Sample Calculus Final

Joy Nicholson

July 28, 1998

This is a sample, three hour calculus final. As originally given, it was closed book (no notes), but calculators were allowed. Have fun.

1. Perform the following calculations:
(a)

$$
\frac{d}{d x}\left(\frac{1}{x^{2}-1}\right)
$$

(b)

$$
\frac{d}{d x}\left((x+3)^{2}(x-4)^{2}\right)
$$

(c)

$$
\int \sec \theta(\sec \theta-\tan \theta) d \theta
$$

(d)

$$
\int \frac{d x}{\sqrt{2+2 x-3 x^{2}}}
$$

(e)

$$
\int \frac{2}{\sqrt{e^{x}}} d x
$$

(k)
(j)
(i)

$$
\lim _{x \rightarrow 0} \frac{3 x}{\tan x}
$$

(h)
(g)
(g)
$\int \frac{d x}{x \sqrt{9+4 x^{2}}}$

$$
\int x^{2} \tan ^{-1} x d x
$$

(f)

$$
\int \sin 4 \theta d \theta
$$

2. Use the definition of the derivative to calculate

$$
\frac{d}{d x}\left(4 x^{2}+1\right)
$$

3. Graph the following function. Include all the usual important information.

$$
y=\frac{x(x-2)}{(x+1)^{2}}
$$

4. Find the area of the region bounded by $y=4 x-x^{2}$ and $y=x$.
5. Find the Taylor series expansion (about zero) of hyperbolic cosine. In what region does this converge?
6. Determine (by any method) whether the following series converge or diverge:
(a)

$$
\sum_{n=o}^{\infty}\left(-\frac{4}{5}\right)^{n}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{1+n^{2}}
$$

(d)

$$
\sum_{n=0}^{\infty} \frac{(2 n+2)}{3^{n}(n)^{2}}
$$

7. A tank has the shape of an inverted cone with height 10 m and radius 4 m . Water is being pumped into it at the rate of $2 \pi \mathrm{~m}^{3} / \mathrm{min}$.
(a) How fast is the depth increasing when the water is 1 m deep?
(b) If we stop adding water when the water is 1 m deep, how much work would be done by then pumping all the water over the edge of the tank? (Use w_{0} for the weight density of water.)
8. Give the limit definition of e.
