
Notes on surface tension phenomena.      P. Lozano 
Let us take a closer look at what happens on the interface between two fluids. For 
instance, this could be the interface between water and its vapor. 

 
Whereas in the bulk of either fluid there is an isotropic distribution of molecular forces 
(i.e., the net force is the same regardless of direction), at the interface there is a definite 
force acting preferentially towards one of the two substances. If its water and its vapor, 
the net force on the water molecules points towards the water bulk. 

The nature of this situation could be understood after realizing that molecular forces play 
a definite role in defining what we call an interface. In our example, water molecules 
experience an attractive force to other water molecules, which is stronger than vapor-
water molecular interactions. Each “bond” type between molecules can be characterized 
by a form of energy; potential energy to be precise, similar to what you have studied 
before in mechanical systems, like a spring under tension or compression. 

For molecules at the interface, there is an unequal distribution of energies when 
compared to the bulk. This difference is defined as the interfacial energy, Ei. It is clear 
that the interfacial energy will be proportional to the number of molecules at the surface. 
Therefore, it makes more sense to define the surface energy, or interfacial energy per unit 
area 

! 

E
i
A , which is customarily known as the surface tension γ, of the interface. 

Surface tension ≡ γ     in SI units [Joules/m2] ≡ [N/m] 

Consider a liquid forming a spherical droplet of radius r floating in a gravity-free, 
vacuum environment (neglect vapor pressure!). What would the pressure be inside the 
droplet? We can answer this question using two approaches: 

(1) The thermodynamic approach - The interfacial energy is given by 
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E
i

= 4"r2# . In a 
thermodynamic sense, work has been done to the liquid to give it a spherical shape and 
keep it that way. From the definition of work, 

! 

dW = pdV . In absolute terms, the work 
done should be equal to the interfacial energy, therefore 
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dW = dE
i
. Taking the surface 

tension as constant, this means 
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dE
i
= 8"r#dr . Also, a volume element in spherical 

coordinates is 
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dV = 4"r2dr . This means that, 
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(2) The mechanistic approach - Consider the balance of forces occurring on any mid-
cross section of the droplet: 



 
Surface tension force acts inward exclusively on the interface and is distributed around 
the perimeter of the cross section. Therefore, this force is 

! 

2"r#  and is exactly balanced 
by the droplet pressure force acting on the cross sectional area, or 

! 

p"r2 . It immediately 
follows that, as before, 

! 

p = 2" r . If the droplet is floating in a substance (i.e., air) at some 
ambient pressure, say pa, that pressure produces a force on the mid-cross section that 
effectively opposes the droplet internal pressure, therefore 

! 

p " pa = 2# r. 

Approach (2) can be generalized for any shape, the result is 

! 

p " pa = #$ , where 

! 

"  is the 
curvature of the surface. In many instances the curvature needs to be found using 
differential geometry. 

What is the impact of surface tension phenomena on engineering problems? 
This is a matter of scales. In many applications, the effects are very small, in others is 
crucial. Consider once more a droplet of radius r. Under a gravitational field, the force 
acting on the droplet will be of the order of its weight 

! 

Fg " mg = # 4

3
$r3g , whereas the 

surface tension force will be proportional to the droplet area 

! 

F" # p $ pa( )4%r2 . It is easy 
to prove that both forces are of the same order when 

! 

r " 6# $g . For water, with a 
surface tension of 0.07 N/m and a density of 1000 kg/m3, this critical radius is about 6.5 
mm. In most engineering fluid-dynamics problems, gravity forces, or other pressure 
driven forces, dominate, thus making surface tension effects negligible. But for small 
dimensions, they could be quite significant. Even in some macroscopic situations, surface 
tension plays and important role. Take for instance the small ripple waves that propagate 
over a lake due to the wind blowing along the surface. These are for the most part surface 
tension waves, with a wavelength of about a few mm, as we found above. 

In recent years, mostly due to the high interest in MEMS technologies applied to life 
sciences and precise liquid flow control in many different and diverse areas, the field of 
microfluidics has grown in a very significant way. This discipline deals with fluid flows 
at scales well below a few mm, and therefore surface tension effects are at the very core 
of its foundation. After all, surface tension forces give rise to capillarity action, which 
establishes the way in which water located in underground deposits find its way to the 
tops of trees, and the way blood distributes in the human body to reach every living cell. 
Surface interactions with solids 
In most applications, liquids will be in contact with solids. At the macro scale, many of 
those interactions are inconsequential, but at the micro scale they are essential. Take for 
instance a small liquid droplet that has been deposited on a clean solid surface. If 



gravitational forces are small compared to surface tension forces (i.e., for a droplet 
smaller than 

! 

r " 6# $g ), then the shape will be semi-spherical. 

 
The equilibrium situation is completely specified by the contact angle θ with the solid 
surface. Looking at this situation in detail, we notice that there are three interfaces acting 
along the contact line with the solid (the meniscus perimeter). We can therefore talk 
about an equilibrium between the surface tension forces on the liquid-solid, liquid-vapor 
and vapor-solid interfaces. Since all three act exclusively on the perimeter, this statement 
reduces to 
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If we know the surface energies for the different interfaces, we then know the contact 
angle. There are both theoretical and empirical methods to obtain these values, which are 
beyond the scope of this lecture. Suffice to say, that interface properties establish the 
wetting behavior of liquids on solids. For example, pure water in water vapor has zero 
contact angle on clean glass. This is a case of perfect wetting. In contrast, the contact 
angle of water on Lotus leaves approaches 180°, which is a case of perfect 
hydrophobicity, i.e., no wetting at all. This, as you can imagine, has important 
consequences in many engineering applications, for instance, establishes the kind of 
surface treatment given to car, or aircraft, windshields. You want to select a hydrophobic 
surface in those cases, while good wetting is sought in applications as simple as painting. 

Capillarity rise 
As an example to the role of wetting properties on solids, consider the situation in which 
a small straight tube with open ends and radius R is immersed in a fluid with surface 
tension γ and density ρ. 

 



If the liquid wets the solid tube material, it will have a contact angle θ smaller than 90°. 
Therefore, there will be a net surface tension force acting upwards 
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F" = 2#R" cos$ . The 
dynamic situation requires the introduction of viscous terms, which we have not studied 
yet. In turn, we focus on the static equilibrium case in which the liquid climbs to a height 
h such that the surface tension force balances the weight of the liquid column in the tube. 
This weight is given by 
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Fg = mg = "Vg = "#R2hg . The balance yields an equation for the 
column height, 
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h =
2" cos#

$gR
. 

This equation holds the right dependences: as the tube radius becomes smaller, the height 
increases. This is the strength of capillarity: h can be very large for tubes with small radii. 

To finalize, we look at how capillarity rise links to our previous discussion on 
manometers. The fact that we have a liquid column in a gravitational field means that 
there should be a difference in pressures between the top of the column and the bottom. 
The bottom coincides in height with the liquid surface level in the open container. If the 
gas pressure is pa, that means that the liquid pressure in the container is also pa, and this 
needs to be the pressure at the bottom of the column in the tube as well: they are all at the 
same level. Let us apply the hydrostatic equation to this case: 
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p " pa = #g y
0
" y( ) 

Taking y0 = 0 as the reference level in the liquid container, we see that the pressure at the 
top of the column is: 

! 

p = pa " #gh . 

This pressure is lower than the atmospheric pressure (we of course neglect the gas 
pressure change with height: the gas density is very small). Where is the negative 

! 

p " pa  
pressure coming from? From our surface tension considerations 

! 

p " pa = #$ , so the 
negative pressure is generated by the curved surface: 

! 

" = #$gh % . This means we could 
use directly the hydrostatic equation to find the column height, as long as we know the 
surface curvature: 

! 

h = "# $g . As an exercise, you could easily prove that this expression 
reduces to the one found above for the case of a semispherical meniscus. 
 


