
Pset #5 Solutions 

3.11 Fall 2003 

Solution Problem #1 
To understand the shear forces and bending moments in a 
beam, we will look at a simple problem.  We are looking at 
a simply supported 20 ft. beam with a load of 10,000 lb. 
acting downward right at the center of the beam. Due to 
symmetry the two support forces will be equal, with a value 
of 5000 lb. each. This is the static equilibrium condition 
for the whole beam. 

Next let's examine a section of the beam. We will cut the 
beam a arbitrary distance (x) between 0 and 10 feet, and 
apply static equilibrium conditions to the left end section 
as shown in Diagram 2 below. We can do this since as the 
entire beam is in static equilibrium, then a section of the 
beam must also be in equilibrium. 

 

In Diagram 2a, we have shown left section of the beam, x feet, long - where x 
is an arbitrary distance greater than 0 ft. and less than 10 ft. Notice if we just 
include the 5000 lb. external support force, the section of the beam is clearly 
not in equilibrium. Neither the sum of forces (translational equilibrium), nor 
the sum of torque (rotational equilibrium) will sum to zero - as required for 
equilibrium. Therefore, since we know the beam section is in equilibrium, 
there must be some forces and/or torque not accounted for. 
In diagram 2b, we have shown the missing force and torque. The 10,000 lb. 



load which we originally applied to the beam, and the support force cause 
internal "shearing forces" and internal torque called "bending moments" to 
develop. (We have symbolically shown these in Diagram 2c.) When we cut the 
beam, the internal shear force and bending moment at that point then become 
an external force and moment (torque) acting on the section. We have shown 
these in Diagram 2b, and labeled them V (shear force) and M (bending 
moment). 
 
Please note that M is a moment or torque - not a force. It does not appear in 
the sum of forces equation when we apply static equilibrium to the section - 
which will be our next step. 
 
Equilibrium Conditions: 
Sum of Forces in y-direction: + 5000 lb. - V = 0 , solving V = 5000 lb. 
Sum of Toque about left end: -V * x + M = 0 , we next substitute the value of 
V from the force equation into the torque equation: - 5000 lb. * x + M = 0 , 
then solving for M = 5000x (ft-lb.) 
 
These are the equations for the shear force and bending moments for the 
section of the beam from 0 to 10 feet. Notice that the internal shear force is a 
constant value of 5000 lb. for the section, but that the value of the internal 
torque (bending moment) varies from 0 ft-lb. at x = 0, to a value of 50,000 ft-
lb. at x = 10 ft. 

[We really should not put exactly 0 ft., and 10 ft. into our equation for the bending 
moment. The reason is that at 0 and 10 ft., there are 'point loads/forces' acting. That is, 
we have our forces acting at point - and a point has zero area, so the stress (F/A) at these 
points would in theory be infinite. Of course, a stress can not be infinite, and we can not 
apply a force at a point - it is actually applied over some area (even if the area if small). 
However, in 'book' problems we normally apply forces at a point. To deal with this 
difficulty, we actually skip around these points. We cut our section at 0' < x < 6'. Still 
when we put values into our expressions we put in values such as x = 9.99999999 ft, and 
round it off (numerically) to 10 ft. This is, in effect, cheating a bit. We are putting in the 
value x = 10 ft., but only because the number we actually put in was rounded off to 10 ft. 
It all may sound confusing, but it works, and will become clear as we do several 
examples.] 

First, however we will finish analyzing our simple beam. So far we have found 
expressions for the shear force and bending moments (V1 = 5000 lb, M1 = 
5000x ft-lb) for section 1 of the beam, between 0 and 10 ft. Now we will look 
at the next section of the beam. We cut the beam at distance x (ft) from the 
left end, where x is now greater than 10 ft. and less then 20 ft. and then look 
at entire section to the left of where we cut the beam (See Diagram 3). Where 
the beam was cut, we have an internal shear force and bending moment - 
which now become external. These are shown in Diagram 3 as V2 and M2. (We 
add the '2', to indicate we are looking at section two of the beam.)  



 

 
We next apply static equilibrium conditions to the beam section, and obtain: 
Equilibrium Conditions: 
Sum of Forces in y-direction: + 5000 lb. -10,000 lb. - V = 0 , solving V2 = -
5000 lb. 
Sum of Toque about left end: -10,000 lb * 10 (ft) -V * x (ft) + M = 0 , we next 
substitute the value of V from the force equation into the torque equation : -
10,000 lb * 10 ft. - (-5000 lb) * x (ft) + M = 0 , then solving for M2 = -[5000x (ft-
lb.) - 100,000] ft-lb. 
The two expressions above give the value of the internal shear force and 
bending moment in the beam, between the distances of the 10 ft. and 20 ft. A 
useful way to visualize this information is to make Shear Force and Bending 
Moment Diagrams - which are really the graphs of the shear force and bending 
moment expressions over the length of the beam. (See Diagram 4.) 

 

These are a quite useful way of visualizing how the shear force and bending 
moments vary through out the beam. We have completed our first Shear 
Force/Bending Moment Problem. We have determined the expressions for the 
shear forces and bending moments in the beam, and have made accompanying 
shear force and bending moment diagrams. 

 



MORE DIFFICULT PROBLEMS #2-4 

Solution Problem #2 
Solution:  

Part A: 

 

STEP 1: Draw a free body diagram showing and labeling all 
load forces and support (reaction) forces, as well as any 
needed angles and dimensions. 
STEP 2: Break any forces not already in x and y direction 
into their x and y components. 
STEP 3: Apply the equilibrium conditions. 

Sum Fx = Ax = 0 
Sum Fy = -5,000 lbs - (1,000 lbs/ft)(8 ft) + Ay = 0 
Sum TA = - (5,000 lbs)(12 ft) - (8,000 lbs)(12 ft) + Mext = 0 
Solving for the unknowns: 
Ay = 13,000 lbs; Mext = 156,000 ft-lbs 

Part B: Determine the Shear Forces and Bending Moments 
expressions for each section of the loaded beam. For this 
process we will ‘cut’ the beam into sections, and then use 
Statics - Sum of Forces to determine the Shear Force 
expressions, and Integration to determine the Bending 
Moment expressions in each section of the beam. 

 



Section 1: Cut the beam at x, where 0 < x < 8 ft. Analyze 
left hand section. 

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only):  

Sum Fx = 0 (no net external x- forces) 
Sum Fy = 13,000 lbs - V1 = 0  
Solving: V1 = 13,000 lbs 

4. Integration  

M1 = 13,000x + C1 

a)Boundary condition to find C1: at x=0 M=-156,000 ft-lbs 
(That is, for a cantilever beam, the value of the bending 
moment at the wall is equal to the negative of the external 
moment.) 
Apply BC: -156,000 = 13000(0) + C1 

Solving: C1 = -156,000 
Therefore… M1 = [13,000x - 156,000] ft-lbs for 0 < x < 8 
ft. 

 

Section 2: Cut the beam at x, where 8 < x < 12 ft. Analyze 
left hand section.  

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only): 

Sum Fx = 0 (no net external x- forces) 
Sum Fy = 13,000 lbs - (1,000 lbs/ft)((x - 8)ft) - V2 = 0  
Solving: V2 = [-1,000x + 21,000] lbs 



4. Integration  

M2 = -500x2 + 21,000x + C2 

a)Boundary condition to find C2: at x=8 ft M=-52,000 ft-lbs 
(from equation M1) 
Apply BC: -52,000 ft-lbs = -500(8)2 + 21,000(8) + C2 

Solving: C2 = -188,000 ft-lbs 
Therefore… M2 = [ -500x2 + 21,000x - 188,000] ft-lbs for 8 < 
x < 12 

 

Section 3: Cut the beam at x, where 12 < x < 16 ft. Analyze 
left hand section.  

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only):  

Sum Fx = 0 (no net external x- forces) 
Sum Fy = 13,000 lbs - (1,000 lbs/ft)((x - 8)ft) - 5,000 lbs 
- V3 = 0  

Solving: V3 = [-1,000x + 16,000] lbs 

4. Integration  

M3 = -500x2 + 16,000x + C3 

a)Boundary condition to find C3: at x=16 ft M=0 ft-lbs 
(free end of beam, no external torque so M3=0) 
Apply BC: 0 = -500(16)2 + 16,000(16) + C3 



Solving: C3 = -128,000 ft-lbs 
Therefore… M3 = [-500x2 + 16,000x - 128,000] ft-lbs for 12 < 
x < 16 

Part C: Shear Force and Bending Moment Diagrams: Now using 
the expressions found in Part B above, we can draw the 
shear force and bending moment diagrams for our loaded 
beam. 

V1 = 13,000 lb, V2 = [-1,000x+21,000] lb, V3 = [-1,000x + 
16,000] lb 
M1 =[13,000x-156,000] ft-lb, M2 = [-500x2+21,000x-188,000] 
ft-lb, M3 = [-500x2 + 16,000x - 128,000] ft-lb  

  

 

 

Solution Problem #3 

Part A:  
STEP 1: Draw a free body diagram showing and labeling all 
load forces and support (reaction) forces, as well as any 



needed angles and dimensions. 
STEP 2: Break any forces not already in x and y direction 
into their x and y components. 
STEP 3: Apply the equilibrium conditions. 

Sum Fy = (-1,000 lbs/ft)(4 ft) - (1,500 lbs/ft)(4 ft) + By + 
Cy = 0 
Sum TB = (Cy)(6 ft) + (1,000 lbs/ft)(4 ft)(2 ft) - (1,500 
lbs/ft)(4 ft)(8 ft) = 0 
Solving for the unknowns: 
Cy = 6,670 lbs; By = 3,330 lbs 

Part B: Determine the Shear Forces and Bending Moments 
expressions for each section of the loaded beam. For this 
process we will ‘cut’ the beam into sections, and then use 
Statics - Sum of Forces to determine the Shear Force 
expressions, and Integration to determine the Bending 
Moment expressions in each section of the beam. 

 

Section 1: Cut the beam at x, where 0 < x < 4 ft. Analyze 
left hand section. 

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only):  

Sum Fx = 0 (no net external x- forces) 
Sum Fy = -1,000 lbs/ft(x) - V1 = 0  

Solving: V1 = -1,000x lbs 

4. Integration  

M1 = -500 x2 + C1 



a)Boundary condition to find C1: at x=0 M=0 
Apply BC: 0 = -500(0)2 + C1 
Solving: C1 = 0 
Therefore… M1 = [-500x2] ft-lbs for 0 < x < 4 ft. 

 

Section 2: Cut the beam at x, where 4 < x < 10 ft. Analyze 
left hand section.  

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only): 

Sum Fx = 0 (no net external x- forces) 
Sum Fy = -1,000 lbs/ft (4 ft) + 3,330 lbs - V2 = 0  
Solving: V2 = -667 lbs 

4. Integration  

M2 = -667x + C2 

a)Boundary condition to find C2: at x=4 ft M=-8000 ft-lbs 
(from equation M1) 
Apply BC: 8000 ft-lbs = -667(4) + C2 

Solving: C2 = -5,330 ft-lbs 
Therefore… M2 = [-667x - 5,330] ft-lbs for 4 < x < 10 



 

Section 3: Cut the beam at x, where 10 < x < 14 ft. Analyze 
left hand section. 

1. FBD. (Shown in Diagram) 
2. All forces in x & y components (yes) 
3. Apply translational equilibrium conditions (forces 
only):  

Sum Fx = 0 (no net external x- forces) 
Sum Fy = -1,000 lbs/ft(4 ft) + 3,330 lbs + 6,670 lbs -
1500lbs/ft(x-10)ft - V3 = 0  

Solving: V3 = [-1,500x + 21,000] lbs 

4. Integration  

M3 = -750x2 + 21,000x + C3 

a)Boundary condition to find C3: at x=14 ft M=0 ft-lbs (end 
of beam, no external torque so M3=0) 
Apply BC: 0 = -750(14)2 + 21,000(14) + C3 

Solving: C3 = -147,000 ft-lbs 
Therefore… M3 = [-750x2 + 21,000x - 147,000] ft-lbs for 10 < 
x < 14 

Part C: Shear Force and Bending Moment Diagrams: Now using 
the expressions found in Part B above, we can draw the 
shear force and bending moment diagrams for our loaded 
beam. 

V1 = -1,000x lb, V2 = -667 lb, V3 = -1,500x+21,000 lb 
M1 = -500x2 ft-lb, M2 = -667x-5,330 ft-lb, M3 = -
750x2+21,000x-147,000 ft-lb  



 

 

Solution Problem #4 

Overall Equilibrium 

We start by drawing a free-body diagram 
(Fig. 2) of the beam and determining the 
support reactions. Summing moments about 
the left end of the beam 

 
Fig. 2 

MA = 7RC - 2 [ 4 × 10 ] 
- 4(16) - 9(19) = 0 (1a)

gives 
RC = 45 kN (1b)

Then, summing forces in the vertical direction 
F = RA + RC - 4 × 10 - 16 - 19 = 0 (2a)

gives 
RA = 30 kN (2b)

 
 

Drawing the Shear Force Diagram 



Sometimes we are not so much interested in the equations for the shear 
force and bending moment as we are in knowing the maximum and minimum 
values or the values at some particular point. In these cases, we want a quick 
and efficient method of generating the shear force and bending moment 
diagrams (graphs) so we can easily find the maximum and minimum values. 
That is the subject of this first part of 
the problem.  

 
Fig. 3 

Concentrated Force 

The 30-kN concentrated force 
(support reaction) at the left end of the 
beam causes the shear force graph to 
jump up (in the direction of the force) by 
30 kN (the magnitude of the force) from 
0 kN to 30 kN.  

 

 



Distributed Load 

The downward distributed load causes 
the shear force graph to slope downward 
(in the direction of the load). Since the 
distributed load is constant, the slope of 
the shear force graph is constant (dV/dx 
= w = constant).  

The total change in the shear force 
graph between points A and B is 40 kN 
(equal to the area under the distributed 
load between points A and B) from +30 kN 
to -10 kN.  

We also need to know where the shear 
force becomes zero. We know that the 
full 4 m of the distributed load causes a change in the shear force of 40 kN. 
So how much of the distributed load will it take to cause a change of 30 kN 
(from +30 kN to 0 kN)? Since the distributed load is uniform, the area 
(change in shear force) is just 10 × b = 30, which gives b = 3 m. That is, the 
shear force graph becomes zero at x = 3 m (3 m from the beginning of the 
uniform distributed load).  

 
Fig. 4 

Concentrated Force 

 

Fig. 5 

The 16-kN concentrated force at B 
causes the shear force graph to jump 
down (in the direction of the force) by 16 
kN (the magnitude of the force) from -10 
kN to -26 kN.  

 

 



No Loads 

 
Fig. 6 

Since there are no loads between 
points B and C, the shear force graph is 
constant (the slope dV/dx = w = 0) at -26 
kN.  

 

 

 
Fig. 7 

Concentrated Force 

The 45-kN concentrated force (support reaction) at C causes the shear 
force graph to jump up (in the direction of the force) by 45 kN (the 
magnitude of the force) from -26 kN to +19 kN.  



 
 

No Loads 

 
Fig. 8 

Since there are no loads between 
points C and D, the shear force graph is 
constant (the slope dV/dx = w = 0) at +19 
kN.  

 

 

 
Fig. 9 



Concentrated Force 

The 19-kN concentrated force at D causes the shear force graph to jump 
down (in the direction of the force) by 19 kN (the magnitude of the force) 
from +19 kN to 0 kN.  

 
 

 

Drawing the Bending Moment Diagram 

Since there are no concentrated moments acting on this beam, the 
bending moment diagram (graph) will be continuous (no jumps) and it will 
start and end at zero.  

Decreasing Shear Force 

The bending moment graph starts out at 
zero and with a large positive slope (since 
the shear force starts out with a large 
positive value and dM/dx = V ). As the shear 
force decreases, so does the slope of the 
bending moment graph. At x = 3 m the shear 
force becomes zero and the bending moment 
is at a local maximum (dM/dx = V = 0 ) For 
values of x greater than 3 m (3 < x < 4 m) the 
shear force is negative and the bending 
moment decreases (dM/dx = V < 0).  

The shear force graph is linear (1st order 
function of x ), so the bending moment graph 
is a parabola (2nd order function of x ).  

The change in the bending moment 
between x = 0 m and x = 3 m is equal to the area under the shear graph 
between those two points. The area of the triangle is 

 
Fig. 10 

M = (1/2)(30 × 3) = 45 kN·m  



So the value of the bending moment at x = 3 m is M = 0 + 45 = 45 kN·m. The 
change in the bending moment between x = 3 and x = 4 m is also equal to the 
area under the shear graph 

M = (1/2)(-10 × 1) = -5 kN·m  
So the value of the bending moment at x = 4 
m is M = 45 - 5 = 40 kN·m.  
Constant Shear Force 

Although the bending moment graph is 
continuous at x = 4 m, the jump in the shear 
force at x = 4 m causes the slope of the 
bending moment to change suddenly from 
dM/dx = V = -10 kN·m/m to dM/dx = -26 
kN·m/m.  

Since the shear force graph is constant 
between x = 4 m and x = 7 m, the bending 
moment graph has a constant slope between 
x = 4 m and x = 7 m (dM/dx = V = -26 
kN·m/m). That is, the bending moment graph 
is a straight line.  

The change in the bending moment 
between x = 4 m and x = 7 m is equal to the 
area under the shear graph between those two points. The area of the 
rectangle is just M = (-26 × 3) = -78 kN·m. So the value of the bending 
moment at x = 7 m is M = 40 - 78 = -38 kN·m.  

 
Fig. 11 



Constant Shear Force 

Again the bending moment graph is 
continuous at x = 7 m. The jump in the shear 
force at x = 7 m causes the slope of the 
bending moment to change suddenly from 
dM/dx = V = -26 kN·m/m to dM/dx = +19 
kN·m/m.  

Since the shear force graph is constant 
between x = 7 m and x = 9 m, the bending 
moment graph has a constant slope between 
x = 7 m and x = 9 m (dM/dx = V = +19 
kN·m/m). That is, the bending moment graph 
is a straight line.  

The change in the bending moment 
between x = 7 m and x = 9 m is equal to the 
area under the shear graph between those 
two points. The area of the rectangle is just M = (+19 × 2) = +38 kN·m. So 
the value of the bending moment at x = 7 m is M = -38 + 38 = 0 kN·m. 

 
Fig. 12 

 
 


	Pset #5 Solutions
	3.11 Fall 2003
	Solution Problem #1
	
	
	[We really should not put exactly 0 ft., and 10 ft. into our equation for the bending moment. The reason is that at 0 and 10 ft., there are 'point loads/forces' acting. That is, we have our forces acting at point - and a point has zero area, so the stres



	MORE DIFFICULT PROBLEMS #2-4
	Solution Problem #2
	Solution Problem #3
	Solution Problem #4
	Overall Equilibrium
	Drawing the Shear Force Diagram
	Concentrated Force
	Distributed Load
	Concentrated Force
	No Loads
	Concentrated Force
	No Loads
	Concentrated Force

	Drawing the Bending Moment Diagram
	Decreasing Shear Force
	Constant Shear Force
	Constant Shear Force



