

The Task Force on the Undergraduate Educational Commons

Faculty-Student Town Meeting May 10, 2006

Purpose of the Task Force

The Task Force has been conducting a fundamental, comprehensive review of the common educational experience of our undergraduates.

"Working Principles for an MIT Education"

 A set of themes that helped frame our review of the GIRs:

- A persistent passion for learning;
- Intellectual diversity;
- An innovative approach to core knowledge;
- Collaborative learning;
- Education for responsible leadership.

TASK FORCE

Major Recommendations in these Areas:

- Advising and Mentoring;
- International Experiences;
- Teaching and Learning;
- The Role of the Faculty in the Commons;
- Faculty Governance;
- o The General Institute Requirements.

TASK FORCE

Task Force consensus on the GIRs

- The present structure of the GIRs is <u>basically</u> <u>sound</u>, but the content can be <u>broadened</u>.
- It is not possible to provide all the desirable educational experiences in four years.
- The GIRs should introduce the <u>fundamental</u> <u>modes of analysis</u> that we want our students to acquire.
- The <u>goals</u> of the various components of an MIT education should be <u>made more explicit</u> to students and faculty.

Goals for the First Year Experience

- Increase freshman motivation and enthusiasm;
- Improve teaching and learning by emphasizing active learning and project-based pedagogies;
- Increase choice and flexibility for students;
- Provide opportunities to explore potential majors.

TASK FORCE

ON THE UNDERGRADUATE EDUCATIONAL COMMONS

The Science-Math-Engineering Core: Recommendations

- <u>Maintain the rigor and basic unified experience</u> of the current Science Core;
- Expand the educational scope of the core and student choice -- but <u>do not increase the number of</u> requirements;
- Signal the importance of the essential modes of analysis;
- Increase the excitement/stimulation of the first year through new approaches to learning, especially project-based experiences.

- Introduce category of Computation and Engineering;
- Provide the possibility of project-based core subjects as an option.
- $\circ~$ Strong oversight and assessment.

New Science-Math-Engineering Core

SCIENCE/MATHEMATICS/ENGINEERING REQUIREMENT (8 subjects)

Required Subjects

Mechanics Single-Variable Calculus Multi-Variable Calculus

				Computation	
	Physical	Chemical		&	Freshman
Mathematics	Sciences	Sciences	Life Sciences	Engineering	Experience
Differential	Electricity and	Solid-State	Molecular	Algorithmic	Project-Based
Equations,	Magnetism,	Chemistry,	Biology,	Reasoning,	Subjects in
Linear Algebra,	Physics of	Intro to	Biology of	Principles of	Engineering,
Probability and		Chemical		Engineering	Science and/or
Statistics		Science			Design

Distribution Subjects: 1 from each of 5 categories of the 6 below

The Science-Math-Engineering Core: Project-based Experiences

- Provide students the opportunity to contribute to the <u>definition of complex problems</u> and to explore strategies for addressing them;
- Require extended <u>study</u>, <u>reflection and refinement</u>, and multiple modes of inquiry;
- Emphasize synthesis of ideas and techniques, especially the study of real-world problems to motivate the acquisition of disciplinary knowledge;
- Emphasize the <u>design process and iteration;</u>
- Enable creativity and communication skills;
- Integrate and motivate <u>knowledge from other core</u> <u>subjects.</u>

TASK FORCE

The Science-Math-Engineering Core: Computation and Engineering

- Subjects that focus on the modes of thought and problem-solving tools associated with computational modes of analysis and the engineering method;
- <u>Computation subjects</u>: to explore the role of algorithmic and data abstractions and the use of imperative knowledge in designing computational solutions to theoretical and practical problems.
 - Not simply introductions to programming languages
 - 6.001 may serve as a model, but others will be developed.
- <u>Engineering subjects</u>: to provide students with an appreciation of the trans-disciplinary principles of engineering and their use in problem-solving:
 - Use of abstraction
 - Processes of design and synthesis
 - Complexities of large systems in the context of modern technological society

ON THE UNDERGRADUATE EDUCATIONAL COMMONS Humanities, Arts, and Social Sciences: Recommendations I

- Subject of an intense review by a Task Forceempanelled subcommittee that included the HASS Overview Committee (HOC);
- Maintain distinctive features and successes of current requirement:
 - <u>Strong signal</u> to the outside world;
 - High-quality teaching across a <u>wide variety of</u> <u>fields;</u>
 - <u>Flexibility in pursuing passions</u>, based on personal interest, professional ambitions, or both;
 - <u>Close collaboration</u> between faculty and students.

NTHE UNDERGRADUATE EDUCATIONAL COMMONS Humanities, Arts, and Social Sciences: Recommendations II

- Strengthen impact of the requirement on the overall experience of students:
 - Concentrate energy and attention on <u>"big ideas"</u> and fundamental knowledge in early years at MIT;
 - <u>Reduce complexity</u> of requirement, to encourage intellectual engagement and discourage gaming;
 - <u>Reduce barriers to collaboration</u>, within the humanities, arts, and social sciences, and between HASS and other areas at MIT.

TASK FORCE

ON THE UNDERGRADUATE EDUCATIONAL COMMONS

New Humanities, Arts, and Social Sciences Requirement

HUMANITIES, ARTS AND SOCIAL SCIENCES REQUIREMENT (8 subjects)

Required Subjects Freshman Experience Expository Writing (if needed)

Foundational electives in HASS (1 subject from 2 out of 3 categories)

Social Sciences	Arts	Advanced Subjects		
		Concentration		
		HASS Electives		
'	ocial Sciences	ocial Sciences Arts		

The HASS Requirement: Proposed

- Freshman/Sophomore years: Foundational Subjects (3)
- Junior/Senior years: Concentration Subjects (3-4)
- 1-2 elective subjects
- Communication Requirement (CI-H) may be integrated into foundational subjects.

The HASS Requirement: Proposed

Foundational Phase

- "Freshman Experience" subjects (1)
 - $\circ~$ 10-16 subjects that emphasize "big ideas," normally taken in the first semester;
 - Writing, understanding, digesting "raw inputs," developing arguments, using libraries.
- Freshman Communication
 - $\circ\,$ Freshman Essay Evaluation or expository writing
- Foundational Electives
 - $\circ~\mbox{Entry-level}$ distribution subjects
- \circ Concentration Phase
 - Tighten-up current practices
 - Better defined, more transparent, more demanding.

How "Freshman Experience" Classes are Distinct from the Other Foundational Electives

• Goals of both types of classes:

- Introduce each student to major issues in culture/society and to major disciplinary approaches to them;
- Writing and oral communication;
- Develop skills in understanding and interpreting "unmediated materials;"
- Prepare students for deeper, more focused study.
- Special goals of Freshman Experiences subjects:
 - Big ideas, e.g., poverty, revolutions, democracy, globalization;
 - A more common experience for freshmen.

TASK FORCE ON THE UNDERGRADUATE EDUCATIONAL COMMONS New GIRs: Full Model HUMANITIES, ARTS AND SOCIAL SCIENCES REQUIREMENT (8 subjects) Required Subjects Freshman Experience

Expository Writing (if needed)

Foundational electives in HASS (1 subject from 2 out of 3 categories)

Humanities	Social Sciences		Advanced Subjects	
		Arts	Concentration	
			HASS Electives	

SCIENCE/MATHEMATICS/ENGINEERING REQUIREMENT (8 subjects)

<u>Required Subjects</u> Mechanics Single-Variable Calculus Multi-Variable Calculus

Distribution Subjects: 1 from each of 5 categories of the 6 below

Mathematics	Physical Sciences	Chemical Sciences	Life Sciences	<i>Computation & Engineering</i>	Freshman Experience

MIT SB Degree Programs: Rules

- o <u>The GIRs</u>
- 17 subjects;
- 8 HASS subjects;
- o 6 Science and Math
- o Institute Lab
- 2 REST subjects;

- o <u>Departmental Programs</u>
- 11 subjects (132 units)
- 12.5 allowed by CoC in special cases (150 units)
- 3-subject overlap with GIRs allows up to maximum of 15.5 subjects
- 180-198 units, including
 48 unrestricted electives

MIT SB Degree Programs

- Many science majors and most engineering degree programs are at the limit of what is allowed by the Faculty Rules;
- Most major programs in Science and Engineering depend on what is required under the current Science, Lab, and REST requirements;
- With our recommendations, SB degree programs will grow;
 - Implications for unrestricted elective time;
 - Importance of the creation of more flexible degree programs in majors that exceed the current rules.

Example: Chemistry

- Current Program:
 - 6 Sci and Math (5.111)
 - 1 Inst Lab (5.311)
 - 2 REST (5.12)
 - 13 subjects required by department (including 5.111, 5.12, 5.311)
 - \circ Minus overlap = 10
 - Plus 8 HASS
 - Plus 5 Unrest Electives
 - Total Program = 32 subjects

- Future Program:
 - 8 Sci-Math-Eng
 - 14 subjects required by department (8.02 would be required in addition to current program)
 - Minus 5.111 and 8.02 (current allowed overlap)
 - o = 12 subjects
 - Plus 8 HASS
 - Plus 5 Unrest Electives
 - Total Program = 33 subjects

Example: Chemical Engineering

- Current Program:
 - 6 Sci and Math
 - 1 Inst Lab (5.310)
 - 2 REST (5.60 & 18.03)
 - 15.5 subjects required by department
 - minus 5.60, 18.03 &
 5.310 (allowed overlap)
 - \circ = 12.5 subjects
 - Plus 8 HASS
 - Plus 4 Unrest Electives
 - Total Program = 33.5 subjects

- Future Program:
 - 8 Sci-Math-Eng
 - 17.5 subjects required by department (7.01 and 5.11 would be required in addition to current program)
 - Minus 7.01, 5.11x and 18.03 (current allowed overlap)
 - \circ = 14.5 subjects
 - Plus 8 HASS
 - Plus 4 Unrest Electives
 - Total Program = 34.5 subjects

Example: Biological Engineering

- Current Program:
 - 6 Sci and Math
 - 1 Inst Lab (BE109)
 - 2 REST (5.12 & 18.03)
 - 15 subjects required by department
 - minus 5.12, 18.03 & BE109 (allowed overlap)
 - = 12 subjects
 - Plus 8 HASS
 - Plus 4 Unrest Electives
 - Total Program = 33 subjects

- Future Program:
 - 8 Sci-Math-Eng
 - 18 subjects required by department (7.01, 8.02 and 5.11x would be required in the program in addition to current subjects)
 - Minus 3 of 7.01, 5.11x, 8.02 and 18.03 (current rules allow overlap of 3)
 - \circ = 15 subjects
 - Plus 8 HASS
 - Plus 4 Unrest Electives
 - Total Program = 34 or 35 subjects (depending on how many subjects large programs may require)

Questions

- In large departmental programs, how many subjects should departments be allowed to specify (that is, overlap with the GIRs)?
- Should the size of the minimum unrestricted electives be reduced to 36 units (from 48)?
- Should more flexible degree programs (a la 2A and 8B) be offered as attractive alternatives to these very large programs?

Next Steps for the Task Force

- d'Arbeloff Grants: Call for proposals generated enthusiastic response from faculty across MIT:
 - Six Project-based initiatives have been funded for Spring 2007
 - Three pilots for new HASS subjects
- Final report ready by late August;
- Recommendations to the Faculty in early Fall;
- Task Force will recommend formation of a faculty implementation group (working closely with CUP).

Implications of Recommendations

• Resources:

- What resources will MIT have to provide?
- What resources will be needed by departments?
- Sustainability:
 - How will we be able to sustain the changes?
 - Recommendations cannot be unfunded mandates;
 - Zero-sum game
 - MIT will not be able to introduce new subjects and expect current faculty to handle it all;
 - o What do we stop doing?
 - o What do we improve?

Infrastructure Concerns

- Student Information System;
- Classrooms (e.g., for project-based classes, HASS FreshX, etc.);
- Scheduling (e.g., dedicated time slot for new FreshX classes).

27

Opinions or Suggestions?

edcommons@mit.edu

Task Force on the Undergraduate Educational Commons

Perspectives from the Student Advisory Committee

Teaching and Learning (SAC)

- Quality and style really matter;
- Strongly endorse TF recommendations;
- More can be done to engage students;
- Consistently excellent instruction in Science Core is needed;
- Greater variety in assigned work (not just p-sets);
- A more 'holistic' approach to the first year.

Advising and Mentoring (SAC)

- Advising quality is a major concern to students;
- Should be part of teaching record and tenure decisions;
- Strongly endorse Task Force recommendations;
- In agreement with SAC and UA-SCEP;
- Some students want a more accountable system.

TASK FORCE

International Experiences (SAC)

- Generally very valuable for students;
- Provide contrast to and perspective on MIT;
- Should be a realistic option for all students;
- Strongly endorse Task Force recommendations;
- Need more encouragement from departments;
- Students feel constrained by their major programs.

New Sci-Math-Eng Core (SAC)

- Balance flexibility and common experience;
- Strongly endorse project-based experiences -- should be encouraged for all students;
- Better to cut departmental requirements than constrain choice in first year;
- Faculty should encourage exploration.

HASS (SAC)

TASK FORCE

- Endorse elimination of HASS-D Requirement;
- Varied reactions to "Freshman Experience"
 - Huge opportunity, but loss of flexibility;
- Concerns about Foundational Electives (similar to HASS-D)

The MIT Learning Culture (SAC)

- Intellectual passion;
- Culture of busyness;
- Role of the Commons;
- We want your thoughts! Email <u>edcomm-request@mit.edu</u>;
- Join on-line discussions this summer;
- Come to forums in the Fall!

