
2.290 Final Project: Modeling Air Pollution in

OpenFOAM

Natasha Stamler

May 2022

1 Background

Air pollution kills seven million people around the world every year through
stroke, heart disease, lung cancer, and acute respiratory infections [1]. How-
ever, air pollution can be difficult to quantify with field measurements due to
its spatial and temporal variability [14]. Modeling can provide valuable insight
into this variability in pollution concentration. These models can then be used
to predict human impacts and to inform mitigation measures, such as changes
to the built environment. Computational Fluid Dynamics (CFD) provides the
highest spatial and temporal resolution for air pollution modeling. Other mod-
els, such as AEROMOD, a Gaussian Plume Model (GPM) developed by the
US Environmental Protection Agency (EPA), cannot accurately compute con-
centrations for complex building geometries or time scales finer than an hour
[6]. CFD is thus increasingly being used to understand the dynamics of ur-
ban physics at scales from the meteorological to human to address problems
related to health, energy, and climate [2, 16, 23]. However, CFD’s potential for
high computational cost necessitates the development of solvers that implement
efficient schemes.

2 Problem Statement

Air pollution modeling is currently largely limited to complex, government-run
models, or expensive software, such as Ansys Fluent. Free, open-source CFD
software, such as OpenFOAM, only track wind velocity and pressure, rather
than particle concentration, with their built-in solvers. However, open-source
software provides an opportunity by allowing researchers to modify and add to
their existing code. This project develops a solver for aerial pollutant transport
building off an existing OpenFOAM CFD solver. It then demonstrates that this
solver can be applied to a simple test case. The successful implementation of
this solver could enable future evaluation of air pollution impacts at lower cost.

1

3 Solver

Running OpenFOAM v5 [21] in Windows 10 with blueCFD-Core 2017 [3], this
study builds on buoyantBoussinesqPimpleFoam, OpenFOAM’s transient solver
for buoyant, turbulent flow of incompressible fluids. This solver uses the PIM-
PLE algorithm, outlined in Figure 1, which combines the Pressure Implicit with
Splitting of Operators (PISO) [9] and Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) [4] algorithms.

Figure 1: PIMPLE algorithm flowchart [18].

Using a transient model instead of a steady state one enables the handling of
conditions that change with time, such as time-varying pollutant sources. Air
was assumed to be incompressible due to its low speed (less than 100 m/s).

2

Environments that are relevant to air pollution are inherently turbulent. An
example of this is urban canyons, which are dense building layouts that trap
air pollution in cities. They have large length scales from the buildings and
the potential for high wind speeds, which can lead to high Reynolds numbers
(Re) on the order of 107 − 109. This turbulence is represented using Reynolds-
averaged Navier-Stokes (RANS) turbulence modeling. RANS is used despite the
higher accuracy of Large Eddy Simulation (LES) for simulations such as street
canyon airflow [5, 16] due to the computational intensity of LES that makes
it infeasible for domains larger than idealized urban canyons [7, 18]. Similarly,
most large-scale, urban simulations use RANS turbulence modeling [19].

This solver uses the Boussinesq approximation for the Navier-Stokes equa-
tion

∂u

∂t
+ (u · ∇)u = −1

ρ
∇(p− ρgz + ν∇2u− gα(T − Tref)) (1)

since it introduces errors on the order of 1% if ∆T < 15◦C for air, a realistic
temperature gradient for pollutant modeling. The Boussinesq approximation
assumes constant fluid density. This approximation linearizes the acceleration
term and enables the use of the continuity equation while retaining the effects
of density in the momentum equation, such that the fluid satisfies conservation
of mass, momentum, and energy.

Pollutant transport was modeled using a passive-scale transport equation.
In the x-direction, it was formulated as

∂C̄

∂t
+ ūi

∂C̄

∂xi
=

∂

∂xi
((Dt +

νt
Sct

)
∂C̄

∂xi
), (2)

where C̄ is the pollutant mass fraction [-], ūi is the mean fluid velocity in
the x-direction [m/s], Dt is the pollutant mass diffusivity [m²/s], and Sct is
the turbulent Schmidt number [-]. This equation was implemented in multiple
dimensions in OpenFOAM as

∂C

∂t
+∇ · (ϕC)−∇2(Dt,tC) = 0 (3)

f vSca la rMatr ix ConcEqn
(fvm : : ddt (Conc)
+ fvm : : div (phi , Conc)
− fvm : : l a p l a c i a n (DTT, Conc)) ;
ConcEqn . s o l v e () ;

by simplifying the coefficient on the right-hand side as the effective time-
dependent turbulent mass diffusivity of the pollutant [m²/s],

Dt,t = Dt +
νt
Sct

, (4)

vo l S c a l a rF i e l d DTT (”DTT” , DT + turbulence−>nut ()/ Sct) ;

3

and moving everything to the left-hand side. ϕ is the volumetric face-flux
(flow through the cell faces) [m³/s] and C is the pollutant concentration [kg/m³].

This solver uses the K-epsilon turbulence model [10] to simulate mean flow
characteristics. It describes turbulence using one equation for k, the turbulent
kinetic energy [m²/s²],

k =
u2
τ√
Cµ

, (5)

and one for ε, the turbulent kinetic energy dissipation rate [m²/s³],

ε(z) =
u3
τ

κ(z + z0)
, (6)

where κ is the dimensionless von Karman constant (0.41), z is the height [m]
at which the ground-normal streamwise flow speed profile, u [m/s], is calculated,
Cµ is the dimensionless turbulent viscosity constant (0.09), and z0 is the aero-
dynamic roughness length [m], which defines the boundary with the roughness
sublayer. z0 varies by landscape and is taken as 0.005 m, the accepted value for
unobstructed flow on unvegetated land [22].

uτ =

√
τw
ρ

(7)

is the friction, or shear, velocity [m/s], where

τw =
1

2
CfρU

2
∞ (8)

is the wall shear stress [N/m²], where Cf is the dimensionless skin friction
coefficient, which is a function of Re dependent on the problem geometry, and
U∞ is the freestream (“far away”) velocity [m/s²].

4 Simple Test Case

4.1 Boundary Conditions

A simple test case was built off the hotRoom example case for buoyantBoussi-
nesqPimpleFoam to demonstrate the solver. In this case, pollutant concentra-
tions were fixed at the top and bottom of the room at 2 µg/m³ and 1 µg/m³,
respectively, with a constant air speed of 1 cm/s pointing downwards from ceil-
ing. The complete boundary conditions are described in Table 1.

Table 1: Boundary conditions for simple test case.

alphat Conc epsilon k nut p p rgh u

Floor
alphaJayatilleke
WallFunction

fixedValue
epsilonWall
Function

kqRWall
Function

nutkWall
Function

calculated
fixedFlux
Pressure

noSlip

Ceiling
alphaJayatilleke
WallFunction

fixedValue
epsilonWall
Function

kqRWall
Function

nutkWall
Function

calculated
fixedFlux
Pressure

noSlip

Walls
alphaJayatilleke
WallFunction

zeroGradient
epsilonWall
Function

kqRWall
Function

nutkWall
Function

calculated
fixedFlux
Pressure

fixedValue

4

αt is the turbulent thermal diffusivity [m²/s], represented as alphat in Open-
FOAM; Conc is the pollutant concentration [kg/m³]; ε is represented as epsilon
in OpenFOAM; νt is the turbulent viscosity [m²/s], represented as nut in Open-
FOAM; p is the static pressure [kg/ms2]; prgh is the total hydrostatic pressure
[kg/ms²], represented as p rgh in OpenFOAM; and T is the temperature [K].

zeroGradient applies a zero-gradient condition from the patch internal field
onto the patch faces such that

∂ϕ

∂n
= 0. (9)

fixedFluxPressure sets the pressure gradient to the provided value such that
the flux on the boundary is that specified by the velocity boundary condition.
noSlip fixes the velocity as zero at the walls.

4.1.1 Wall Functions

The remaining boundary conditions were described using wall functions. For
turbulent flows, the first cell from the wall must be within a very thin viscous
sublayer. This necessitates very fine near-wall meshing, increasing the compu-
tational time. Wall functions provide sparser near-wall meshes to accurately
predict the velocity gradient across the boundary layer without necessitating
very fine near-mesh resolution. Wall functions are valid in the fully turbulent
zone (30 > y+ > 300), shown in Figure 2. In this zone, the low-law, defined in
Equation 10, holds.

Figure 2: The Law of the Wall, showing the fully turbulent low-law zone [15].

u+ =
1

κ
ln(y+) + C, (10)

5

where C is a constant, approximately 5.45 for smooth walls, and u+ is the
non-dimensional velocity at a non-dimensional distance y+ parallel to the wall,
such that

y+ =
yuτ

ν
, (11)

where y is the absolute distance from wall [m].
αt was represented by the alphatJayatillekeWallFunction boundary condi-

tion, which describes the wall using the Jayatilleke P-function, defined in Equa-
tion 12, which accounts for the resistance to heat transfer across the viscous
sublayer [12].

P = 9.24(β
3
4 − 1)(1 + 0.28e−0.007β), (12)

where P is the P-function [-] and β = Scl
Sct

is the ratio of the laminar and
turbulent Schmidt numbers. It follows that the dimensionless near-wall tem-
perature (T+) is

T+ = Sct(u
+ + P). (13)

ε was represented by an epsilonWallFunction boundary condition, which pro-
vides a wall constraint on ε for low- and high-Re turbulence models. Applying
the stepwise switch (discontinuous) method to blend the ε predictions for the
viscous and inertial sublayers, if y+ < y+lam, then ε = εvis, and if if y+ ≥ y+lam,
then ε = εlog. εvis is ε computed by the viscous sublayer assumptions [m²/s³],
defined as

εvis = 2wk
νw
y2

, (14)

where w is the cell-corner weights [-], k is the turbulent kinetic energy
[m²/s²], νw is the kinematic viscosity of the fluid near the wall [m²/s], and
y is the wall-normal distance [m]. εlog is ε computed by the inertial sublayer
assumptions [m²/s³], defined as

εlog = wCµ
k

3
2

νtwy
, (15)

where Cµ is the empirical model constant [-] and νtw is the turbulent viscosity
near the wall [m²/s].

k was represented by the kqRWallFunction boundary condition, which pro-
vides a simple wrapper around the zero-gradient condition for the cases of high
Re (turbulent) flow using wall functions.

νt was represented by the nutkWallFunction boundary condition, which pro-
vides a wall constraint on νt based on k for low- and high-Re turbulence models,
expressed as

νt = fblend(νtvis , νtvis) (16)

6

with

νtvis
= 0 (17)

νtlog = νw(
y+κ

ln(Ey+)
− 1) (18)

y+ = C
1
4
µ y

√
k

νw
(19)

where fblend is a wall-function blending operator between the viscous and
inertial sublayer contributions, νtvis

is νt computed by the viscous sublayer
assumptions [m²/s], νtlog is νt computed by the inertial sublayer assumptions
[m²/s], and E is the wall roughness parameter [-].

4.2 Schemes

The temporal scheme (ddtSchemes) was a Euler implicit time scheme

∂

∂t
(ϕ) =

ϕ− ϕ0

∆t
. (20)

For the spatial schemes, the gradient scheme (gradSchemes) was least-
squares, which calculates the cell gradient using least squares.

All divergence schemes (divSchemes) were Gauss upwind, except for
div((nuEff*dev2(T(grad(U))))), which was Gauss linear. Gauss upwind, defined
in Equation 21, is first order and bounded. It sets the face value according to the
upstream value and is equivalent to assuming that the cell values are isotropic
(same in all directions) with a value that represents the average value. Its
normalized variable diagram is shown in Figure 3.

ϕf = ϕc, (21)

where ϕf is the face value and ϕc is the upstream value.

7

Figure 3: Normalized variable diagram for upwind divergence scheme [20].

Gauss linear, defined in Equation 22, is second order and unbounded. It is
often used for isotropic meshes due to low dissipation. Its normalized variable
diagram is shown in Figure 4.

ϕf = 0.5(ϕc + ϕd), (22)

where ϕd is the downstream value.

Figure 4: Normalized variable diagram for upwind divergence scheme [11].

The Laplacian scheme (laplacianSchemes) was Gauss linear corrected, which
is unbounded, second order, and conservative. The interpolation scheme (inter-
polationSchemes) was linear (central differencing). The surface-normal gradient

8

scheme (snGradSchemes) was corrected, an explicit central-difference scheme
with non-orthogonal correction.

4.3 Computational Grid

The geometry was meshed in SALOME [17] using a coarse, uniform grid, as
shown in Figure 5, to reduce computational intensity and simulation runtime.

Figure 5: Meshed box in Paraview.

4.4 Results

The results of the simple test case are as shown in Figure 6. Convergence is
demonstrated by the residuals approaching zero as time increases. The simu-
lation was stopped once the concentration residuals were less than 10−5. Only
the residuals for concentration are shown in Figure 6, but similar results were
achieved for the other variables.

9

(a) 400s (b) 800s

(c) 1200s (d) 1600s

(e) 2000s (f) Semi-log plot of residuals

Figure 6: Test case results after 2000s, including residuals.

5 Discussion and Future Work

Future work should include validating this solver against more established soft-
ware, such as Ansys Fluent, or experimental results. This solver should then be
applied to relevant air pollution scenarios, such as vehicle exhaust, similar to
[8], cigarette smoke, or COVID-19 transmission, similar to [13]. While there are
many potential applications for this solver, it is important to note that CFD
simulations cannot be performed in all meteorological conditions since RANS
simulations with passive pollutant transport cannot capture the predicted plume
rise caused by thermal instability.

10

References

[1] Air pollution. en. url: https://www.who.int/westernpacific/health-
topics/air-pollution (visited on 12/09/2020).

[2] Bert Blocken. “Computational Fluid Dynamics for urban physics: Im-
portance, scales, possibilities, limitations and ten tips and tricks towards
accurate and reliable simulations”. en. In: Building and Environment.
Fifty Year Anniversary for Building and Environment 91 (Sept. 2015),
pp. 219–245. issn: 0360-1323. doi: 10.1016/j.buildenv.2015.02.
015. url: https://www.sciencedirect.com/science/article/pii/
S0360132315000724 (visited on 04/27/2022).

[3] blueCFD-Core. 2022. url: https://bluecfd.github.io/Core/ (visited
on 05/09/2022).

[4] L. S. Caretto et al. “Two calculation procedures for steady, three-dimensional
flows with recirculation”. en. In: Proceedings of the Third International
Conference on Numerical Methods in Fluid Mechanics. Ed. by Henri Ca-
bannes and Roger Temam. Lecture Notes in Physics. Berlin, Heidelberg:
Springer, 1973, pp. 60–68. isbn: 978-3-540-38392-5. doi: 10.1007/BFb0112677.

[5] Lup Wai Chew and Leslie K. Norford. “Pedestrian-level wind speed en-
hancement in urban street canyons with void decks”. en. In: Building and
Environment 146 (Dec. 2018), pp. 64–76. issn: 03601323. doi: 10.1016/
j.buildenv.2018.09.039. url: https://linkinghub.elsevier.com/
retrieve/pii/S0360132318305973 (visited on 02/26/2022).

[6] AJ Cimorelli et al. AERMOD: description of model formulation, US En-
vironmental Protection Agency. Tech. rep. EPA-454/R-03-004, 2004.

[7] Daniel Elfverson and Christian Lejon. “Use and Scalability of OpenFOAM
for Wind Fields and Pollution Dispersion with Building- and Ground-
Resolving Topography”. en. In: Atmosphere 12.9 (Sept. 2021). Number:
9 Publisher: Multidisciplinary Digital Publishing Institute, p. 1124. issn:
2073-4433. doi: 10.3390/atmos12091124. url: https://www.mdpi.com/
2073-4433/12/9/1124 (visited on 02/12/2022).

[8] Yuhan Huang et al. “A review of strategies for mitigating roadside air
pollution in urban street canyons”. en. In: Environmental Pollution 280
(July 2021), p. 116971. issn: 0269-7491. doi: 10.1016/j.envpol.2021.
116971. url: https://www.sciencedirect.com/science/article/
pii/S0269749121005534 (visited on 04/27/2022).

[9] R. I Issa. “Solution of the implicitly discretised fluid flow equations by
operator-splitting”. en. In: Journal of Computational Physics 62.1 (Jan.
1986), pp. 40–65. issn: 0021-9991. doi: 10.1016/0021-9991(86)90099-
9. url: https://www.sciencedirect.com/science/article/pii/
0021999186900999 (visited on 02/26/2022).

11

[10] B. E. Launder and D. B. Spalding. “The numerical computation of turbu-
lent flows”. en. In: Computer Methods in Applied Mechanics and Engineer-
ing 3.2 (Mar. 1974), pp. 269–289. issn: 0045-7825. doi: 10.1016/0045-
7825(74)90029-2. url: https://www.sciencedirect.com/science/
article/pii/0045782574900292 (visited on 05/05/2022).

[11] Linear divergence scheme. 2017. url: https://www.openfoam.com/
documentation/guides/latest/doc/guide- schemes- divergence-

linear.html (visited on 04/29/2022).

[12] M.R. Malin. “On the calculation of heat transfer rates in fully turbu-
lent wall flows”. en. In: Applied Mathematical Modelling 11.4 (Aug. 1987),
pp. 281–284. issn: 0307904X. doi: 10.1016/0307-904X(87)90143-0.
url: https://linkinghub.elsevier.com/retrieve/pii/0307904X87901430
(visited on 04/19/2022).

[13] Mariam et al. “CFD Simulation of the Airborne Transmission of COVID-
19 Vectors Emitted during Respiratory Mechanisms: Revisiting the Con-
cept of Safe Distance”. In: ACS Omega 6.26 (July 2021). Publisher: Ameri-
can Chemical Society, pp. 16876–16889. doi: 10.1021/acsomega.1c01489.
url: https://doi.org/10.1021/acsomega.1c01489 (visited on 05/13/2022).

[14] Helmut Mayer. “Air pollution in cities”. en. In: Atmospheric Environment
33.24 (Oct. 1999), pp. 4029–4037. issn: 1352-2310. doi: 10.1016/S1352-
2310(99)00144-2. url: https://www.sciencedirect.com/science/
article/pii/S1352231099001442 (visited on 04/27/2022).

[15] Dhruv Mehta et al. “A Wall Boundary Condition for the Simulation of
a Turbulent Non-Newtonian Domestic Slurry in Pipes”. en. In: Water
10.2 (Jan. 2018), p. 124. issn: 2073-4441. doi: 10.3390/w10020124. url:
http://www.mdpi.com/2073-4441/10/2/124 (visited on 04/18/2022).

[16] Keigo Nakajima, Ryozo Ooka, and Hideki Kikumoto. “Evaluation of k-
Reynolds stress modeling in an idealized urban canyon using LES”. en.
In: Journal of Wind Engineering and Industrial Aerodynamics 175 (Apr.
2018), pp. 213–228. issn: 0167-6105. doi: 10.1016/j.jweia.2018.01.
034. url: https://www.sciencedirect.com/science/article/pii/
S0167610517302623 (visited on 02/26/2022).

[17] Salome Platform. en-GB. 2022. url: https://www.salome-platform.
org/ (visited on 05/02/2022).

[18] Alec Tauer. “CFD Modeling of Aerial Dispersion of Pollutants in Urban
Environments”. en. PhD thesis. Milwaukee, Wisconsin: Marquette Uni-
versity, May 2021. url: https://epublications.marquette.edu/cgi/
viewcontent.cgi?article=1660&context=theses_open.

[19] Y. Toparlar et al. “A review on the CFD analysis of urban microcli-
mate”. en. In: Renewable and Sustainable Energy Reviews 80 (Dec. 2017),
pp. 1613–1640. issn: 1364-0321. doi: 10.1016/j.rser.2017.05.248.
url: https : / / www . sciencedirect . com / science / article / pii /

S1364032117308924 (visited on 02/26/2022).

12

[20] Upwind divergence scheme. 2017. url: https://www.openfoam.com/
documentation/guides/latest/doc/guide- schemes- divergence-

upwind.html (visited on 04/29/2022).

[21] H. G. Weller et al. “A tensorial approach to computational continuum
mechanics using object-oriented techniques”. en. In: Computers in Physics
12.6 (1998), p. 620. issn: 08941866. doi: 10.1063/1.168744. url: http:
//scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.

168744 (visited on 02/26/2022).

[22] World Meteorological Organization. Guide to Meteorological Instruments
and Methods of Observation (WMO-No. 8). en. Seventh edition. OCLC:
928941505. Geneva: World Meteorological Organization, 2008. isbn: 978-
92-63-10008-5. url: https : / / www . posmet . ufv . br / wp - content /

uploads/2016/09/MET-474-WMO-Guide.pdf.

[23] M.H. Zheng et al. “Coupling GIS with CFD modeling to simulate urban
pollutant dispersion”. In: 2010 International Conference on Mechanic Au-
tomation and Control Engineering. June 2010, pp. 1785–1788. doi: 10.
1109/MACE.2010.5536018.

13

