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The indentation load-displacement behavior of six materials tested with a Berkovich
indenter has been carefully documented to establish an improved method for determining
hardness and elastic modulus from indentation load-displacement data. The materials
included fused silica. soda-lime glass, and single crystals of aluminum, tungsten. quartz,
and sapphire. It is shown that the load-displacement curves during unloading in these
materials are not linear. even in the initial stages, thereby suggesting that the flat punch
approximation used so often in the analysis of unloading data is not entirely adequate.
An analysis technique is presented that accounts for the curvature in the unloading data
and provides a physically justifiable procedure for determining the depth which should
be used in conjunction with the indenter shape function to establish the contact area at
peak load. The hardnesses and elastic moduli of the six materials are computed using
the analysis procedure and compared with values determined by independent means to
assess the accuracy of the method. The results show that with good technique, moduli

can be measured to within 5%.

. INTRODUCTION

Great strides have been made over the past few
vears in the development of techniques for probing the
mechanical properties of materials on the submicron
scale.”* The advances have been made possible by the
development of instruments that continuously measure
force and displacement as an indentation is made.*" The
indentation load-displacement data thus derived can be
usced to determine mechanical properties even when the
indentations are too small to be imaged conveniently.
Since the indentation positioning capability of some of
the instruments is also in the submicron regime. a means
is available by which the mechanical properties of a
surface can be mapped with submicron resolution. An
instrument with such capabilities can be described as a
mechanical properties microprobe.’'

The two mechanical properties measured most fre-
quently using load and depth sensing indentation tech-
niques are the elastic modulus, E, and the hardness.
H. In a commonly used method, data are obtained
from one complete cycle of loading and unloading.’
The unloading data are then analyzed according to a
model for the deformation of an elastic half space by
an elastic punch which relates the contact area at peak
load to the elastic modulus. Methods for independently
estimating the contact area from the indenter shape func-

tion are then used to provide separate measurements of
E and H.
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The elastic contact problem, which plays a key
role in the analysis procedure, was originally considered
in the late 19th cenwry by Boussinesq'' and Hertz.!2
Boussinesq developed a method based on potential the-
ory for computing the stresses and displacements in an
elastic body loaded by a rigid, axisymmetric indenter.
His method has subsequently been used to derive so-
lutions for a number of important geometries such as
cylindrical and conical indenters.!*!* Hertz analyzed the
problem of the elastic contact between two spherical sur-
faces with different radii and elastic constants. His now-
classic solutions form the basis of much experimental
and theoretical work in the field of contact mechanics'
and provide a framework by which the effects of non-
rigid indenters can be included in the analysis. Another
major contribution was made by Sneddon, who derived
general relationships among the load, displacement, and
contact area for any punch that can be described as a
solid of revolution of a smooth function.!®™!” His results,

which will be used extensively in this paper. show
that the load-displacement relationships for many simple
punch geometries can conveniently be written as

P =ah™ 0]

where P is the indenter load, / is the elastic displacement
of the indenter, and « and m are constants. Values of
the exponent m. for some common punch geometries are
m = 1 for flat cylinders, m = 2 for cones. m = 1.5 for
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spheres in the limit of small displacements, and m = 1.5
for paraboloids of revolution.

Modeling indentation contact in a way that includes
plasticity is a much more complex problem. Since the
constitutive equations are nonlinear and a number of ma-
terial parameters must be included to describe material
behavior (e.g., yield strength and work hardening coeffi-
cient), analytical solutions are not casily obtained.”® As
a result. much of our understanding of the importance of
plasticity in indenter contact problems has been derived
through experimentation and finite clement simulation.

The earliest experiments in which load and displace-
ment sensing indentation methods were used to mea-
sure mechanical properties were performed by Tabor,'8
who studied the indentation of a number of metals
deformed by hardened spherical indenters. A similar
study was subsequently undertaken by Stillwell and
Tabor to examine the behavior of conical indenters.!”
One particularly important observation resulting from
these studies concerns the shape of the hardness im-
pression after the indenter is unloaded and the material
elastically recovers. The experiments revealed that, at
least in metals, the impression formed by a spherical
indenter is still spherical with a slightly larger radius
than the indenter, and the impression formed by a
conical indenter is still conical with a larger included
tip angle. The importance of these experiments is that
since elastic contact solutions exist for each of these
geometries (i.e., a spherical indenter in a spherical hole
and a conical - indenter in a conical hole), the ways
in which plasticity affects the interpretation of elastic
unloading data can be dealt with by taking into account
the shape of the perturbed surface in the elastic analysis.
Tabor used these results to show that the shape of the
entire unloading curve and the total amount of recovered
displacement can be accurately related to the elastic
modulus and the size of the contact impression for
both spherical and conical indenters. Other important
observations resulting from these studies include (1)
the diameter of the contact impression in the surface
formed by conical indenters does not recover during
unloading—only the depth recovers; (2) the indentation
must be loaded and unloaded a few times before the load-
displacement behavior becomes perfectly reversible; i.e.,
a limited amount of plasticity sometimes occurs in each
of the first few loadings and unloadings: and (3) effects
of non-rigid indenters on the load-displacement behavior
can be effectively accounted for by defining a reduced
modulus. E,, through the equation

1L (1= (1-2?) .
E-F T B @
where £ and v are Young’s modulus and Poisson’s ratio

for the specimen and E; and v; are the same parameters
for the indenter.

Interest in load and displacement sensing indenlation
testing as an experimental tool for mecasuring elastic
modulus began in the early 1970’s with the work of
Bulychev, Alekhin, Shorshorov, and co-workers.***
These investigators used instrumented microhardness
testing machines to obtain indentation load-displacement
data like that shown schematically in Fig. 1 which was
then analyzed according to the equation

P 2 X
S:E_ﬁE"\/Z- (J)

Here. § = dP/dh is the experimentally measured
stiftness of the upper portion of the unloading data, E,
is the reduced modulus (previously defined), and A is
the projected area of the elastic contact. By measuring
the initial unloading stiffness and assuming that the
contact area is cqual to the optically measured area of the
hardness impression, the modulus can thus be derived.

Equation (3) has its origins in elastic contact the-
ory. While originally derived for a conical indenter,
Buylchev er al. showed that Eq. (3) holds equally well
for spherical and cylindrical indenters and speculated
that Eq. (3) may apply to other geometries as well.!
Pharr, Oliver, and Brotzen have subsequently shown that
Eq. (3) applies to any indenter that can be described as
a body of revolution of a smooth function,* Bulychev
et al. also argued that significant deviations from the
behavior predicted by Eq. (3) should not occur for

LOADING

UNLOADING

LOAD, P

max

DISPLACEMENT, h

FIG. 1. A schemalic representation of load versus indenter displace-
ment data for an indentation experiment. The quantitics shown are
Prax: the peak indentation load; Apm.: the indenter displacement at
peak load; Ay: the final depth of the contact impression after unloading;
and S: the initial unloading stiftness.
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pyramidal indenters. They noted good agreement be-
tween generally accepted values of moduli and values
computed from Eq. (3) using indentation data obtained
with a Vickers indenter. That Eq. (3) works well for at
least some indenters that cannot be described as bodies
of revolution has been confirmed by the finite element
calculations of King.*® These calculations show that the
deviations from Eq. (3) for flat ended punches with
square and triangular cross sections are only 1.2% and
3.4%. respectively.

In the early 1980°s, it was realized that load and
depth sensing indentation methods could be very useful
in the measurement of the mechanical properties of
very thin films and surface layers, and instruments for
producing submicron indentations wcre developed.*’
For practical reasons, some means other than direct
observation of the hardness impressions was needed
to measure contact areas since imaging very small in-
dentations is both time-consuming and difficult. Oliver,
Hutchings, and Pethica suggested a simple method based
on measured indentation load-displacement curves and
a knowledge of the indenter area function (or shape
tunction), that is, the cross-sectional area of the indenter
as a function of the distance from its tip."> The method
is based on the notion that, at peak load, the matcrial
conforms to the shape of the indenter to some depth; if
this depth can be established from the load-displacement
data. the projected area of contact can be estimated
directly from the shape function. Two obvious choices
for the depth, though not the only oncs, are the depth
at peak load, /i, (i.€., the maximum displacement in
the loading cvcle), and the final depth. A (i.e.. the
residual depth of the hardness impression after final
unloading). both of which are easily determined from
indentation load-displacement data (see Fig. 1). Using
TEM replication methods to establish the shape func-
tion. Oliver et al. found that the final depth gives a
better estimate of the contact area than the depth at
peak load.’

Doerner and Nix subsequently put together many of
these ideas to produce the most comprehensive method
to date for determining hardness and modulus from
indentation load-displacement data.®> Their approach is
based on the observation that during the initial stages
of unloading. the elastic behavior of the indentation
contact is similar to that of a flat cylindrical punch;
that is, the area of contact remains constant as the
indenter is unloaded. This was justified by experimental
observations which suggest that, for some materials,
the initial portions of unloading curves are linear, as
would be expected for the flat-punch geometry. The
unloading stiffness dP/dh is then related to the modulus
and contact area through a relationship equivalent to
Eq. (3). To evaluate independently the contact area,
Doerner and Nix proposed a simple empirical method

based on extrapolating the initial linear portion of the
unloading curve to zero load and using the extrapolated
depth with the indenter shape function to determine
the contact area. Careful experiments in one material,
METGLAS® 2826, confirmed that the extrapolated depth
gives a better estimate of the contact area than either the
depth at peak load or the final depth. This observation
was later confirmed with finite element simulations of the
indentation of silicon and nickel by conical indenters.”’
With the contact area so determined, the modulus can be
computed from Eq. (3) and the hardness from its normal
definition:

PH]EIX
H = 1 €3}
where Ppn, is the peak indentation load and A is the
projected area of the hardness impression. As a practical
matter, Doerner and Nix suggested that the unloading
stiffness can be computed from a linear fit of the upper
one-third of the unloading curve.

One disturbing feature of the Doerner-Nix method
concerns their assumption of linear unloading. Dur-
ing the past several years, we have conducted load
and displacement sensing indentation tests on a large
number of materials, and our observations have led
us to believe that unloading curves are rarely, if ever,
linear, even in the initial stages of unloading. Rather,
unloading data are better described by power laws like
Eq. (1) with exponents ranging from about 1.2 to 1.6.
In addition, by employing a special dynamic technique
by which stiffness can be measured continuously dur-
ing indentation, we have found that unloading con-
tact stiffnesses change immediately and continuously
as the indenter is withdrawn, as would be expected
from continuous changes in contact area. Together, these
observations suggest that the flat punch approximation
is not an entirely adequate description of real material
behavior.

In this paper, a new method for analyzing indenta-
tion load-displacement daria is outlined which addresses
these problems. We begin by presenting data for a variety
of malerials to show that unloading data are usually
nonlinear. An analysis technique is then presented which
accounts for the curvature in the unloading data and
provides a physically justifiable procedure for determin-
ing the depth that should be used in conjunction with
the indenter shape function to establish the contact area
at peak load. The hardnesses and moduli of several
materials are then computed using the analysis and
compared with values determined by independent means
to establish the accuracy of the method. In addition,
several practical issues concerning procedures for taking
data and methods for determining load frame compliance
and indenter shape functions are discussed.
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Il. EXPERIMENTAL
A. Materials

The materials used in the study were chosen to span
a wide range of hardness and modulus. They included a
soft fcc metal (aluminum), a hard bec metal (tungsten),
two amorphous glasses (soda-lime glass and fused sil-
ica), and two crystalline ceramics (sapphire and quartz).
Details concerning purity, finish, and crystal orientation
are given in Table I. One seemingly obvious choice
which does not appear in the table is silicon, which was
intentionally excluded because its indentation behavior
is complicated by cracking and pressure-induced phase
transformations. -0

Aluminum and tungsten were chosen in preference
to other metals because both are relatively isotropic
in their elastic properties; their anisotropy ratios are
1.21 and 1.00, respectively.’' The question of whether
the modulus measured in an indentation test represents
that of some specific crystallographic direction or some
average value is therefore not an issue. The same is true
of the amorphous glasses, which are isotropic in both
their elastic properties and their hardnesses. Quartz and
sapphire, on the other hand, have complex hexagonal
crystal structures, and because of this, results from these
materials can be used to provide some insight into the
importance of elastic anisotropy.

B. Indentation procedure

All experiments were performed using a Nano-
indenter® (Nanoindenter is a registered trademark of
Nano Instruments, Inc., Knoxville, TN) at the Oak Ridge
Narional Laboratory, a schematic illustration of which
is shown in Fig. 2. The system has load and displace-
ment resolutions of 0.3 N and 0.16 nm, respectively. A
Berkovich indenter, a three-sided pyramid with an area-

TABLE I. Summary of materials used in indentation study.

Material Description

Aluminum 99.995% pure single crystal mechanically

polished with colloidal silica

Tungsten 99.95% pure single crystal mechanically
polished with colloidal silica

Soda-lime glass Commercial microscope slide

Fused silica Optically flat substrate material
Quartz (001) single crystal; optically tlat
Sapphire 99.995% Al;05; (001) single crystal

mechanically polished to optical flatness

c\ /——_‘I CURRENT SOURCE

Bl gvs
A== ,=1-\_‘_|H LOCKN AMPLIFIER

DISPLACEMENT
SENSOR

" -
| COMPUTER I___

FIG. 2. A schematic representation of the experimental apparatus
used to perform the indentation experiments: (A) sample: (B) indenter;
(C) load application coil; (D) indentation column guide springs;
(E) capacitive displacement sensor.

OSCILLATOR

to-depth function which is the same as that of a Vickers
indenter. was used in all experiments.

Most experiments were performed using a load-time
séquence like that shown in Fig. 3. The indenter was
first loaded and unloaded three times in succession at
a constant rate ot loading with each of the unloadings
terminated at 10% of the peak load to assure that
contact was maintained between the specimen and the
indenter. The reason for performing multiple loadings
and unloadings was to examine the reversibility of the
deformation and thereby make sure that the unloading
data used for analysis purposes were mostly elastic.
After the third unloading, the load was held constant
for a period of 100 s at 10% of the peak value while
the displacement was carefully monitored to establish
the rate of displacement produced by thermal expansion
in the system. Even though the system is thermally
buffered from its surroundings and the room in which
it is housed is temperature-controlled to within =1 °C,
small thermal fluctuations cause some of the machine

150 [— T T T T
EXPERIMENTAL PROCEDURE

Z 100 | ~
E -
(@]
<<
o)
-

50 .

O i

0 100 200 300 400 500

TIME (sec)

FIG. 3. A typical load-time sequence; peak load = 120 mN.
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components to expand, and the cxpansion is manifested
in the data as an apparent displacement in the specimen.
Thermal drift becomes particularly important for small
indentations made over long periods of time, as was
the case for some of the indentations in this study. To
account for thermal drift, the rate of displacement was
measured during the last 80 s of the hold period. and
the displacement data were corrected by assuming that
this drift rate was constant throughout the test. In this
procedure, it is implicitly assumed that the displacements
measured at the low load during the hold period are
due mostly to thermal expansion rather than to time
dependent plasticity in the specimen. Following the hold
period. the specimen was loaded for a fourth and final
time, with another 100 s hold period inserted at pcak
load to allow any final time dependent plastic effects to
diminish, and the specimen was fully unloaded.

For each material, six separate peak loads were in-
vestigated starting at 120 mN and successively reducing
the load by a factor of 3 to produce indentations at 120,
40, 13.3. 4.4, 1.5. and 0.5 mN. The loading/unloading
rate was also reduced by a factor of 3 starting at a value
of 5000 uN/s for the 120 mN indentations. The reason
for reducing the loading rate in proportion to the peak
load was to assure that all load-displacement curves had
about the same number of data points since (the system
samples data at a constant rate of approximately 1.6
data points per second). Five indentations were made
at each load, with most of the results presented here
representing averages for the group. Wherever possible,
scatter bars representing + one standard deviation have
been included in the data.

The indentation system also had the ability to contin-
uously measure contact stiffness during indentation. This
is accomplished by superimposing a small oscillation on
the force signal and measuring the displacement response
at the same frequency. Continuous stiffness measurement
was used to provide direct evidence that the contact stiff-
ness changes continuously during loading and unloading.
Details of the technique and analysis procedure. parts of
which have been published elsewhere,*>4 are included
in Appendix I,

lil. EXPERIMENTAL RESULTS

A. General characteristics of load-
displacement curves

We begin the discussion of experimental results
with an overview of the characteristics of the load-
displacement curves for the six materials studied. Figures
4-9 present experimental data for each of the materials
for indentations made to peak loads of 120 mN. The
differences in hardness of the materials are apparent from
the large differences in the depth attained a maximum
load. The softest material is aluminum, with a peak depth

140
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120 . ALUMINUM

100 [ /
80 |- / w
~f

LOAD (mN)
N
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60 [

40 | ’ !
: i j
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0 [ 1 1 ! | | 1
0 1000 2000 3000 4000 5000

DISPLACEMENT (nm)

FIG. 4. Load versus indenter displacement for the highest peak load
experiment performed on a mechanically polished aluminum singic
crystal.

of almost 3000 nm. while the hardest is sapphire. which
was penetrated to a depth of only about 500 nm. Both
the aluminum and tungsten data are typical of materials
in which the hardness is relatively small compared to
the modulus. as is observed in most metals; most of
the indenter displacement in these two materials is
accommodated plastically, and only a small portion
is recovered on unloading. The other materials show
varying degrees of elastic recovery during unloading, the
largest being that for fused silica.

The unloading/reloading behavior of the materials
exhibits some variability. Figure 10 shows an expanded
view of the sapphire results, demonstrating that the
unloading and reloading curves for this material are
nearly the same. This behavior is also observed in fused
silica and quartz, with the near perfect reversibility
suggesting that deformation in these materials after the
initial loading is almost entirely elastic.

140 T T T 1
[ ]
120 - QUARTZ P

100 [~

80

LOAD (mN)

60 —

40 F

20

L ] | | |
0
0 200 400 600 800 1000

DISPLACEMENT (nm)

FIG. 3. Load versus indenter displacement for the highest peak load
experiment performed on a (001) quanz single crystal.
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FIG. 6. Load versus indenter displacement for the highest peak load
experiment performed on soda-lime glass.

For aluminum. on the other hand, the expanded view
in Fig. 11 shows that the peak load displacements shift
to higher values in successive cycles. In addition, the
relatively large displacement just prior to final unloading
is due to creep during the 100 s hold period at peak load.
Thus. it is apparent that at least some plastic deformation
occurs in this material after the initial loading, and some
of it is time dependent. The behavior of tungsten is
similar to that of aluminum.

A third type of behavior is that exhibited by soda-
lime glass. As shown in Fig. 12, this material exhibits
distinct hysteresis loops, as might be expected if there
were a small amount of reverse plasticity upon unload-
ing. The looping degenerates with cycling. however, and
after 3 or 4 cycles, the load-displacement behavior is
largely elastic.

The main reason for discussing the load-displace-
ment behavior during unloading/reloading is to point out

140 T T T T T

120 |- SAPPHIRE i

100

LOAD (mN)

60 [
40 |

20 -

oL ol O 1 | L 1
0 100 200 300 400 500 600

DISPLACEMENT (nm)

FIG. 7. Load versus indenter displacement for the highest peak load
experiment performed on a (001) sapphire single crystal.
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0 t N ] | L 1
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DISPLACEMENT (nm)

FIG. 8. Load versus indenter displacement for the highest peak load
experiment performed on fused silica.

that in some materials, displacements recovered during
first unloading may not be entirely elastic, and because
of this, the use of first unloading curves in the analysis
of elastic properties can sometimes lead to inaccuracies.
One way to minimize nonelastic effects is to include
peak load hold periods in the loading sequence to
allow time dependent plastic effects to diminish. and
to use unloading curves obtained after several cycles
of loading to minimize effects of reverse plasticity. The
procedure we have adopted here to avoid these problems
is to load and unload the indentation four times and
include one long period at peak load. Our analyses
are then performed using the final unloading data only.
Exactly how nonelastic effects can influence the mea-
surement of mechanical properties is documented later in
this paper.
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FIG. 9. Load versus indenter displacement for the highest peak load
experiment performed on a mechanically polished tungsten single
crystal.
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FIG. 10. An expanded view of the unloading/reloading portion of

the load versus indenter displacement data for the highest peak load
experiment performed on sapphire.
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B. Shapes of unloading curves

To examine carefully the shapes of unloading curves,
final unloading data from all six materials are plottcd
on a common set of axes in Fig. 13. For the sake
of comparison, the displacements have been shifted
laterally by subtracting the final depth. A, from the
total depth, A, to force all the curves to pass through a
common origin. Careful examination of the figure shows
that none of the data is linear; rather, each unloading
curve is slightly concave up over its entire span. This can
be better appreciated by plotting the data logarithmically,
as has been done in Fig. 14. The fact that the data are
linear on logarithmic axes implies that the unloading
curves are well described by a power law relation like
that of Eq. (1). The exact values of the experimentally
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1
ALUMINUM
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4700 4800

FIG. 11. An expanded view of the unloading/reloading portion of

the load versus indenter displacement data for the highest peak load
experiment performed on a mechanically polished aluminum single
crystal.
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FIG. 12. An expanded view of the unloadingreloading portion of

the load versus indenter displacement data for the highest peak load
experiment performed on soda-lime glass.

1200

observed power law exponents, as well as the correlation
coefficients for the power-law fits, are given in Table 1I.
The power law exponents for the six materials studied
here vary from 1.25 to 1.51, and the fact that they are
distinctly greater than one implies that none of the data
is consistent with flat punch behavior.

C. Continuous stiffness measurement

Additional evidence that the flat punch approxi-
mation is inappropriate is provided by the continuous
measurement ot stiffness. Here, we discuss results for a
material not included in Table I, electropolished tung-
sten. This material is particularly interesting because
well-annealed single crystals indented by a Berkovich
indenter at sufficiently low loads can be deformed purely
elastically—that is, the contact impression fully recovers

140 ALUMINUIM oo ! ! ' SBDAL!ME'
r TUNGSTEN QUARTZ 1
120 # " Glass
[ \
100 L SAPPHIRE 4
z
g 80 ]
= FUSED SILICA
S 60 [ .
g
OF UNLOADING
20 CURVES ]
o | | Lo !
0 100 200 300 400 500 600

DISPLACEMENT, h-h, (nm)

FIG. 13. The final unloading segment of the load versus indenter
displacement data from the highest peak load experiments for all six
materials plotted so that the curves pass through a common origin.
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FIG. 14. The data from Fig. 13 replotted on logarithmic axcs.

upon unloading, no hardness impression remains after
indentation, and the loading and unloading curves trace
one another perfectly.’>* As shown in Fig. 13, this
behavior was observed in electropolished tungsten for
peak loads of 0.5 mN and less. For purely elastic contact,
both the contact area and the contact stiffness are unique,
reversible functions of the load, and they increase and
decrease with load according to simple functional rela-
tionships that depend on the geometry of the indenter.
Because of this, contact stiffness correlates directly with
contact area, and hence, changes in contact stiffness in an
indentation experiment can be correlated with changes in
contact area. Continuous stiffness measurement results
for the indentation data in Fig. 15 are presented in
Fig. 16, plotted as stiffness versus time. Comparison of
these data with the load-time history shown in Fig. 3
shows that the measured contact stiffness, and thus the
contact area, does indeed increase and decrease in the
way that would be expected based on the loading history
(note that the hold periods in Fig. 3 were not included

0.6 ¢ T l IR .
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P TUNGSTEN 7

~ 04| =
Z 04}

S L ]

5 03k -
g |

- 02| -

0.1 - .

oL . - | . |
0 5 10 15 20 25

DISPLACEMENT (nm)

FIG. 15. Load versus indenter displacement for a fully elastic contact
on an electropolished single crystal of tungsten. The data consist of
four sequential loading/unloading cycles.

is reached, a sudden jump in displacement corresponding
to the onset of plasticity is observed, and a permanent
hardness impression is formed. The continuous stiffness
measurement for this indentation is shown in Fig. 18. It
is seen that for each of the four unloadings, the contact
stiffness changes immediately and continuously as the
specimen is unloaded. Thus, the contact area, which
varies in the same way as the contact stiffness, is not
constant during the unloading of the plastic hardness im-
pression, even during the initial stages of unloading, and
the Hat punch approximation is therefore questionable.
Continuous and immediate changes in contact stiffness
during unloading were also observed in each of the other
materials examined in this study. Tungsten was chosen
to illustrate the behavior because of its unique elastic
behavior at low loads.

in acquiring the data of Figs. 15 and 16). 0.05 T T I T ]
At higher peak loads, the indentation contact in [ /\‘ f\ A 'f\\ ELASTIC CONTACT |
electropolished tungsten is not just elastic. Rather, as . 0.04 '—’ \ ‘4' \\' 'J | r’ \ TUNGSTEN -
shown in Fig. 17. when a threshold load of about 1.0 mN E r \‘ f) \' ! l‘ ]
= L | | | 1
Z 003 _—,’ \‘ A \‘ .
@ i ; V’ / ‘l ! “ | \t
TABLE [I. Parameters describing power law fits of unloading curves. g 0.02 '_J’ { “' lvf \
. ’ " ]
o [ [
A Correlation 5 [l ]
Material (mN/nm™) m cocfficient 0.01 I+ —~
|
Aluminum 0.265 1.38 0.999938 | | | [ | |
Quartz 0.0215 1.43 0.999985 0 :
Soda-lime glass 0.0279 1.37 0.999997 0 50 100 150 200 250 S
Sapphire 0.0435 1.47 1.999998 TIME (sec)
Fused silica 0.0500 '?5 0.999997 FIG. 16. Contact stiffness versus time for a fully elastic contact on an
Tungsten 0.141 1.51 0.999986 electropolished single crystal of tungsten measured with the continu-
ous stitfness measurement technique.
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FIG. 17. Load versus indenter displacement for a plastic conatact on
an electropolished single crystal of tungsten. The data consist of four
sequential loading/unloading cvcles.

D. Comments on linear unloading

Before leaving this section, a comment is warranted
as to why the observations here are different from other
reports in the literature which suggest that unloading
curves in some malterials are linear, at least in the initial
stages of unloading. The primary observations of this
sort are those of Doerner and Nix, who report lincar
unloading in metals over most of the unloading range
and in silicon for at least the first one-third of the
unloading curve.® The data they present as representative
of metallic behavior are that of aluminum. The data
consist of one loading and unloading plotted with the
unloading and loading curves on a single set of axes. On
such a plot, the unloading curves are so steep that they
give the appearance of being linear even though they
may not be. In Fig. 4, for example, the unloading curves

025 T . I | T
IMMEDIATE DECREASE IN STIFFNESS
[ f E\< ON START OF UNLOADING ]
—~ 020 [ 20 W ]
E . ‘(\A ) ,‘;"U\ 4
5 AN |
2 o5, N ~
- o \,' / V | YIELDPOINT |
8 Lo | TUNGSTEN
Z 010 || -
T [ ]
= L
Z .'\ U
0.05 P/ SUDDEN INCREASE 7
/ IN STIFFNESS
L
0.00 U - ] i ! l
0 50 100 150 200 250 300
TIME (sec)

FIG. 18. Contact stiffness versus time for a plastic contact on an elec-
tropolished single crystal of tungsten measured using the continuous
stiffness measureme- ERGUTH

for aluminum appear to be linear. but when plotted on
expanded or logarithmic axes such as those in Figs. 11,
13, and 14, the nonlinearity becomes apparent. We also
wish to note that improper values for the load frame
stiffness can influence unloading curves in a way that
makes them appear to be more linear than they really are.

With respect to the observations of linear unloading
in silicon, we note that the indentation behavior of this
material stands in a class ot its own. Studies have shown
that a reversible. pressure induced transformation to a
denser phase occurs beneath the indenter.’®" When the
indenter is withdrawn, the transformation reverts, and a
portion of the unloading displacement is recovered by a
nonelastic process. Unloading curves for silicon are thus
unlike those for any other material, and they sometimes
may appear to have a linear region near the top. In our
experience, however, careful examination of such data
has shown that it is curved with power law exponents in
the range reported here for the other materials.

IV. A NEW METHOD OF ANALYSIS

The observations presented in the previous section
suggest that the flat punch approximation is not an
entirely adequate description of the behavior of mate-
rials when indented by a Berkovich indenter. Here, we
propose a new method of analysis based on analytical
solutions for other indenter geometries. In addition to
accounting for curvature in the unloading data, the
method also provides a physically justifiable procedure
for determining the depth that should be used in con-
junction with the indenter shape function to establish
the contact area at peak load.

As mentioned in the introduction, Sneddon has de-
rived closed form analytical solutions for punches of
several geometries. In addition to the flat punch, he
has also considered punches with conical geometries
and paraboloids of revolution.!® We proceed here on
the assumption that the behavior of one of these lat-
ter geometries gives a better description of the clastic
unloading of an indentation made with a Berkovich
indenter.

The conical indenter is a natural choice since, like
the Berkovich indenter. its cross-sectional area varies as
the square of the depth of contact and its gcometry is
singular at the tip. The paraboloid of revolution, whose
behavior is the same as that of a spherical indenter in
the limit of small displacements. is also a potentially
useful geometry in that no real indenter is ever perfectly
sharp; i.e., at some scale the tip exhibits some rounding.
In addition, because of plasticity. an elastic singularity
cannot really exist at the tip of the indenter, and the
paraboloid geometry potentially accounts for this. For
both geometries, the load-displacement relationships are
nonlinear and the contact area changes continuously

1572 J. Mater. Res.. Vol. 7, No. 6, Jun 1992
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during unloading. An analysis of the geometry that
works best is presented in the next section by compar-
ing predictions of the method with actual experimental
results.

An important fundamental assumption in the de-
velopment is that the equations describing the elastic
unloading of a flat, semi-infinite half space are the same
as those for an indented surface; that is, Sneddon’s
solutions apply equally well to a flat surface or a surface
with a hardness impression. The justification for this as-
sumption is based largely on the empirical observations
discussed in the introduction that hardness impressions
formed in metals by conical and spherical indenters are
also conical and spherical with slightly different included
tip angles and radii. As discussed in greater detail
elsewhere,™ the mathematical description of the elastic
loading and unloading of these perturbed surfaces is
exactly the same as that for the flat surface it adjustments
are made to the geometrical parameters describing the Lip
angle of the cone and the effective radius of the sphere.
Since spherical and conical indenters represent two very
different geometries, i.c.. one very sharp and one very
blunt. it seems reasonable that this behavior may hold
for other axisymmetric indenters as well.

Figure 19 shows a cross section of an indentation
and identifies the parameters used in the analysis. At
any time during loading. the total displacement 4 is writ-
ten as

h =he+ h, &)

where £ is the vertical distance along which contact
is made (hereafter called the contact depth) and h, is
the displacement of the surface at the perimeter of the
contact. At peak load. the load and displacement are
Prax and hy,,, respectively, and the radius of the contact
circle is a. Upon unloading. the elastic displacements are
recovered, and when the indenter is fully withdrawn, the
final depth of the residual hardness impression is Ay.

P

SURFACE PROFILE AFTER
LOAD REMOVAL

INDENTER INITIAL

SURFACE

SURFACE PROFILE
UNDER LOAD

’
h
v s ye

FIG. 19. A schematic representation of a section through an indenta-
tion showing various quantities used in the analysis.

The experimental parameters needed 1o determine
hardness and modulus are shown in the schematic load-
displacement data shown in Fig. 20. The three key
parameters are the peak load (Pna). the depth at peak
load (fimax). and the initial unloading contact stiffness
(Smax)- It should be noted that the contact stiffness is
measured only at peak load. and no restrictions are
placed on the unloading data being linear during any
portion of the unloading.

The analysis begins by rewriting Eq. (3) as

N
= — —= 6
7 VA ©)

which relates the reduced modulus, E,, to the contact
area. A, and the measured stiffness, S. As discussed
previously, this relationship holds for any indenter that
can be described as a body of revolution of a smooth
function and is thus not limited to a specific geometry.*
Measurement of the initial unloading slope can thus be
used to determine the reduced modulus if the contact
area at peak load can be measured independently.

The arca of contact at peak load is determined by
the geometry ot the indenter and the depth of contact, A,.
Following Oliver et al.,"* we assume that the indenter
geometry can be described by an area function F(h)
which relates the cross-sectional areu of the indenter to
the distance from its tip, 4. Given that the indenter does
not itself deform significantly, the projected contact area

LOADING

LOAD, P

UNLOADING

POSSIBLE
RANGE FOR

h

e i
! —
he For g=1 // \ R

h o FOR £=0.72

DISPLACEMENT, h

FIG. 20. A schematic represcntation of load versus indenter displace-
ment showing quantities used in the analysis as well as a graphical
interpretation of the contact depth.
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at peak load can then be computed from the relation
A= F(h,) (N

The functional form of F must be established experi-
mentally prior to analysis.

To determine the contact depth from the experimen-
tal data, it is noted that

he = hmax — hs (8)

which follows directly from Eq. (5). Since /i, can
be experimentally measured, the key to the analysis
then becomes how the displacement of the surface at
the contact perimeter, f,. can be ascertained from the
load-displacement data.

The deflection of the surface at the contact perimeter
depends on the indenter geometry. For a conical indenter,
Sneddon’s expression for the shape of the surface outside
the area of contact'® can be used to give

he = m(h. — hy) (9)
T
The quantity (2 — hy) appears in this expression rather
than /i by itselt since Sneddon’s solution applies only
to the elastic component of the displacement. In addi-
tion, Sneddon’s force-displacement relationship for the
conical indenter yields

P
S

where § is the stiffness. Substituting Eq. (10) into Eq. (9)
and noting that the contact area of interest is that at peak
load, one obtains

(h—=hf)=2 (10)

(11)

where the geometric constant e for the conical indenter
is given by

2
= — ) 2
e=2(r-2) a2

or € = 0.72. When similar arguments are made for the
flat punch and the paraboloid of revolution, Eq. (11)
is again obtained with different geometric constants.
For the flat punch, € = 1. and for the paraboloid of
revolution, € = (.75.

The graphical interpretation of Eq. (11) is shown
in Fig. 20. For e = 1, the value for the flat punch,
hs = Ppax/S, and the contact depth A, is given by
the intercept of the initial unloading slope with the
displacement axis. Interestingly, this is precisely the
depth used by Doerner and Nix in their analysis based on
the flat punch approximation. Thus, the current method
is consistent with the Doerner and Nix approach when
the flat punch geometry is assumed. For the conical and
paraboloid indenters. however, the contact depths are

greater than those for the flat punch. and this must be
accounted for in analyses using these indenter geome-
tries if accurate measurements are to be obtained. The
range of /i for the indenters considered here is shown
in Fig. 20.

In addition to the modulus, the data obtained using
the current method can be used to determine the hard-
ness, H. We define the hardness as the mean pressure the
material will support under load. With this definition, the
hardness is computed from

H= P_4_ (13)
where A is the projected area of contact at peak load
evaluated from Eq. (7). It should be noted that hardness
measured using this definition may be ditferent from
that obtained from the more conventional definition in
which the area is determined by direct measurement of
the size of the residual hardness impression. The reason
for the difference is that. in some materials, a portuon
of the contact arca under load may not be plastically
deformed, and as a result, the contact area measured
by observation of the residual hardness impression may
be less than that at peak load. However, for most of
the materials considered in this study, the contact areas
computed using the procedure outlined here compare
favorably with residual contact areas measured in the
SEM, and the two definitions of hardness give similar
results. This will be discussed further in the next section.

V. IMPLEMENTATION OF THE METHOD
A. Choice of indenter geometries

The first step in implementing the new analysis
procedure is to identify which of the indenter geometries
best describes the experimental data and thercfore which
value of € should be used. While it is conceivable that the
best description varies from one material to another, the
data presented in Fig. 21 suggest otherwise. The figure
shows the unloading curves of Fig. 13 replotted with the
loads and displacements normalized with respect to their
maximum values. When plotted this way, it is apparent
that the unloading data are all remarkably similar in
form. In fact, with the exception of fused silica data,
which are slightly higher than the rest, the curves for
the materials are so similar that they can hardly be
distinguished. This suggests that unloading behavior of
a wide variety of materials can be described by a singlc
indenter geometry.

As for which indenter geometry works the best,
the primary clue is found in the power law exponents,
m, describing the unloading behavior. Table III summa-
rizes the power law exponents predicted by Sneddon’s
analyses along with the associated values of €. The
experimentally determined values of m listed in Table 11
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FIG. 21. Normalized final unloading curves for all six marterials
showing similarities in shape.

range from 1.25 to 1.51 with a mean value of 1.40.
Comparison of the two tables thus shows that based
on the power law exponents, the unloading behavior
is best described by the paraboloid geometry. and the
value of € we use in the analysis procedure is 0.75. Why
the paraboloid is a better description of the unloading
behavior is probably due to the fact that the elastic
singularity characteristic of the conical geometry is not
physically realizable when plasticity occurs, and the
pressure distribution which actually forms around the tip
of the indenter is more like that predicted by the parabola
of revolution. It is notable, however. that even had the
conical geometry been chosen, the only difference in the
analysis would have been to use a slightly smaller value
of ¢, i.e., e = 0.72.

B. Measurement of the initial unloading stiffness

One important practical question that arises in the
analysis procedure is how the initial unloading stiffness,
S, should be measured from the unloading data. One
simple way to accomplish the measurement is to fit a
straight line to a fraction of the upper portion of the
unloading curve and use its slope as a measure of the
stiffness. The problem with this is that for nonlinear
unioading data, the measured stiffness depends on how
much of the data is used in the fit.

To illustrate how important this can be. plotted
in Fig. 22 are stiffnesses measured for tungsten as a

TABLE III. Punch parameters used in data analyses.

3-0 N l T ' I'
vg TUNGSTEN ]
LINEAR FITS TO ]
2.6 FIRST UNLOAD -
POWER LAW FIT
24 TO FIRST UNLOAD ]

STIFFNESS (N/pm)

_________________________________ i
2.0 - . ]
/ . POWER LAW ]
1.8 — LINEARFITSTO o FITTO ]
LAST UNLOAD LAST UNLOAD

16 . I . l N |
0 0.2 0.4 0.6 0.8 1

FRACTION OF UNLOADING CURVE
F1G. 22. The peak load stiffness of a 120 mN indentation in tungsten
computed using linear fits of the unloading data and the power law

fitting technigue. The dashed lines are power law fits applied to the
first and last unloading segments.

function of the fraction of the unloading data used
in the fit. Two features are worthy of note. First, the
stiffnesses obtained from the first and last unloadings
are very different. The reason for this is that there is a
significant amount of creep during the first unloading,
causing the slope of the upper portion of the unloading
curve to be abnormally high. Because of this, there is no
way that the proper unloading stiffness can be identified
from the first unloading data using this technique. These
effects can be minimized by the inclusion of peak load
hold periods in the loading sequence to diminish time
dependent plastic effects, as was done just prior to the
final unloading in this study. Second, it is seen that even
in the final unloading data, there is a significant variation
in the measured stiffness, depending on how much of
the unloading curve is used in the fit. For this reason, an
alternative procedure is desirable.

The procedure we have adopted is based on the
observation that unloading data are well described by a
simple power law relation. as directly evidenced by the
excellent correlation coefficients in Table [I. The actual
relationship we use to describe the unloading data for
stiffness measurement is

P = .4.(}1 — hf)m (14)

where the constants A, m, and 4y are all determined by
a least squares fitting procedure. The initial unloading
slope is then found by analytically differentiating this
expression and evaluating the derivative at the peak load
and displacement.

Punch geometry € " Results for tungsten are included in Fig. 22 as
Flat 1 ] horizontal dashed lines. It is seen that the stiffness
Paraboloid 0.75 1.5 computed from the final unloading curve is very close
Conical 0.72 2 to that of the linear fits obtained using small fractions

of the unloading data. Interestingly, when applied to the
J. Mater. Res., Vol. 7, No. 6, Jun 1892 1575
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first unloading data, the power law method produces a
stiffness that is only slightly greater than that derived
from the last unloading curve, thereby implying that the
power law method is less sensitive to creep. For these
reasons. the power law method is preferred and is used
in all subsequent analyses.

C. Determination of load frame compliance
and diamond area function

Another important practical consideration is how
well the load frame compliance and area function of the
diamond are known. The load frame compliance is im-
portant because the measured displacements are the sum
of the displacements in the specimen and the load frame,
and, thus, to accurately determine specimen displace-
ments, the load frame compliance must be known with
some precision. This is especially important for large
indentations made in materials with high modulus for
which the load frame displacement can be a significant
fraction of the total displacement. The area function is
equally important since computation of both the modulus
and the hardness depend on the contact areas through
Egs. (6) and (13).

The standard procedure used in the past for de-
termining area functions has been to make a series of
indentations at various depths in materials in which
the indenter displacement is predominantly plastic and
measure the size of the indentations by direct imaging.
Using the contact depths computed from the indenta-
tion load-displacement data, an area function is then
derived by empirically fitting a function to a plot of
the imaged areas versus the contact depths. Clearly, the
imaging technique must have sufficient contrast, reso-
lution, and precision to accurately determine the areas.
Optical imaging works well for larger indentations. but
cannot be used exclusively since it is usually necessary
to characterize the area function well into the submicron
range. Scanning electron microscopy is also of limited
value for small indentations because the shallowness of
the hardness impressions results in very poor contrast.
TEM replication methods have proved useful, but they
are tedious, time-consuming, and require equipment and
expertise which may not be available in all laboratories.

Here, we propose a method for determining area
functions that requires no imaging at all. The method
is based on the assumption that the elastic modulus
is independent of indentation depth. justification for
which will be given shortly when resulls of contact
area measurements for several different materials are
presented. It is important to note that specific values for
the modulus are not assumed.

The method follows by modeling the load frame and
the specimen as two springs in series, in which case

C=C.+Cy (15)

where C is the total measured compliance, C; is the
compliance of the specimen, and Cy is the compliance of
the load frame. Since the specimen compliance during
elastic contact is given by the inverse of the contact
stiffness, S, Egs. (3) and (15) combine to vield

L VE

C=C+ 2F, Vi
It is thus seen that if the modulus is constant, a plot of C
vs A™V= is linear for a given material, and the intercept of
the plot is a direct measure of the load frame compliance.
The best values of C; are obtained when the second term
on the right-hand side of Eq. (16) is small, i.e.. for large
indentations.

To find the area function and the load frame com-
pliance, we take advantage of the fact that relatively
large indentations can be made in aluminum because of
its low hardness. In addition, for the largest aluminum
indentations, the area function for a perfect Berkovich
indenter

(16)

A(h,) = 24.5h2 (17)

can be used to provide a first estimate of the contact
area. Initial estimates of C; and E, were thus obtained
by plotting C vs A™'? for the two largest indentations
in aluminum. Using these values, contact arecas were
then computed for all six indentation sizes by rewriting
Eq. (16) as

T 1 1

A= — ———— (18)

BN (C-Cp)
trom which an initial guess at the area function was made
by fitting the A vs A, data to the relationship

A(h = 24502 + C1hL + Cohl/? + Cshl/*
o, + Cghl/1%8 (19)

where C; through Cy are constants. The lead term de-
scribes a perfect Berkovich indenter; the others describe
deviations from the Berkovich geometry due to blunting
at the tip.

The procedure is not complete at this stage because
the exact form of the area function influences the values
of C; and E,, so using the new area function the
procedure was applied again and iterated several times
until convergence was achieved. Figure 23 shows a plot
of the final values of (C — Cy) vs A™'~. Note that the
data are linear and extrapolate to (C - Cy) = 0, as they
should once the proper load frame compliance and area
function have been found.

To extend the area function to smaller depths and to
check the validity of the constant modulus assumption,
the procedure was subsequently applied to all the other
materials. In doing so, the load frame compliance was
held constant at the value determined trom the aluminum

1576 J. Mater. Res., Vol. 7, No. 6, Jun 1992




W. C. Oliver and G. M. Pharr: An improved technique for determining hardness and elastic modulus

10 - T - T
ALUMINUM [

8 1 ]
E i
S 6 ]
=
o 4 7
Q L

» L ]

0 L . | | ] ]

0 0.0002 0.0004 0.0006 0.0008  0.001
A‘UZ (nm-i)

FIG. 23. A plot of (C - Cp) vs A for aluminum. The error bars are
two standard deviations in length.

data since the largest contacts were made in this ma-
terial. The area of the largest indentation in each of
the other materials was computed using the aluminum
area function. and the modulus for each material was
estimated using Eq. (6). The areas needed to produce a
constant modulus as a function of depth for each material
were then computed using Eq. (18). The resulting areas
and the corresponding contact depths for all materials
were fit as a group using Eq. (19) to define a new
area function. The process of determining E, at the
largest depth for each material (using the latest area
function), recalculating areas assuming contant modulus,
and redetermining the arca function was then repeated
iteratively until the area function accurately described
the data for all of the materials at all depths. Note
that nowhere in the procedure was a specific value for
a modulus assumed: the only. assumption is that the
modulus is independent of depth.

The resuits for all the materials are plotted in Fig. 24
as contact area versus contact depth. The solid line
through the data is the final composite area function
derived by fitting Eq. (19) to all the data. The fact that
one single area function adequately describes the data
suggests that the constant modulus assumption and the
use of a singie area function are valid. The composite
area function derived from these data is used in all
further analyses.

Subsequent to this work, a more specific procedure
was developed for determining area functions and
load frame compliances using aluminum and fused
quartz as calibration materials. Details are described in
Appendix IL

D. Assessment of predictive capability

To assess the predictive capability of the method,
load-displacement data for each of the six experimental
materials were analyzed according to the procedures
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FIG. 24. The computed contact areas versus contact depths for all six
materials, The error bars are two standard deviations in length.

described in Sec. [V to determine contact areas, moduli,
and hardnesses. The elastic constants of the diamond
indenter used in Eq. (2) to compute the specimen modu-
lus from the reduced modulus were £; = 1141 GPa and
v; = 0.07. Here, we compare predictions of the method
with values assessed using independent means.

The first comparison is between the contact areas
calculated from the load displacement data and contact
areas measured by direct imaging in the SEM. Figure 25
presents results for all six materials plotted as calculated
versus imaged areas. The good agreement between the
two measurements suggests that the method works well,
with the only possible exception being aluminum at
high loads. for which the calculated areas are slightly
greater than imaged areas. That aluminum behaves in
this way may be related to the fact that it was the only
material studied here for which there was significant
pile-up around the indentation.

The good agreement in Fig. 25 also suggests that the
peak load contact areas computed using the new method
and the imaged residual contact areas are much the same
in most materials, and thus the definition of hardness
given in Eq. (13) is consistent with the conventional
definition. This finding was at first somewhat surprising
to us, since there is significant elastic recovery upon
unloading in the ceramics and glasses we examined (see
Figs. 5-8). and we expected to find the residual contact
areas in these materials to be measurably smaller than
the peak load values. The reason for the agreement can
be at least partially understood by examination of the
SEM micrograph in Fig. 26. The unusual shape of this
fused silica indentation suggests that during unloading.
the sides of the indentation elastically recovered while
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FIG. 25. Contact areas computed using the new analysis procedure
versus imaged contact areas for all six materials. The error bars are
two standard deviations in length.

the corners did not. thus producing the odd appearance
of the edges of the impression. Apparently. the additional

FIG. 26. A scanning clectron micrograph of a 40 mN indentation in
fused silica.

1578

plasticity caused by the stress concentration at the edges
the indenter serves to mark permanently the posmvon
of the corners of the indentation at peak load. Thus.
if the area of the hardness impression is measured
by computing the area of the triangle defined by the
impression corners, as is most often done in conventional
hardness testing and as was done here. then the size of
the imaged indentation is a good measure of the peak
load contact area. In this regard. it is notable that the
same agreement would not be expected for indentations
made with smooth. axially symmetric indenters (i.e.,
cones. paraboloids or spheres). for which elastic recovery
would occur uniformly around the periphery of the
impression.

The hardnesses computed from the calculated areas
are shown in Fig. 27. The data show that there is very
little indentation size effect (ISE) in any of the materials
with the exception of aluminum and tungsten in which
there is a modest increase in hardness at low loads. This
could be due to surface-localized cold-work resulting
from polishing.

The moduli predicted from the indentation load-
displacement data are shown in Fig. 28. Note that to
compute the modulus from the measured values of E.
requires that Poisson’s ratio be known. The assumed vai-
ues for Poisson’s ratio are shown in Table [V. The data in
Fig. 28 show that once again. there is very little evidence
for an indentation size effect: i.e.. the moduli remain
more or less constant over the entire range of load.

To assess the predictive capabilities of the modulus
determination. moduli obtained by averaging the experi-
mental results at the two highest loads are compared
with commonly accepted values from the literature in
Table IV. For the crystalline materials. the literature
values were obtained by averaging the Voigt and Reuss
average elastic constants (or the Hashin and Shtrikman
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FIG. 27. The load dependence of the hardness calculated using the

new analvsis procedure for all six materials. The error bars are two
standard deviations in length.
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average elastic constants for the cubic materials) using
the data tabulated in Simmons and Wang.**

The table shows that for aluminum, tungsten, soda
lime glass, and fused quartz, the moduli computed from
the indentation load-displacement data are all within 4%
of the literature values. Since these materials all exhibit
very isotropic elastic properties, there is no question as
to what the measured modulus should be, and the good
agreement between the experiment and literature moduli
demonstrates that the method proposed here works well.
For sapphire and quartz, on the other hand, the agreement
in the table is not quite as good. The measured modulus
is higher than the Voigi/Reuss average by about 9% for
the sapphire and about 30% for the quartz. However,
both these materials are highly anisotropic, and because
of this it is not clear to what value the measured modulus
should be compared. On the one hand, it can be argued
that the most appropriate modulus is that in the direction
of testing. since the elastic displacements are primarily
in this direction. On the other hand, since the formation
of the contact impression involves deformation in many
directions. it can be argued that the measured modulus
should be some average quantity.

Unfortunately, which of these hypotheses is more
likely, if either, cannot be determined using the limited
data obtained in this study. For sapphire, it could be
argued that the reason that the Voigt/Reuss average of
403 GPa is low is because the measured modulus of
441 GPa is strongly influenced by the 499 GPa modulus
in the direction of testing (the c-axis). The same,
however, cannot be argued for quartz since the experi-
mentally measured modulus (124 GPa) is greater than
either the Voigt/Reuss average (95.0 GPa) or the c-axis
modulus (105 GPa). The influence of elastic anisotropy
on the measurement of modulus using indentation
load-displacement methods is an area thal requires
further study.

VI. CONCLUSIONS

(1) Careful examination of indentation load-
displacement data obtained for six materials using a
Berkovich indenter reveals that unloading curves can be
accurately described by the power law relation

P = A—l(h — h.f)m

where P is the load, (i — hy) is the elastic displacement,
and A and m are material constants. The fact that the
power law exponents in the above relation are always
greater than 1 (they vary from material to material in the
range 1.25 to 1.51) suggests that the flat punch method
of analysis for determining hardness and modulus from
indentation load-displacement data is not entirely ade-
quate. This is corroborated by dynamic measurements of
contact stiffness which show that contact area changes
continuously as the indenter is withdrawn.

(2) The curvature in the unloading data can be
accounted for by assuming that the indenter behaves
as a punch whose geometry is such that the contact
area changes continuously during unloading. Conical
and paraboloid punches satisfy this condition and are
attractive for two other reasons: (1) analytical solutions
for the elastic contact problem are available for each,
and (2) each has features which model the Berkovich
geometry in different ways. Careful examination of the

TABLE IV. Comparison of measured moduli with values in the literature.

Experimental Standard Literature
Material modulus (GPa) deviation (GPa) modulus (GPa) Poisson’s ratio Refcrence
Aluminum 68.0 0.93 70.4 0.347 35
Quartz 124 0.54 95.0 0.077 35
(c-axis = 105)
Soda-lime glass 69.9 0.22 70.0 0.23 36
Sapphire 441 4.70 403 0.234 33
(c-axis = 499)
Fused silica 69.3 0.39 72 0.17 37
Tungsten 410 4.70 409.8 0.280 3
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shape of unloading curves suggests that the paraboloid
is the preferred geometry.

(3) Using a new analytical procedure, contact areas,
hardnesses, and moduli have been computed from the
indentation load-displacement data for a varicty of peak
loads. Comparison of predicted contact areas with values
measured independently in the SEM shows that the
contact area determined by the analysis procedure is
a good measure of the size of the residual contact
impression. As a consequence, there is good correlation
between hardness measured from the load-displacement
data and that measured using conventional techniques.
The moduli predicted by the method are within 4% of
values reported in the literature for the materials with
isotropic elastic properties. For anisotropic materials. a
question still remains as to what the modulus measured
by load and displacement sensing indentation techniques
represents.

(4) The procedure works well only when several
key quantities are known with some accuracy and pre-
cision. These include the unloading stiffness, the load
frame compliance, and the area function of the diamond.
Procedures for determining each are outlined. The pro-
cedure for determining the area function is attractive
because it does not require imaging of indentations.
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APPENDIX I: Continuous measurement of
contact stiffness by a dynamic technique

The continuous measurement of stiffness during
indentation is accomplished by applying a small oscil-
lation to the force signal at a relatively high frequency
(69.3 Hz). The amplitude of the force oscillation is kept
sufficiently small that the deformation process is not
significantly affected by its addition. The corresponding
displacement oscillation is monitored at the excitation
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frequency using a two-channel, phase-sensitive detec-
tor (lock-in amplifier) which can accurately measure
displacements as small as 0.001 nm using frequency
specific amplification. The phase difference between the
displacement signal and the force signal can also be
measured. A time constant of (.33 s provides a good
combination of low noise and dynamic response for the
results described in this work.

Determination of the stiffness of the contact requires
an understanding of the response of the entire system.
a dynamic model for which is shown in Fig. Al. An
analysis of this model reveals that the stiffness of the
contact. S, can be calculated from the amplitude of the
displacement signal from

P,
h(w)

= \/{(S"l + Cf)_l + K, - ‘mwg}— +w?D?
(AD)

or from the phase difference between the force and
displacement signals from

, wD
tan (¢) = ) S (A2)
(S7'+Cy) "+ K, — mw-
where
C; = the compliance of the load frame (~1.13 m/MN)
K, = the stiffness of the column support springs
(~60 N/m)

D = the damping coefficient (~54 N s/m)
P, = the magnitude of the force oscillation

DYNAMIC MODEL

.

K,=1/C,

o opb

Mass=m

FIG. Al. A dynamic model for the system.

h(w) = the magnitude of the resulting displacement
oscillation

w = frequency of the oscillation (69.3 Hz)

¢ = the phase angle between the force and displace-

ment signals
m = mass (~4.7 gms)

The constants that must be known for the analysis
are Cy, K;. and D. The constants K and D are experimen-
tally determined by examining the motion ot the system
according (o the model in Fig. Al when the indenter
is not touching the surface (S = 0). The technique for
determining K, is an important part of the analysis
technique described in the body of this work and is
fully described there. Details of the damping coefficient
measurement and the calibration of the system have been
described elsewhere.™*

For a complete understanding of the technique,
several characteristics of the system should be noted.
First, due to the double gap in the displacement sensing
capacitive gage, the damping coefficient D varies as the
fourth power of the displacement of the moving plate and
is thus not constant for large plate motions. However,
since the positional derivative of D near the center of
travel is small, D is relatively constant over the range of
positions used in a normal indentation experiment.

Second. by defining a reduced spring constant
K = (57" + C)7' + K. the model can be reduced to the
simpler system shown in Fig. A2. The natural frequency
for this system is

Wn = \/% (A3)

Since the critical damping coefficient is 4 Nm/s, the
system is over-critically damped. This means that the
displacement amplitude is single valued and no resonant
peak is observed. Typically. the characteristics of the
components of an oscillating system are fixed and the
system response is examined by changing the frequency
of oscillation. In the case considered here, the excitation
frequency is- held constant while the stiffness of the
reduced spring constant K is increased from a very small
value (K, = 50 N/m) to a high value (5 x 10° N/m).
This means initially the system is operating above the
resonant frequency and the phase angle is greater than
90 degrees. As the stiffness S. and therefore K. increases,
the resonant frequency of the system increases and ap-
proaches the excitation frequency. At the highest values
of K measured in this work, the resonant frequency of
the system is greater than the excitation frequency and
the phase angle approaches zero. As has already been
noted, even though the system goes through resonance.
there is no peak in the displacement amplitude due to the
high damping coefficient. Clearly the complete solutions
for the motion of the system given in Eqgs. (Al) and
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SIMPLIFIED DYNAMIC MODEL

.

< oY

Mass =m

FIG. A2. A simpler model for the system which results by redelining
the spring constant.

{A2) must be used with no simplifying assumptions.
In practice, the value of S calculated from the phase
signal works well only at small stiffnesses where the
phase angle is of some magnitude. At high stiffnesses
the phase angle becomes less than a few degrees and is
too small relative to the noise. The value of stiffness
calculated from the amplitude measurement is more
accurate, particularly at higher stiffnesses.

APPENDIX Il. Indenter area function
calibration procedure

The area function of the indenter relates its cross-
sectional area to the distance from its tip. In the course
of performing this study, a procedure was developed for
determining the area function which does not require
the imaging of indentations. The procedure involves
making a series of indentations in two standard mate-
rials—aluminum and fused quartz—and relies on the
facts that both these materials are elastically isotropic,
their moduli are well known, and their moduli are
independent of indentation depth.

The procedure requires that indentation contact stiff-
nesses be measured accurately and precisely over a wide
range of indentation depths. The first step in determining
these stiffnesses is to determine precisely the load frame
compliance. This is best accomplished by indenting a
material in which large, very stiff contacts can be made at
relatively low loads. We have found that well-annealed,
high purity aluminum is an excellent choice: it is readily

available, has a low hardness, and is nearly elastically
isotropic.

Some care must be e¢xercised in preparing the alu-
minum to assure that its surface is smooth and unaffected
by work hardening. The mechanical polishing procedure
we have adopted is as follows: (1) Mount the specimen in
epoxy resin to form a standard metallurgical mount with
a small section of heavy-walled stainless steel tubing
surrounding the aluminum to prevent plastic straining
when clamping forces are applied to the mount during
testing. (2) Grind the specimen with successively finer
grits of SiC abrasive paper through 600 grit, being
sure to remove the damage layer at each step. (3)
Polish for 8—12 h on a vibratory polisher using 3 ;tm
diamond paste and water on a TEXMET™ cloth fol-
lowed by 8-12 h using 0.5 zm diamond and water on a
MASTERTEX™ cloth. (4) Final polishing is performed
using colloidal silica and a MASTERTEX™ cloth for
15-20 min.

A series of indentations are made in the aluminum
using the first six peak loads and loading rates shown
in Table Al. The load time history we recommend is
as follows: (1) approach and contact surface, (2) load
to peak load. (3) unload to 90% of peak load and hold
for 100 s. (4) reload to peak load and hold for 10 s,
and (5) unload completely at half the rate shown in
Table Al. The lower hold is used to establish thermal
drift and the upper hold to minimize time-dependent
plastic effects. The final unloading data are used to
determine the unloading stiffnesses using the power law
fitting procedure described in Sec. V. B.

The load frame stiffness is determined from the
aluminum data using an iterative procedure similar to
that outlined in Sec. V.C. The procedure is actually
somewhat simpler because the known elastic constants
for aluminum. £ = 70.4 GPa and v = 0.347, can be

TABLE Al. Peak loads and loading/unloading rates used in the area
function calibration procedure,

[ndentation Peuk load Loading/unloading ~ Nanoindenter
numbers (mN) rate (uN/s) load range
1-10 120 12000 High
11-20 60 6000 High
21-30 30 3000 High
31-40 15 1500 High
41-50 7.5 750 High
51-60 3 300 High
61-70 20 2000 Low
71-80 10 1000 Low
§1-90 3 300 Low
91-100 1 100 Low
101-110 0.3 30 Low
111-120 0.1 10 Low
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used to eliminate the unknown value of E, in Eq. (18).
This results in quicker convergence. The values of the
elastic constants we use for the diamond indenter are
E; = 1141 GPa and v; = 0.07. The procedure also pro-
duces A vs h, data which are used in the determination
of the area function at large depths.

The problem with using aluminum to extend the
area function to small depths is that because of its low
hardness, small indentations in aluminum require very
small loads, and a limit is set by the force resolution of
the indentation system. This problem can be avoided by
making the small indentations in fused quartz, a much
harder, isotropic material available in optically finished
plate form from the General Electric Corporation. The
standard procedure we use for determining the area
function involves making a series of indentations in
fused quartz using all the peak loads shown in Table Al.
The contact areas and contact depths are then determined

using Eqgs. (18) and (8) in conjunction with the reduced
modulus computed from the elastic constants for fused
quartz, £ = 72 GPa and v = 0.170. Because the ma-
chine compliance is known trom the aluminum analysis,
there is no need for iteration. ,

To finally establish the area function, the A vs /i data
obtained for both the aluminum and the fused quartz are
fit as a group to Eq. (19). The area function at large
depths is then determined primarily by the aluminum
data while that at small depths is determined by the fused
quartz data. A convenient fitting routine is that contained
in the Kaleidagraph™ software for Apple Macintosh™
computers. A weighted procedure can be used to assure
that data points with small and large magnitudes are of
equal importance. For the loads outlined in Table Al,
the minimum contact depth is about 15 nm and the
maximum about 4700 nm, so the area function is good
in the range in between.
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