Precision Machine Design

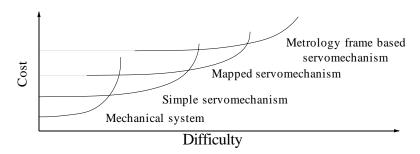
Topic 6

Servo system effects on machine design

Purpose:

The machine designer must be aware of the issues that the control system designer will face, in order for concurrent engineering to be effectively practiced.

Outline:


- Introduction
- Dynamic characterization of systems
- Servo bandwidth
- Types of controllers
- Sensor mounting

Virgil

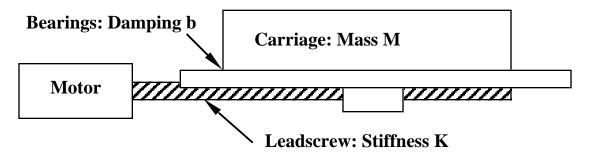
[&]quot;They are able because they think they are able."

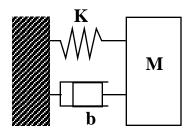
Introduction

 Modern precision machines could not function without servo systems:

- It is vital to consider the servo system design in conjunction with the mechanical system design.
- In the past, actuator (ballscrew) inertia so dominated the system:
 - Simple fixed gain controllers were adequate for almost all applications.
 - Mechanical friction allowed for the use of phase lag (controllers with an integrator) controllers.
- As faster speeds, greater contouring accuracy, longer life, and/or abrasive environment applications become more common:
 - Linear electric motors will become more common.
 - Damping will become ever more important.
 - The need will grow for adaptive phase lead controllers.
 - The need will grow for more accurate sensors with time synchronous feedback to allow for accurate numerical differentiation.

- Often engineers use modular controllers (e.g., a card in a PC) without developing good dynamic models of the system.
 - A good model is needed for proper tuning.
- Develop a dynamic model of the system.
 - Model elements as springs, masses, dampers, (resistors, inductors, capacitors).
 - Use controller design techniques to see what performance levels can be achieved.
 - Simulate system response with different controllers and conditions.
 - Ballscrew driven systems have a very large drive inertia (the ballscrew) and are easier to control.
 - Linear electric motor driven systems have a low drive inertia and are harder to control.
 - The quality of the position and velocity feedback can be crucial to the controller.
 - Use the results to guide design modifications:
 - Modify mechanical systems, before they are built, to obtain the desired performance.

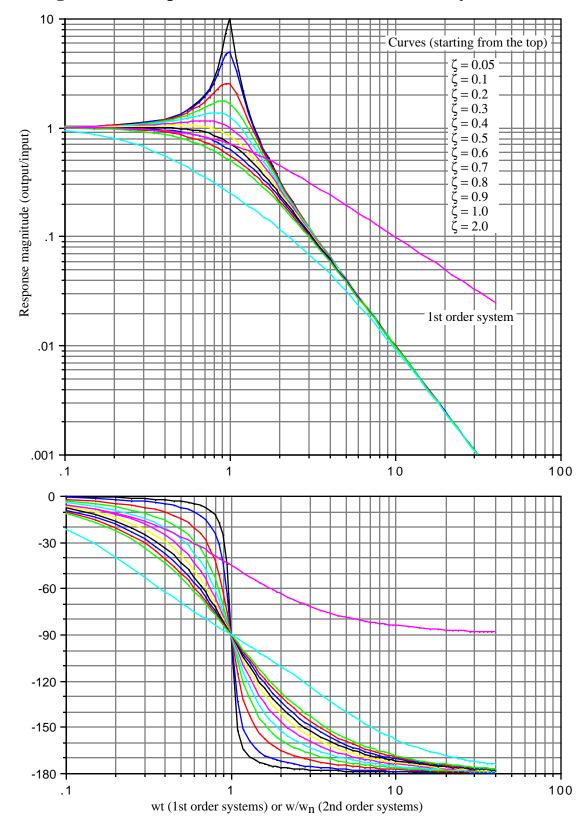

- For precision machines, servo systems can be used to control the following:
 - Position of moving axes.
 - Velocity (and higher derivatives) of moving axes.
 - Temperature.
- The details of servo system design are beyond the scope of this course.
- Dynamic characterization of systems should be understood:
 - It can influence decisions regarding selection of components.
- Designers must also be able to make preliminary selection of sensor components so the design process can proceed.
- Controller design can proceed as a parallel effort.


Dynamic characterization of systems:

- In order to design a servo system for a machine:
 - The dynamic characteristics of the machine, sensors, and actuators must be known.
- System output depends on the characteristics of the system and the frequency of the input.
- The frequency response of a system is the system's ability to respond to changes in the input.
- Mass, stiffness, and damping of a system affect the relative magnitude and phase of the output with respect to the input.
- Generally, the faster the process, the less accurate it is.
- Example:
 - The human eye cannot see a good video terminal flicker because the screen is updated at 60 times per second
 - The human eye has a greater overall range of perception (e.g. color, shape, texture, size, depth of field...) than perhaps any artificial vision system.

Frequency domain analysis of dynamic systems:

• Consider a mass, spring, damper system:


$$\frac{md^2x}{dt^2} + \frac{bdx}{dt} + kx = u(t)$$

• When substituted into 3.1.3 the equations of motion are:

$$ms^2x + bsx + kx = U(s)$$

• U(s) = 1 for a unit impulse and U(s) = 1/s for a unit step.

• Magnitude and phase of first and second order systems:

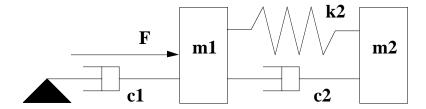
Checking system servo bandwidth

- Most systems null high frequency disturbance forces with their own mass.
- Lower frequency forces must be offset by forces from the controller/actuator.
- The servo bandwidth required is a function of the types of moves that the system will be required to make.
 - For start and stop moves (e.g., in a wafer stepper), the bandwidth should be on the order of:

$$f(Hz) \approx \frac{10}{2\pi t_{settlingtime}}$$

• When contouring, the X and Y axes move according to:

$$x = A \sin \omega t$$
$$y = B \cos \omega t$$


• The frequency w is a function of the linear velocity of the cutter through the material and the radius of the contour:

$$\omega_{angular} = \frac{v_{linear}}{r_{pathradius}}$$

$$f(Hz) = \frac{v_{linear}}{2\pi r_{pathradius}}$$

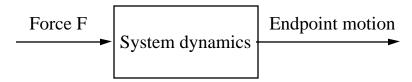
- For a large circle (e.g., 200 mm D) being cut at modest speeds (e.g., 0.1 m/s), the bandwidth required is only 0.15 Hz.
- For a sharp turn in a corner, the radius of the cutter path trajectory may only be 1 mm, so w > 15 Hz.

• A system with a motor driving a carriage can be modeled in the following manner:

- m₁ is the mass of a linear motor forcer or:
- m₁ is the reflected inertia of the motor rotor and leadscrew (or just a linear motor's moving part):

$$M_{reflected} = \frac{4 \pi^2 J}{l^2}$$

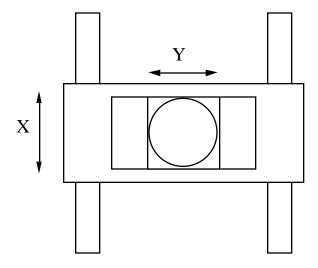
- M₂ is the mass of the carriage.
- C1 is the damping in the linear and rotary bearings.
- C2 is the damping in the actuator-carriage coupling and the carriage structure.
- K₂ is the stiffness of the actuator and actuator-carriage-tool structural loop.

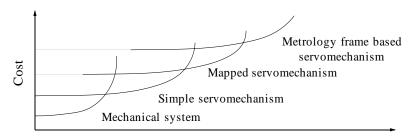

• The equations of motion are:

$$\begin{vmatrix} m_1 & 0 & | x_1 \\ 0 & m_2 & | x_2 \end{vmatrix} + \begin{vmatrix} c_1 + c_2 & -c_2 & | x_1 \\ -c_2 & c_2 & | x_2 \end{vmatrix} + \begin{vmatrix} k_1 + k_2 & -k_2 & | x_1 \\ -k_2 & k_2 & | x_2 \end{vmatrix} = \begin{vmatrix} F(t) \\ 0 \end{vmatrix}$$

• The transfer function x_2/F (dynamic response of the carriage) is:

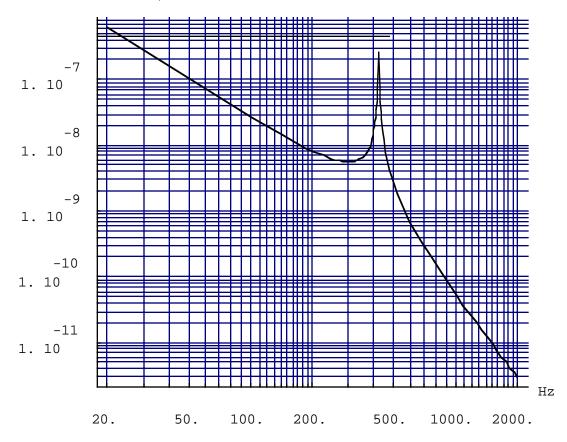
$$\frac{x_2}{F} = \frac{k_2 + c_2 s}{k_1 k_2 + (c_2 k_1 + c_1 k_2) s + (c_1 c_2 + k_2 m_1 + k_1 m_2 + k_2 m_2) s^2} + (c_2 m_1 + c_1 m_2 + c_2 m_2) s^3 + m_1 m_2 s^4$$


• Note the product of the masses term which tends to dominate the system.


• Calculated parameters of four possible systems are:

Actuator	ballscrew	lin. motor	lin. motor	lin. motor
Bearings	linear ball	linear ball	air	air
Structural damping	no	no	no	yes
material damping zeta	0.005	0.005	0.005	0.1
actuator to ground zeta	0.05	0.03	0	0
m1 (actuator) (kg)	50	5	5	5
m2 (carriage), kg	50	50	50	50
c1 (N/m/s)	355	187	0	0
c2 (N/m/s)	19	19	19	374
k1 (N/m)	1.75E+08	1.75E+08	1.75E+08	1.75E+08
Bandwidth (Hz)	25	100	30	100

• Example: the goal is to be able to move the bridge in the X direction without exciting resonances.


- As a guideline, the servo bandwidth of the system is:
 - Generally limited by the frequency the servo can drive the system at without exciting structural modes.
 - Without special control techniques can be no higher than the frequency:
 - Found by drawing a horizontal line 3 dB above the resonant peak to intersect the response curve.
- This method is used only to initially size components.
- A detailed controls simulation must be done to verify performance, and guide further system optimization.
- Use sensor and software updates to create a "new machine" even when the mechanical components are not changed:

 $Difficulty = \frac{Environment \times Load \times Range \times Speed}{Accuracy}$

• The response of the ballscrew driven carriage supported by rolling element linear bearings will be:

Transfer Function x2/f

- The system bandwidth will be limited to about 25 Hz.
- Preloaded linear guides and a ballscrew provide good axial damping.
- The inertia of the screw will lower the system frequency considerably (note the $m_1m_2s^4$ term in the TF)
- The Ballscrew was inertia matched to the carriage:

Diameter	0.025
Lead	0.003
Length	0.5
Axial K (N/µm)	203
J	9.6E-06
Reflected inertia = $4\pi^2 J/l^2$	42

Basic control algorithms

Proportional (position feedback)

K(X_{desired}-X_{actual})

- Moderate stability.
- Poor following ability.
- Large steady state error.
- If system parameters change (M, K, b), response changes.
- Easy to implement with analog or digital components.
- Often used in conjunction with an analog tachometer-based velocity loop, thereby effectively yielding a PD controller.

PD: Proportional + derivative (position and velocity feedback):

$$(X_{desired}-X_{actual})(K_P + sK_D)$$

- Derivative term adds phase lead (predicts what is going to happen and compensates)
- Good stability.
- Good following ability.
- Moderate steady state error.
- If system parameters change (M, K, b), response changes.
- Easy to implement with analog or digital components.
- The derivative term is often obtained with velocity feedback to minimize errors caused by digital differentiation.

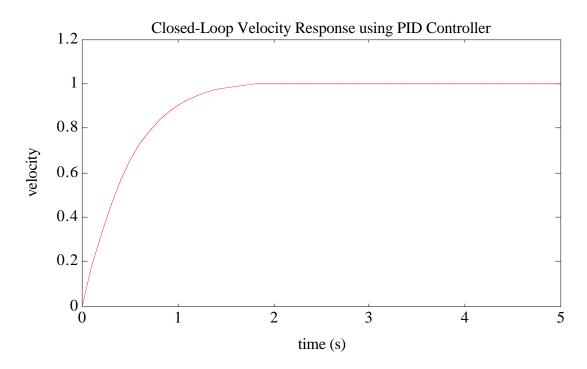
PID: Proportional + integral + derivative (position and velocity feedback and an integrator)

$$(X_{desired}-X_{actual})(K_P + K_I/s + sK_D)$$

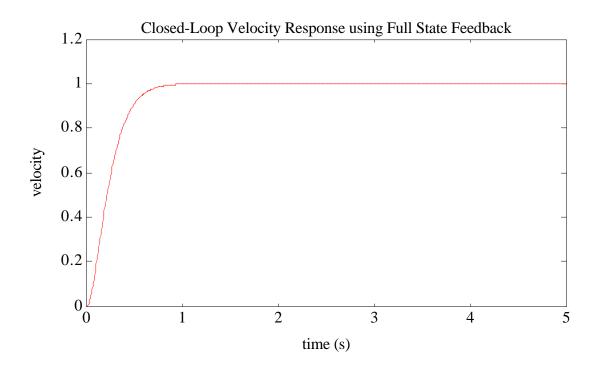
- Integral term adds phase lag.
- Moderate stability.
- Moderate following ability.
- Zero steady state error.
- If system parameters change (M, K, b), response changes.
- Easy to implement with analog or digital components.
- The derivative term is often obtained with velocity feedback to avoid numerical errors.

Full state feedback control

- All states (voltage, position, velocity, acceleration...) are used in the control law.
 - Acceleration can be measured with an accelerometer, if it is mounted on a soft-mount, so vibration or shock do not send the loop unstable.
- When states are not directly measurable, an observer can sometimes be used to infer them.
- Often used on high speed, high performance systems.


Adaptive control

- The controller contains a model of the system.
- Changing dynamics (e.g., mass) are sensed and then compensated for.


Gain Scheduling

• The controller gains change with mapped parameters (e.g., changing inertia matrix of a robot arm).

Closed-loop system response with a PID Controller:

Closed-loop system response with full state feedback control:

Advanced control algorithms: Input ShapingTM

- Advanced control algorithms can increase performance by an order of magnitude.
- Tall towers, robots, and other floppy structures are often used in automation equipment.
 - Floppy vibrating equipment can cause software errors.
 - The servo doesn't get were it was supposed to go in the allotted time because the structure was shaking.
 - Input $Shaping^{TM}$ is a very powerful tool that cancels vibrations with shaped input commands.¹
 - It is better to use intelligence to overcome a problem, rather than brute force.
 - However, even martial arts masters have to keep fit.
 - Optimal performance comes about from the optimal combination of optimal components.

-

Contact Neil Singer at Convolve Inc., 914-273-4042, neil@convolve.com

Example: Controlling robot vibration

- The top of a tall robot tower for an $XRZ\theta$ robot was vibrating excessively during high speed moves.
- Input Shaping TM was able to virtually eliminate any residual vibrations in the motion of the tower.
- Input ShapingTM was found to be very insensitive to modeling errors:
 - Changing the system frequency by 14% did not adversely affect the vibration reducing ability of the controller.

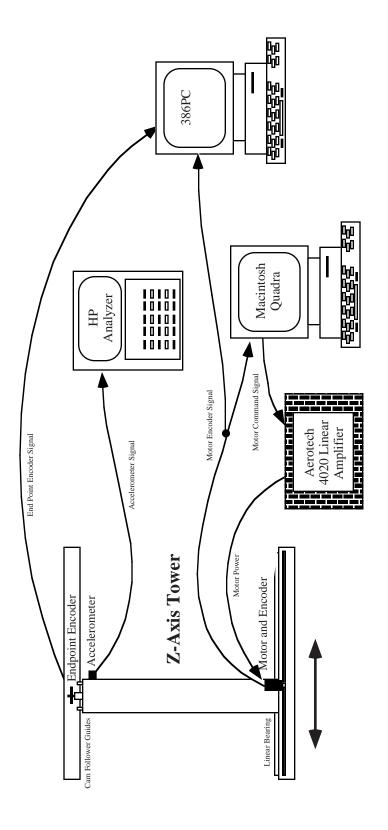
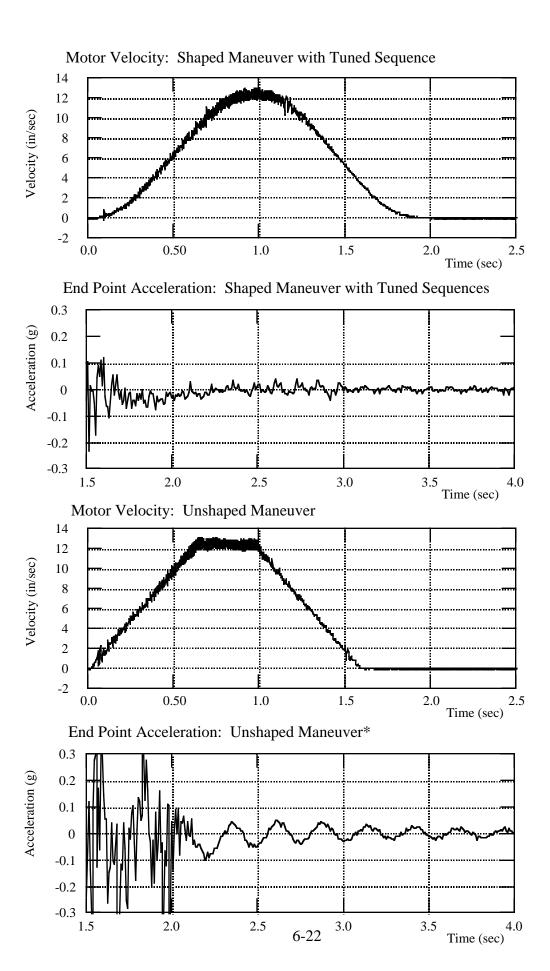
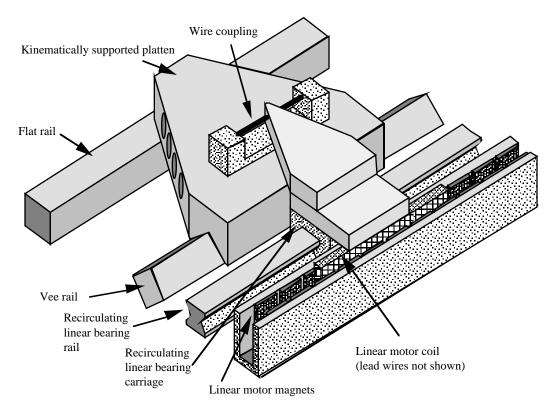




Figure 1: Experimental Setup

Example: Increasing axial stiffness through dual loop control

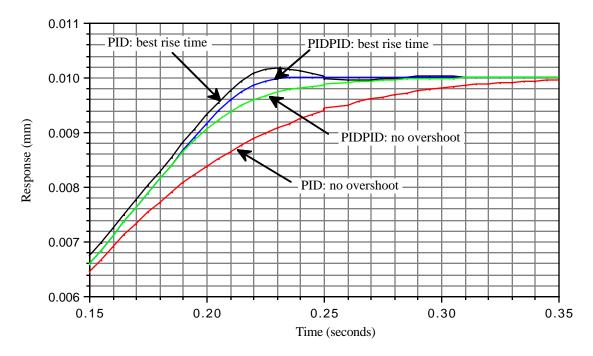
• Instrument platen with sliding contact bearings, linear motor, and wire-type flexural coupling:

- With the use of a flexible wire coupling, lateral errors and heat transfer from the motor will be greatly attenuated.
- However, the axial responsiveness of the platen will also be greatly reduced.

- Implementation: close a PID loop around the position feedback from the platen.
 - Close a second loop (e.g. PD or PID) using the position feedback from the motor carriage.
- The logic used in arriving at this double algorithm is simple:

If the distance between the actuator and platen at rest is a stable constant, then after a move the stable distance must again be established, hence used a closed loop algorithm around the position of the platen and the motor so the difference between the two will be the equilibrium separation.

• A section of the digital servo algorithm would look like:

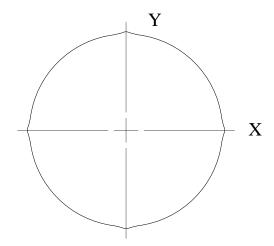

1 Output u to DAC Read Lasers e1 = x1desired - x1actual (motor position error) e2 = x2desired - x2actual (platen position error) u1= a11*e1+a12*e1old1+a13*e1old2+ a14*u1old1+a15*u1old2 IF (u1 > umax/2) THEN u1 = umax/2 u2 = a21*e2+a22*e2old1+a23*e2old2+ a24*u2old1+a25*u2old2

IF $(u_2 > u_{max}/2)$ THEN $u_2 = u_{max}/2$ {store old values}

 $\mathbf{u} = \mathbf{u}\mathbf{1} + \mathbf{u}\mathbf{2}$

Wait for timing, then GOTO 1

• Two degree of freedom system simulated fastest rise time with saturation and resolution non-linearities in the model:


- Many other algorithms exist that also increase performance using advanced algorithms.
 - For example, injecting a time delayed scaled impulse that cancels vibrations due to an initial impulse.
- The use of creative control techniques and multiple sensor measurements illustrates the following philosophies:
 - To minimize control problems, maximize stiffness and damping.
 - To maximize system performance:
 - One must often use one discipline to overcome deficiencies in another.
- This system, with its extra sensor, is the next step after the shaped input command to obtain greater performance.

Velocity feedback

- Analog velocity feedback is great, except that to be accurate at slow speeds requires a very expensive tachometer.
- Digital velocity obtained by differentiation is noisy at low speeds when a single loop is used:

$$Velocity = \frac{Pulses\ counted}{Fixed\ time\ increment\ \tau}$$

- The encoder pulse can change between synchronized time steps.
- When the pulses are divided by the fixed servo loop time:
 - Large errors can result if only one or two encoder pulses went by.
 - This occurs at zero velocity points (e.g., when a milling machine is used to cut a circle):

• Note where the X (Y) axis reverses direction, is a sensitive direction!

• Ideally, the controller has a separate loop which looks for an encoder pulse change, and then records the time.

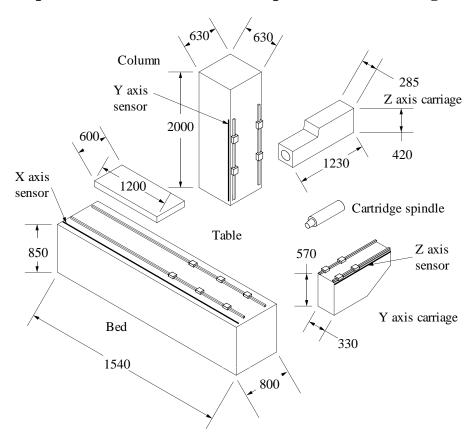
$$Velocity = \frac{1 \ Pulse}{Measured \ time \ \Delta \tau}$$

- This makes differentiation very accurate and not noisy.
- When the synchronized loop requires a velocity value, an interpolated value is sent to it.
- Ideally, the controller has an observer that predicts the velocity between updates.
 - This value is sent to the synchronized time control loop.
 - This can reduce the error by a factor of 2.

Design coupling between mechanical and control systems:

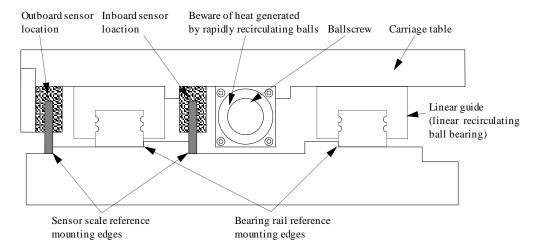
- System mass:
 - The greater the system mass, the slower the dynamic response.
 - The greater the system mass, the more the system rejects high frequency disturbances.
 - In general, the lower the mass the better.
- System stiffness:
 - The greater the system stiffness, the faster the dynamic response.
 - As system stiffness increases, coupling between axes can increase.
 - For example, increasing the ballscrew stiffness axial, increases lateral stiffness.
 - This may increase straightness errors if the ballscrew "bumps" the linear axis.
 - In general, the stiffer the system the better.

• System damping:


- The greater the damping, the less the amplification at resonance.
- The greater the damping, the greater the attenuation of vibration.
- The greater the damping, the better, unless it generates too much heat (in high speed systems).
- Use "electronic damping" to help stabilize systems, and minimize heat generation at high velocity.

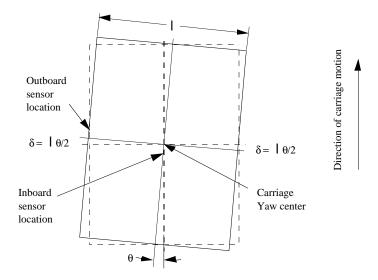
• Friction:

- Static friction causes the system to store energy when it starts from zero velocity.
- Dynamic friction is less than static friction near zero velocity and stored energy acts like an impulse to the system.
- Difference in static and dynamic friction leads to the condition known as stiction.
 - One of the most troublesome control problems in precision machines.
- Hysteresis (non-linear spring) and backlash (gaps open and close):
 - When motion is reversed, there is a period of time where the motor is taking up the slack in the actuator (lost or greatly reduced motion).
 - This hesitation can be one of the largest sources of error.
 - Try to avoid hysteresis, and definitely avoid backlash.


Linear position sensor location

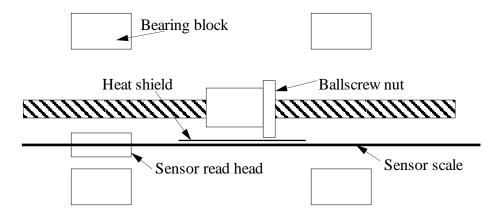
- The sensors must be carefully integrated into the system design.
- Example: Sensor locations in a precision surface grinder:

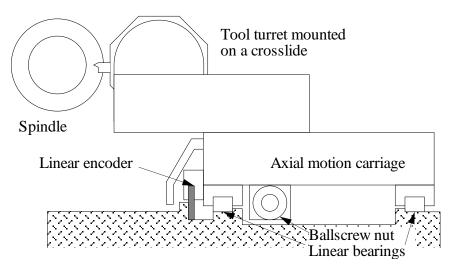
- Y axis is between center of stiffness and tool
- A axis is non-sensitive so sensor placed where easy to mount and repair.


• Linear displacement sensor mounting locations:

Inboard mounting:

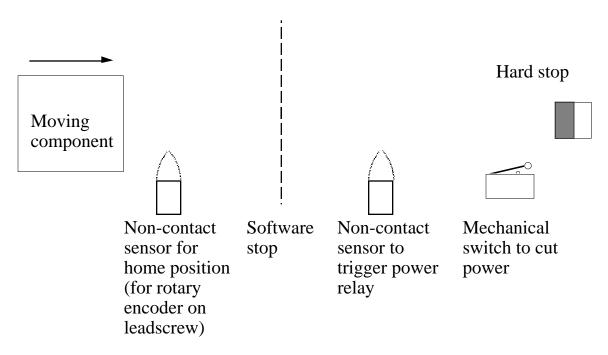
- · Abbe error minimized.
- Protection is offered by the table.
- Alignment is more difficult because of access restriction. Use reference edges.
- Closer to heat sources.


- Outboard mounting:
 - Abbe error is large.
 - Less protection is offered by the table.
 - Alignment is simplified.
 - Far from heat sources.
 - Easy to install and maintain.

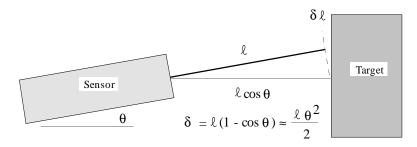

• With error mapping, effect of yaw error, usually highly repeatable, is low.

Examples

- For a machining center table, place the read head away from the ballscrew nut.
- Place a heat shield between the ballscrew nut and the scale:

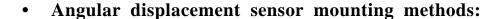


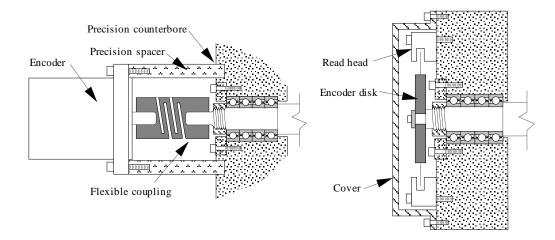
• For a lathe carriage, one wants the scale to be close to the spindle centerline:


- Crowding of the components illustrates the utility of integrated bearing/sensor units.
 - Example, Schneeburger's Monorail linear guide/magnetic scale system.

Linear motion end-of-travel sensor requirements

- Linear encoders have a home mark, so the first non-contact sensor is not needed.
- The second non-contact sensor is often optional.
- Take the space of the last sensors and replace them with a longer deceleration travel hard stop.


• Sensor alignment causing a cosine error:



• For precision machines (e.g., a wafer stepper), this can be substantial:

Maximum allowable error (m)	1.00E-09
Distance traveled (m)	0.5
Maximum misalignment error (µrad)	63

- 63 µrad is 63 µm over 1 meter!
- Alignment surfaces machined in with other precision surfaces (e.g., bearings) can thus be very very useful!!

- Note that the precision spacer's ground diameters enforces alignment.
- Coupling an encoder shaft to another shaft with a belt should be avoided whenever possible.
 - Side loads from the belt can decrease accuracy.
 - Slight cogging effects decrease accuracy.

Effect of ballscrew shaft windup on rotational measurement for linear displacement control

- The twist $\Delta \phi$ of a circular shaft is a function of:
 - Applied torque Γ
 - Length L
 - Polar moment of inertia Ip
 - Shear modulus G

$$\Delta \phi = \frac{\Gamma L}{I_p G}$$

• The axial displacement of a machine tool carriage driven by a leadscrew with a lead ℓ is:

$$\Delta X = \frac{\ell \, \Delta \phi}{2\pi}$$

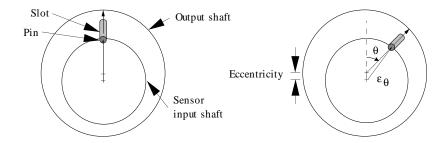
• The equivalent axial displacement error caused by the sensor measuring the twist (wind-up) is:

$$\Delta X = \frac{\ell L\Gamma}{I_p G 2\pi}$$

• The relation between force and torque is::

$$F = \frac{2\pi\Gamma}{\ell}$$

• The equivalent axial stiffness of the torsional system is thus:


$$K_{\Gamma axial\;eq.} = \frac{GI_p 4\pi^2}{\ell^2 L} = \frac{\pi^3 r^4 E}{\left(1+\eta\right)\ell^2 L}$$

• The ratio of the torsional-axial equivalent stiffness and the axial stiffness is:

$$\frac{K_{\Gamma \text{axial eq.}}}{K_{\text{axial}}} = \frac{\pi^2 r^2}{(1+\eta) \ell^2}$$

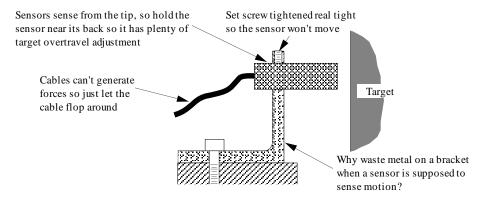
- The lead is usually less than the radius.
 - Torsional-axial equivalent stiffness is an order of magnitude greater than the axial stiffness of the leadscrew.
- Any equivalent axial displacement errors due to torque windup of the shaft are:
 - Often insignificant compared to the axial compression of the shaft.
- A linear position sensor would measure the shaft compression whereas a rotary sensor on the shaft would not.
 - But, in general, the servo could not respond fast enough (bandwidth issue) to compensate for ballscrew compression.

 Periodic rotational error caused by shaft eccentricity. Pinin-slot is used to visualize the effect:

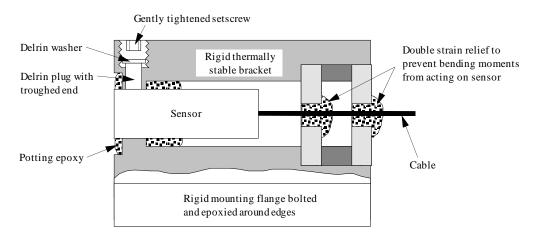
• The maximum error is approximately:

$$\epsilon_{\theta} \approx \frac{\mathbf{e}}{r_c}$$

- For flexible couplings, errors can be virtually eliminated.
- Coupling bore eccentricity and coupling shaft eccentricity can cause a parasitic error that can be estimated by:

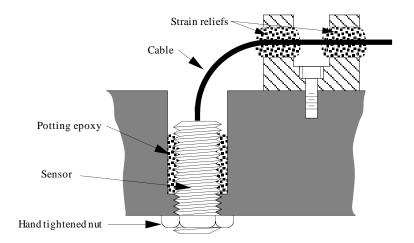

$$\epsilon_{\text{flexible coupling}} = \left[\frac{\text{shaft eccentricity}}{\text{small shaft radius}}\right] \left[\frac{\text{coupling bore eccentricity}}{\text{small bore radius}}\right]$$

• Example:


- 30 mm to 10 mm diameter shaft
- Shaft eccentricity is 0.05 mm
- Coupling's bore eccentricity is 0.025 mm
- Coupling error estimate is (0.05/30)(0.025/10) = 17 µrad.
- Axial displacement error in a ballscrew with a 10 mm lead will only be 0.03 $\mu m.$

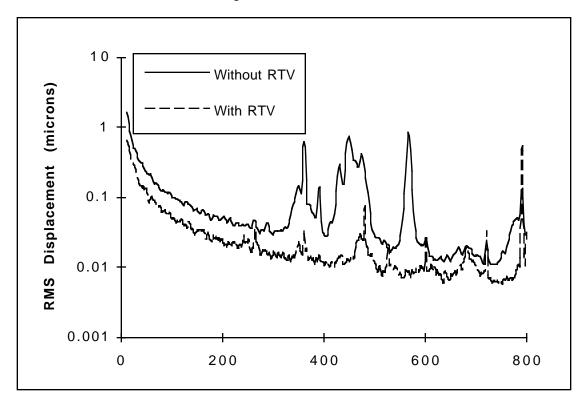
Mounting structure design:

How not to mount a sensor, and some false assumptions:



- Note that the wimpy bracket is subject to vibration and thermal distortion errors.
- · An acceptable method for mounting a smooth body sensor.

• Alternatively, a large split housing can be used which applies uniform circumferential pressure to the sensor body.

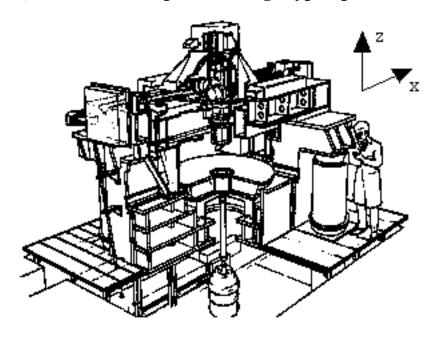

 An acceptable method for mounting sensors with threaded bodies:

- Be careful to obey the same rules of accuracy in design as should be applied to the rest of the structure.
- Be careful to match thermal and mechanical time constants of the sensor structure to the rest of the structure.

Example

- A plane mirror for an interferometer was mounted on a machine to measure straightness error of an axis.
- A tool holding axis' position was measured with the interferometer and was used to also correct the other axis' straightness errors.
- The tool had apparent vibration problems, which were traced using modal analysis to the mirror vibrating.
- The solution was to inject silicone rubber behind the mirror:

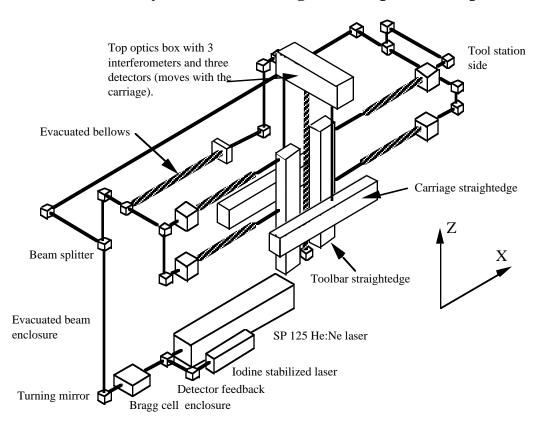
Mounting environment:


- In order to decrease the Abbe error, the sensor should be mounted as close to the process as possible.
- The closer the sensor is mounted to the process, the harsher the environment.
- Many sensors are sealed and can be used in harsh environments.
 - However one should never take chances if one does not have to.
- Beware of disturbance forces and change capacitance caused by flexing cables.
- Do not put sensor cables in the same conduit as power cables.
 - Keep sensors well shielded and grounded to minimize electromagnetic interference.
- Evacuated beampaths provide the best answer for interferometers.
- In-process gauging structures may have a different thermal time constant than the rest of the system.
 - When the machine door is opened, evaporated cooling effects can cause the process gage system to change.

Metrology frames:

- Because any structure deforms when subjected to any type of load:
 - An independent structure is needed to make measurements if the highest level of accuracy is to be obtained.
- Metrology frames are expensive:
 - They must be designed with the same structural and thermal considerations as the machine itself.
- Often a pseudo (partial) metrology frame can be designed as a compromise.
- Careful error budgeting is required in order to minimize cost and maximize performance.

Metrology frame design for the Large Optics Diamond Turning Machine (LODTM):


• The Large Optics Diamond Turning Machine (LODTM), built at the Lawrence Livermore National Laboratory (LLNL), is a vertical spindle bridge-type (portal) machine:

- LODTM was designed to machine large optical components using a diamond tool:
 - Accuracy of 0.028 μm rms (1.1 $\mu in)$ in the work volume (30 parts per billion).
 - Surface finish on the order of 42 Ångstroms R_a (0.17 μ in).
- The machine was designed with a vertical spindle:
 - Minimized non-axisymmetric deformations of the part being machined.
 - Maximum part weight of 13.4 kN (3000 lbs) and dimensions of 1.63 m diameter by 0.51 m thick (64"x20").

- LODTM's structural system is made from welded mild steel plates.
 - The X axis, the *carriage*, moves horizontally (radially along the part) and carries the Z axis.
 - The Z axis, the *toolbar*, moves the tool vertically along the axial direction of the part.
- The metrology frame is made from Super Invar.
 - · Virtually zero coefficient of expansion.
 - 100 gpm of water, temperature controlled to 0.001 Fo, is circulated through the structure to control its temperature.
 - The external air temperature can be controlled to 0.01 Fo when the machine is operated remotely.
 - It is kinematically mounted to the structural frame with three flexures.
 - Thermal and mechanical loads cannot be transmitted between the two systems.

- Seven measurements are made by the interferometric measuring system.
 - The resolution of the interferometric system is about 6 Ångstroms (0.025 μ in).
 - Position of the metrology frame wrt the spindle faceplate is continually measured using four capacitance probes.

- The metrology frame can undergo small rigid body motions in the XZ plane:
 - This will not change the measured relative position of the tool and workpiece.
 - This system allows the position of the tool point to be accurately determined with respect to the workpiece.
 - Even though the structural frame may deform under load by as much as $61/4 \mu m$ (250 μin).

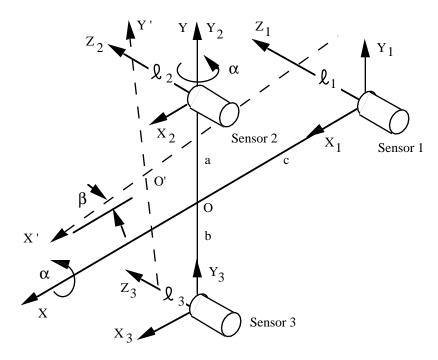
- Toolbar X direction straightness and pitch and carriage axial position and pitch are measured:
 - With straightedges mounted to the toolbar and four interferometers on the metrology frame.
- Y direction straightness and Yaw of the carriage cause motion of the tool tip in non-sensitive directions.
- Z displacement of the tool tip with respect to the carriage is measured.
 - It is combined with Z direction straightness of the carriage to yield the position of the tool tip in the Z direction.
 - The Z direction straightness of the carriage is measured by the two outer interferometers on the top optics box.
- Interferometers measure differential motion of the top optics box with respect to the carriage's two straightedges mounted to the main metrology frame.
- LODTM's straightedges are accurate to about 150 nanometers.
 - Greater accuracy is achieved after installation by measuring artifacts placed in the work zone.

Sensor calibration:

- All measurement depends on calibration of the sensor.
- Regardless of the method used to calibrate a sensor:
 - The certainty of the calibration can be obtained from a careful evaluation of the calibration system's error budget.
- In general, there are five dominant error categories to be considered:
 - RI The repeatability of the sensor.
 - RC The repeatability of the calibrator.
 - RL The repeatability of the link between the calibration instrument and the calibrator.
 - SI. The systematic uncertainty of the link.
 - SC The systematic uncertainty of the calibrator.
- The error budget must include errors caused by:
 - Temperature changes.
 - Signal digitization truncation (least significant bit errors).
- The systematic uncertainty of the calibrator is a function of how well it relates to the recognized National Standard.
 - It is usually supplied with the calibrator.

- Designing the calibration experiment:
 - The sensor should be physically mounted in the same manner in which it will be used.
 - The ideal goal is to make the calibration system 5-10 times more accurate than the application requires.
 - To eliminate Abbe errors:
 - The axis of measurement of the calibration standard should be coincident with the axis of measurement of the sensor.
 - Using a stage with a finite amount of static friction allows the servo control system to be turned off when it's time to make a measurement.
 - This eliminates possible limit cycling errors caused by discretization limits present in most digital servos.
 - One must always beware of heat generated by friction.

• Stability determination:


- The sensor must be mounted in a stable environment where the sensor is measuring a fixed quantity (e.g. distance).
- For probe type sensors:
 - A cap is made from the same material as the probe body which fits over the end of the sensor.
 - Secured with a light squeeze type collar, or by its own weight if the sensor is oriented vertically.
- The system is allowed to sit and measure the distance from the sensor to the cap for an extended period of time.
- Any drift, is characteristic of the stability of the sensing system, and thus will be measured.

- Static response calibration:
 - A static calibration is one where the measurand is incremented.
 - The sensor's response is not measured until the system has stabilized.
 - Often the response includes mechanical and electrical components,
 - In order to increase mapping accuracy:
 - A set of maps of the sensor response may be made and used to find an averaged set of coefficients.

- Dynamic response calibration:
 - One method requires the use of a shaker table whose oscillation frequency and amplitude can be measured.
 - White noise or a swept sine wave is used as the input command to the table:
 - The sensor output is measured and stored.
 - If the transfer function of the table is known:
 - Digital signal processing techniques can then be used to determine the sensor's transfer function.
 - The transfer function for the sensor obtained by this technique:
 - Assumes that the response of the sensor is linear with respect to changing distance for a constant frequency.
 - Must be combined with the static response map generated for the sensor:
 - This yields a frequency-amplitude calibration for the sensor.
 - A second method involves input of a range of displacements and frequencies to the sensor:
 - This produces a map of the sensor's output as a function of these two variables.
 - If accuracy of this magnitude is required from a position sensor:
 - It is often easier to use a laser interferometer or digital encoder as the sensor in the first place.

Effects of sensor output and location errors on system accuracy

• Consider a triad of distance measuring sensors used to determine distance and yaw and pitch between two plates.

- Assume that rotations of the target plane (X'Y' plane) occur about the X and Y axes, respectively, in the sensor coordinate plane.
- The error associated with this non-Eulerian selection of the angles is on the order of $\alpha \sin \beta$.
- If α and β are < 200 μ rad, the angular error in α or β due to this assumption will be about 0.04 μ rad.

• The relations for the system are:

$$\ell_{XY} = \ell_3 + (b + Y) \sin\alpha - X \sin\beta$$

$$\alpha = \tan^{-1} \left(\frac{\ell_2 - \ell_3}{a + b} \right)$$

$$\beta = \tan^{-1} \left(\frac{\ell_1 - (\ell_2 b + \ell_3 a) / (a + b)}{c} \right)$$

- Using small angle approximations, the error in computing ℓ_{XY} over the expected range of α and β will be 4 ppm.
- Thus small angle approximations should only be used to evaluate the error caused by parameter variation.
- For the sensitivity of ℓXY to variations in ℓ_i , a, b, and c, it can be assumed that $tan-1(\)=(\)$ and upon substituting:

$$\ell_{XY} = \frac{-X\ell_1}{c} + \frac{\ell_2}{a+b} \left(b + Y + \frac{Xb}{c} \right) + \ell_3 \left(1 - \frac{b+Y-Xa/c}{a+b} \right)$$

- Effect of sensor output errors:
 - To determine the error $\delta \ell_{XY}$ in the calculation of the distance between plates due to an error $\delta \ell_i$ in sensor #i's output:
 - The partial derivative $\partial \ell_X Y/\partial \ell_i$ of Equation 5.9.4 is evaluated.
 - The angular errors $\delta\alpha\ell_i$ due to errors in the sensor reading $\delta\ell_i$ are determined in a similar manner
- Effect of errors in probe spacing:
 - Found from the partial differential of ℓ_{XY} with respect to a, b, and c:
- Effect of probe misalignment:
 - Cosine errors result in the measurements, and an Abbe error is introduced from the rotation of the plate.