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Project Description and Background 
 
Every design of a propeller for a specific application includes the problem of 
optimization. This means that the designer will have to choose the most appropriate 
propeller design from a wide variety of options. The optimization can be conducted 
based on different properties and objectives. In this project I studied the optimization of 
a propeller design using the software OpenProp. OpenProp is a propeller lifting line 
code which can be used to solve the propeller and wind turbine design optimization 
problem and also analyze these devices at operating points off-design conditions.  
 
The program is based on Lifting Line Theory (LLT), a fundamental theory for the 
calculation of the lift force generated by a foil. The above calculation is difficult using 
analytical methods. However, the first step to solving this problem would be to realize 
that we could separate the foil into cross-sectional segments and exploit the individual 
lift force produced by each cross-section in order to compute the total lift. But opposed 
to what might be the first impression, the total lift will not be equal to the sum of the 
individual lifts generated by each segment. On the contrary, the lift on each cross-
section has an impact on the lift of the two adjacent cross-sections. 
 

 
Figure 1: Lift distribution over a foil (www.ariadacapo.net) 

 

http://www.ariadacapo.net/


This is where Lifting Line Theory is introduced in order to fill this gap and take into 
account the influence between the neighboring segments. Lifting Line Theory uses 
Kutta – Joukowski theorem {L(y)=ρVΓ(y)} to transfer the problem, from finding the 
unknown lift to finding the unknown circulation on each cross-section. Thus, a change in 
the lift along the span of the foil is equivalent through the above formula, to a change in 
circulation. The concept of circulation implies the existence of vortices which create the 
circulation. So, the change in lift spanwise is translated into shedding vortices spanwise 
and downstream.  

 
Figure 2: Shed vortex and induced velocities on the adjacent segments 

(www.ariadacapo.net) 
 

The influences on the neighboring sections from each vortex are the basic ingredient of the LLT. 
If we know the change in lift distribution throughout a section then one can predict the induced 
velocities on the adjacent sections, using the velocity distribution inside the vortex combined 
with the change in effective angle of attack.  
 
In the propeller LLT every blade of the propeller is represented by a lifting line, as shown in 
Figure 3. The next for the approach will be to divide the spanwise distance of the blade into M 
panels and consider constant circulation in the interior of each panel. The value of circulation Γ 
in each panel will be equal to the value of the continuous circulation at the control point that we 
select. Usually, the control points are selected to be at the center of the length of the panel. The 
selection of the control points is important since the induced velocities by the vortices will be 
calculated at the control points. 
 

 

http://www.ariadacapo.net/


 
 

Figure 3: Lifting line with selected spacing and circulation distribution 
(Kerwin and Handler (2010), PNA) 

 
 
In Figure 4 we can see a velocity – force diagram for the blade section, as it can be viewed from 
the tip of the blade. In this diagram we can see the following: 
 
ea: axis of the axial direction  
et: axis of the tangential direction 
ωea: angular velocity of the propeller 
Va: axial inflow velocity 
Vt: tangential inflow velocity 
ua*: induced axial velocity 
ut*: induced tangential velocity 
 
𝑽𝑽∗ =  �(𝑽𝑽𝑽𝑽 + 𝒖𝒖𝒖𝒖∗)𝟐𝟐 + (𝝎𝝎𝒓𝒓 + 𝑽𝑽𝑽𝑽 + 𝒖𝒖𝒖𝒖∗)𝟐𝟐     total resultant inflow velocity 
 
βi= 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂( 𝑽𝑽𝒂𝒂+𝒖𝒖𝒂𝒂∗

𝒘𝒘𝒘𝒘+𝑽𝑽𝒕𝒕+𝒖𝒖𝒕𝒕∗
)      pitch angle 

 



 
Figure 4: Velocity – force diagram for a blade section 

(Kerwin and Handler (2010), PNA) 
 

 

OpenProp and Optimization process 
 
OpenProp is an open-source code suite that is written in MATLAB. It can be used for 
the design, analysis, construction, and optimization of a propeller. It can be used to 
analyze both marine propellers and wind turbines with horizontal axis. The basic 
assumptions of the program are that: 

a) the inflow is steady and can vary radially but not circumferentially 
b) the moderately-loaded propeller lifting line theory applies 

The inputs for the program that the user must insert are: 
• propeller and hub diameter 
• number of blades 
• ship speed and rotational speed of the propeller 
• inflow profile (uniform or radially varying) 
• duct (if present, with a thrust ratio τ) 
• assumed blade 2D section profile – optionally a viscous 2D drag coefficient 
• discretization in panels along the blade radius 
• required thrust 

 



 
 

Figure 5: OpenProp information flow chart 
(OpenProp v2.4 Theory Document) 

 
In Figure 5 we can see the modular form of the flow chart of the program, which uses 
data structures to store the input, design, geometry and operating states. The basic 
modules are the optimizer, the crafter, and the analyzer. The optimizer is the module 
that determines the optimum propeller design. The analyzer determines the off-design 
operating states, while the crafter is responsible for the creation of the 3D geometry of 
the propeller and the export of the files for the visual depiction.  
 



 
Figure 6: Parametric study screen 

 
 

 
Figure 7: Single design screen 

 



The program has two main options: parametric study and single propeller design. 
Screenshots of the two operations are shown in Figures 6 and 7. A parametric study is 
usually conducted in the beginning of the process as an assessment for the most 
suitable design for the specific application. In the parametric study the user can input 
the basic specifications of the propeller and then specify the range of the varying 
specifications, which are in particular the number of blades, the rotation speed and the 
propeller diameter. After completing the parametric study and selecting the propeller, a 
single design study must be conducted to analyze and optimize the design. After 
running the single design study, the program exports all the diagrams that are 
necessary for the evaluation of the propeller design, such as performance curves, 
circulation and induced velocities plots and efficiency plots.  
 
The objective of the program is to find the propeller that maximizes the efficiency of the 
propeller. The efficiency of the propeller is defined as the ratio of the thrust power for a 
propeller operating in the wake of a ship over the delivered power to the propeller:  
𝜂𝜂 = 𝑃𝑃𝑇𝑇

𝑃𝑃𝐷𝐷
  

The optimization problem will eventually reduce to finding the optimum circulation 
distribution Γ. The program will find the set of M circulations of the vortex lattice panels 
which produce the least torque, using the following formulae for torque and thrust 
respectively: 

 

 
 
where Hflag is set to 1 for modelling a hub or 0 for no hub and Ts is the specified thrust. 
 
For the solution of the optimization, the code employs the method of Lagrange 
multiplier. An auxiliary function, 𝐻𝐻 = 𝑄𝑄 + 𝜆𝜆1(𝑇𝑇 − 𝑇𝑇𝑠𝑠) , is introduced with λ1 the unknown 
Lagrange multiplier which constrains the thrust. It is obvious that if T= Ts then a 
minimum value for H coincides with a minimum value for Q (torque). In order to find the 
minimum value, we can follow the known process of setting the derivatives with respect 
to the unknowns Γ, λ1 equal to zero: 
𝜕𝜕𝜕𝜕
𝜕𝜕Γ(i)

= 0 , for i=1…M 

 



𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

= 0 

This results to a non-linear system of M+1 equations which is solved iteratively up to 
convergence of all parameters using Newton’s method. For each solution iteration the 
flow parameters (ua*, ut*, V*, 𝜕𝜕V∗

𝜕𝜕Γ(i)
, λ1) are kept constant to linearize the equations for 

torque and thrust. After this step the linearized unknowns 𝛤𝛤,�   𝜆𝜆1  � are taken, forming the 
following system: 

 
 

  
 
The system will next be solved for the now linear unknowns, Γ and λ1 are updated to the 
linearized values (Γ=𝛤𝛤  � and λ1=𝜆𝜆1  � ) and the new value of Γ is used to update all the flow 
parameters. One important feature here is that the wake is not iteratively aligned 
through the process, but instead, one new guess is made for the wake flow parameters 
(angle βi) and then the main iterative loop of the code continues to find the next guess 
for Γ: 



 
 
Each iteration of the loop includes updating Γ using the system of the derivatives 
equations. The critical step in this process is to update the induced velocities ua*, ut* 
using the equations: 

  
and then correct them by smoothing the velocities at the blade ends, the hub and the 
tip. This smoothing is critical because this way the system of all the equations can 
converge. This is due to the fact that the alignment of the wake and the vortices 
influence functions which are given to the next iteration are sensitive to irregularities of 
the induced velocities.  
 

Results 
 
I ran the program to study the optimization of the propeller for a specific application, in 
particular the design of the propeller for REMUS 6000 AUV, which is shown in Figure 8. 



 
Figure 8: REMUS 6000 AUV 

 
I first conducted a parametric study to find the most efficient propeller for the 
application, varying the number of blades from 2 to 9, finding that 2-5 blades was the 
most efficient range. I also varied the rotational speed from 100 to 400 rpm and the 
propeller diameter from 0.1 to 0.5 m. The plots that the program generated were the 
ones shown in Figure 9. 
 



 
Figure 9: Plots generated after parametric study for a defined range of varying 

parameters 
 

It is obvious in the above plots that the solution for efficiency of the propeller converges 
up to a value and then there is a rapid non-convergence which leads to zero value for 
efficiency, something that is not realistic.  
 
The program also produces the following plots. Figure 10 illustrates the thrust coefficient 
KT, torque coefficient KQ and propeller efficiency η as a function of advance ratio Js and 
Figure 11 shows the circulation as a function of the dimensionless radius along the 
blade r/R. As is evident from Figures 10 and 11, the circulation increases from the root 
as the radius increases, achieves its maximum value at about r/R = 0.7 and then 
decreases towards the propeller tips. The vehicle operates at an advance ratio of about 
J = 1.5 with an efficiency η= 0.51. At design conditions, the thrust coefficient assumes a 
value of KT  = 0.38 and a torque coefficient of KQ  = 0.066. Off-design conditions are 
also plotted in Figure 10.   
 



 
Figure 10: KT, KQ and propeller efficiency η as a function of advance ratio Js 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 11: Normalized circulation Γ as a function of r/R 
 



We saw above that the crafter module is responsible for the 3D geometry of the 
propeller and its visualization. In Figure 12 the same propeller is shown; the left 
propeller consists of 20x20 panels for the chord and span directions, while the right 
propeller consists of 5x5 panels. The difference in the shape is evident. It was observed 
that the program demands at least 3 panels for each direction in order to be able to 
generate the shape plot of the propeller.  
 

 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 12: Same specifications propeller shape for 2 different discretizations: a) 20x20 

panels on the left and b) 5x5 panels on the right 
 

Finally, I plotted the solutions for efficiency of the propeller as a function of the number 
of panels to show the difference I encountered in the solutions. It is obvious that the 
solution converges to a specific value (approximately 0.725) as the number of panels 
increases. Moreover, the error in the calculation is decreased for increased number of 
panels. The convergence is of 2nd order since the plot in Figure 13 can be simulated 
with a 2nd order polynomial. 
 



  
Figure 13: Efficiency solution as a function of the number of panels 

 


