

2.70/2.77 Week 4 Spring 2017

Alexander Slocum
Pappalardo Professor of Mechanical Engineering
slocum@mit.edu

Reminder!

- As advanced students soon to enter the real world:
 - Allyall are reading the class materials and building your design neural net...
 - just as you would as working professionals
 - You do NOT need hand held to walk through every single step...
 - There is not enough time anyway! It would take 4x the class time....
 - You can read and trust Alex that it's a good thing to do....
 - How you document what you do is critical for:
 - Glade in class when your website is reviewed
 - Getting better job!
 - ISO 9000
 - FDA...

Reminder of what we did last in Week 3 Laying out the design using FUNdaMENTALS

- Axis error apportionment gives us "hunting license"
- Thought process:
 - FRDPARRC
 - PREP
 - Preliminary calculations of structure and bearings
- Strategies
 - Desk:
 - Wall mount
 - Desk mount
 - Freestanding
 - While thinking of some concepts
 - Rotary joints
 - Linear joints
 - Hybrid
- Preliminary analysis of overall structure for a strategy (i.e., stick figure) can help determine if a strategy was even feasible...
- CONCLUSION: ALFX THINKS HE CAN DO BEST WITH A WALL MOUNT SYSTEM

Week 4 Theme: Components

Week 4

- Reading: FUNdaMENTALS Topics 9, 10, PMD Chapter 5, 6
- Brainware:
 - Based on last week's results, evolve linear motion system design (if needed) so this week you can mount and test the actuator
 - Now that you have a single axis system, use what you have learned to layout concepts for the full machine
 - Create stick figures for concepts
 - Assign errors (error apportionment) and create preliminary error budgets for "best" concepts
 - Make sure to DESIGN it (write the spreadsheet—predict performance and size elements)
 - Seek & Geek Exploration
 - Update website

– Hardware:

- Modify the linear motion system as needed so you can mount and test the actuator in the system.
 - Use a laser pointer mounted to it and record change in position on piece of paper placed far away
- How do results differ from last week?
- Make your kinematic coupling and use a laser pointer attached to it that projects down the hall to measure repeatability.

Next Week 5 Theme:

Week 5

- Reading: PMD Chapter 7
- Brainware:
 - After building and testing your linear motion system designed last week, evolve your initial spreadsheets to predict performance.
 - This is closing the loop on your designs and helps to build design intuition
 - Layout concepts for the full machine
 - Create stick figures for concepts
 - Assign errors (error apportionment) and create preliminary error budgets for "best" concepts
 - Make sure to DESIGN it (write the spreadsheet—predict performance and size elements)
 - Design a simple system to test at least one idea you plan to use to preload bearings and actuators to eliminate backlash in your machine's bearings
 - Make sure to DESIGN it (write the spreadsheet—predict performance and size elements)
 - Seek & Geek Exploration
 - Update website
- Hardware:
 - Make sketch models (foam core and/or wood) of your top concepts to get a feel for the performance, errors, etc.

Developing Concepts

- Thought process (ONCE AGAIN!):
 - FRDPARRC
 - PREP
 - Preliminary calculations to select potential components
- Concepts (must do first order analysis to sanity check each)
 - Wall mount
 - Overall Structure
 - One rail or two?
 - Vertical moving carriage and desk surface tilt
 - Structure
 - Bearings
 - Actuator
- Preliminary analysis of components for a concept can help determine if a concept is even feasible...