaying changes

git log List the commits on the current branch.

git show object Show an object (e.g. the log information and patch
for a commit, or the contents of a file).

git diff Show the differences between the index and the
working tree.

git diff --cached Show the differences between HEAD and the index.

git diff commit Show the differences between commit and the
working tree.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 16 / 41

Using Git

Manipulating branches and tags

git branch List the branches in your repository, with the
current branch highlighted.

git checkout branch Switch to the branch named branch . This
updates HEAD, the index, and the working tree.

git checkout -b branch [commit] Create a new branch named
branch starting at commit (defaulting to
current HEAD), and switch to it.

git branch -d branch Delete the branch branch .

git branch -m oldbranch newbranch Rename oldbranch to
newbranch .

git tag tag [commit] Attach a new tag named tag to commit

(defaulting to current HEAD).

git tag -d tag Delete the tag named tag .

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 17 / 41

Using Git

Configuration hints

You should tell Git who you are:

$ git config --global user.name "Your Name "
$ git config --global user.email "your@email.edu "

And, if you’re feeling colorful,

$ git config --global color.ui auto

(This configuration is stored in ~/.gitconfig.)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 18 / 41

Using Git

Merging

git merge commit Merge commit into HEAD. The index must not
contain any staged changes.

In the general case, this will result in a merge commit—a commit
with more than one parent.

If commit is an ancestor of HEAD, then the merge is a no-op.

If commit is a descendent of HEAD, then the merge degenerates into
a fast-forward.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 19 / 41

Using Git

Resolving merge conflicts

git merge works roughly by creating a diff against the common
ancestor commit, and applying it against the current HEAD. (The
general case is much more complicated.)

Sometimes this patch will not apply to the current HEAD. This
situation is called a merge conflict.

Git will respond by inserting conflict markers into the conflicted files,
and asking you resolve the conflict.
Don’t panic!
To resolve the conflict, edit the conflicted files appropriately and then
git add them.
Alternatively, you can run git mergetool to resolve the conflicts
interactively in a graphical diff program.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 20 / 41

Using Git

Merging example

$ seq 5 > numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git mergetool

Merging the files: numbers

Normal merge conflict for ’numbers’:

local: modified

remote: modified

Hit return to start merge resolution tool (meld):

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git mergetool

Merging the files: numbers

Normal merge conflict for ’numbers’:

local: modified

remote: modified

Hit return to start merge resolution tool (meld):

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git mergetool

Merging the files: numbers

Normal merge conflict for ’numbers’:

local: modified

remote: modified

Hit return to start merge resolution tool (meld):

$ cat numbers

0

1

2

3

4

5

5½

6

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git mergetool

Merging the files: numbers

Normal merge conflict for ’numbers’:

local: modified

remote: modified

Hit return to start merge resolution tool (meld):

$ cat numbers

0

1

2

3

4

5

5½

6

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: numbers

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

numbers.orig

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk

master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8a1218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 @@

+0

1

2

3

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at 0.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git merge andersk

Auto-merged numbers

Merge made by recursive.

numbers | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

$ cat numbers

0

1

2

3

4

5

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5½ >> numbers

$ git add numbers

$ git commit -m ’5½ is a better number.’

Created commit 5360c2d: 5½ is a better number.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git checkout master

Switched to branch "master"

$ git merge andersk

Auto-merged numbers

CONFLICT (content): Merge conflict in numbers

Automatic merge failed; fix conflicts and then commit the result.

$ git status

numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git mergetool

Merging the files: numbers

Normal merge conflict for ’numbers’:

local: modified

remote: modified

Hit return to start merge resolution tool (meld):

$ cat numbers

0

1

2

3

4

5

5½

6

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: numbers

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

numbers.orig

$ git commit

Created commit fc8da7a: Merge branch ’andersk’

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 21 / 41

Using Git

Getting out of trouble

gitk HEAD --all The graphical repository browser is
immensely useful for visualizing what’s
going on in your repository.

git reflog Show the reflog entries for HEAD.

git reflog show ref Show the reflog entries for ref .

git reset --hard commit Resets the ref pointed to by HEAD, as well
as the index and working tree, to commit .

The reflog tracks all local changes to refs. Whenever a ref is updated
to point at a new commit, it gets an entry in the reflog.

If you find yourself somewhere you don’t expect, you can examine the
log or the reflog, and then use reset to get back to a known point.

This works even in a conflicted merge or rebase, if you just want to
bail out and try something different.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 22 / 41

Using Git

A peek at the reflog

$ git reflog

fc8da7a... HEAD@0: commit (merge): Merge branch ’andersk’

994be80... HEAD@1: checkout: moving from andersk to master

5360c2d... HEAD@2: commit: 5½ is a better number.

7aeb494... HEAD@3: checkout: moving from master to andersk

994be80... HEAD@4: merge andersk: Merge made by recursive.

383c158... HEAD@5: commit: 6 is a number too.

4172330... HEAD@6: checkout: moving from andersk to master

7aeb494... HEAD@7: commit: Numbers start at 0.

4172330... HEAD@8: checkout: moving from master to andersk

$ git reflog show master

fc8da7a... master@0: commit (merge): Merge branch ’andersk’

994be80... master@1: merge andersk: Merge made by recursive.

383c158... master@2: commit: 6 is a number too.

4172330... master@3: commit (initial): 1, 2, 3, 4, 5!

$ git reflog show andersk

5360c2d... andersk@0: commit: 5½ is a better number.

7aeb494... andersk@1: commit: Numbers start at 0.

4172330... andersk@2: branch: Created from HEAD

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 23 / 41

Using Git

Cherry-picking and reverting

git cherry-pick commit Constructs a new commit on HEAD that
performs the same changes as commit .

git revert commit Constructs a new commit on HEAD that
performs the reverse of the changes in
commit .

These commands construct a new commit that does not preserve any
parent information pointing back to the old one. Use with care.

Instead of cherry-picking from your development branch into your
stable branch, for example, it is usually better to make the commit on
stable and merge the entire stable branch into development.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 24 / 41

Collaboration with Git

Outline

1 The Git model

2 Using Git

3 Collaboration with Git

4 Rewriting history

5 And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 25 / 41

Collaboration with Git

Collaboration with Git

Git allows bidirectional communication between any pair of
repositories.

Git speaks many protocols.

SSH
HTTP/HTTPS
DAV
Git protocol
rsync
direct filesystem access

This flexibility lets you implement a wide range of centralized or
distributed development models.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 26 / 41

Collaboration with Git

The simple case

A freshly cloned repository has one remote called origin, which is
the default source for pulls and destination for pushes.

git fetch Download commits from origin. Each remote branch
branch will be made available with the name
origin/branch .

git branch -r List the available remote branches.

git branch -a List the available local and remote branches.

Development is done on local branches. To work on a remote branch,
you first create a local tracking branch, and then push any changes
back to the remote branch as a separate operation.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 27 / 41

Collaboration with Git

Tracking branches

git checkout -b branch origin/branch Create and switch to a new
tracking branch named branch , set up to
track the remote branch origin/branch .

git pull Update the current tracking branch from
origin/branch . Short for git fetch;
git merge origin/branch .

git push Push the current tracking branch back to
origin/branch . This will only
fast-forward the remote branch by default,
so you may need to git pull first.

git push origin :branch Delete the remote branch branch .

git remote prune origin Clean up any refs to branches that have
been deleted remotely.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 28 / 41

Collaboration with Git

Remotes

A Git repository can be configured with references to any number of
remotes.

By default, a newly cloned repository has one remote named origin
pointing to the source of the clone.

$ git clone /mit/andersk/Public/git/nss_nonlocal.git

Initialized empty Git repository in /tmp/nss_nonlocal/.git/

$ cat nss_nonlocal/.git/config

...

[remote "origin"]

url = /mit/andersk/Public/git/nss_nonlocal.git

fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]

remote = origin

merge = refs/heads/master

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 29 / 41

Collaboration with Git

Hosting a public Git repository

A repository that’s used for cloning, pulling, and pushing should
usually be a bare repository (git clone --bare). A bare repository
has no working tree, and lives in a directory named project.git
instead of project /.git.

The quickest solution at MIT is to drop your repository into AFS.

To serve a repository on the web, you need to run git
update-server-info, and enable the hooks/post-update hook.

To serve a repository via the Git protocol, you need to create the
git-daemon-export-ok file inside it.

scripts.mit.edu provides a Git hosting service. Drop your repository
into /mit/locker /Scripts/git/project.git and access it at
git://locker.scripts.mit.edu/project.git.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 30 / 41

Rewriting history

Outline

1 The Git model

2 Using Git

3 Collaboration with Git

4 Rewriting history

5 And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 31 / 41

Rewriting history

Rewriting history

Git includes powerful tools for rewriting history.

Of course, since modifying a commit changes its SHA-1 identifier, by
“rewriting history” we actually mean “transforming a sequence of
commits into a different sequence of commits”.

You need to be careful about rewriting commits that others may have
already pulled.

By default, Git will prevent you from pushing changes that are not
fast-forwards, unless you ask very hard.

Rewriting is extremely useful for cleaning up a private branch before
making it publicly available.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 32 / 41

Rewriting history

Why rewriting is useful

A good history will include one commit for each self-contained logical
change to the tree.

Avoid cluttering the history with typos and trivial bugs that are fixed
in the following commits.

This makes things more pleasant for anyone who wants to read or
review your changes.
It also makes it easier to pinpoint bugs with git bisect.

You don’t need to worry about making your commits perfect as you
write them, since you can rearrange them later.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 33 / 41

Rewriting history

Resetting branches

git reset --hard commit Resets the current HEAD, as well as the
index and working tree, to commit .

git reset commit Resets the current HEAD and index to
commit, without touching the working tree.

git reset --soft commit Resets the current HEAD to commit, without
touching the index or the working tree.

git commit --amend Adds the modifications in the index to the
current commit at HEAD “in place”.
Approximately equivalent to git reset
HEAD^; git commit.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 34 / 41

Rewriting history

Rebasing

git rebase commit Rebase HEAD onto commit .

git pull --rebase Short for git fetch; git rebase
origin/branch .

rebase finds all commits that are in HEAD but not in commit , and
re-applies them starting with commit . The current branch is reset to
the result.

This has a similar effect to a merge, but maintains a linear history, at
the cost of losing some information.

rebase changes the object identifiers of the re-applied commits.

rebase is often preferred to keep history clean.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 35 / 41

Rewriting history

Rebase vs. merge

We have development on both a topic branch and master.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 36 / 41

Rewriting history

Rebase vs. merge

merge results in a forked history:

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 36 / 41

Rewriting history

Rebase vs. merge

rebase rewrites commits and maintains a linear history:

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 36 / 41

Rewriting history

Interactive rebasing

git rebase -i commit Rebase HEAD onto commit , letting you
interactively edit the resulting history.
(Typically commit will already be an ancestor
of HEAD, to edit history “in place”.)

Git will start your editor on a list of the commits to be applied on top
of commit.

You can cut and paste to arbitrarily reorder the commits.

You can delete a line to remove that commit completely.

You can insert the squash directive to fuse a commit into the
previous commit.

You can insert the edit directive to have Git pause after applying a
commit, so you can amend it in place or insert new commits, before
further commits are applied.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 37 / 41

Rewriting history

Advanced rewriting

git filter-branch Rewrite history by mapping each commit through
an arbitrary script.

.git/info/grafts Causes the local repository to pretend that certain
commits have different parents than their real ones.
(git filter-branch can then rewrite the fake
parents into real ones.)

git fast-export Dump history in a human-readable format, with
SHA-1 IDs replaced by symbolic marks, so that it
can be edited by hand.

git fast-import Read back commits produced by git
fast-export.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 38 / 41

And beyond!

Outline

1 The Git model

2 Using Git

3 Collaboration with Git

4 Rewriting history

5 And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 39 / 41

And beyond!

Other awesome Git commands

git bisect Easily pinpoint a regression in your history using a
repeated bisection search.

git blame Annotate each line of a file with information about
its last modification.

git cvsimport, git svn Use Git to work with repositories in other
formats. (I think Git makes a much better CVS or
SVN client than the native ones!)

git format-patch, git send-email, git am Send and receive Git
patches by email.

git grep Search for a regex in a Git tree.

git stash Quickly stash away and reapply temporary changes
while you do other work.

git submodule Manage a group of related Git repositories.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 40 / 41

And beyond!

Exploring Git yourself

There are many commands we haven’t talked about, and the ones we
have take additional options that can help you work more efficiently.

Anything you think you should be able to do within the Git model can
probably be done.

Git is designed to be conveniently scriptable.

Git has extensive documentation—start with man git.

To get documentation on any git command , run git help command

or (equivalently) man git-command .

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git October 21, 2008 41 / 41

	The Git model
	Using Git
	Collaboration with Git
	Rewriting history
	And beyond!

