Name

Date

Vector Calculus Independent Study

Unit 5 Sample Test

1. [25 points] Graph the vector field $\vec{F}(x, y)=\left(y, x^{2}\right)$. Be sure to include multiple points in each quadrant of the graph, and to sketch a few flow lines (assume \vec{F} is a velocity vector field).
2. [15 points] Why isn't $\vec{F}(x, y, z)=(-y,-x, x)$ a conservative field?
3. [20 points] Find a scalar potential for the gradient field $\vec{F}(x, y, z)=$ $\left(z^{3}+2 x y, x^{2}+2 x y, 3 x z^{2}\right)$.
4. [20 points] Calculate the divergence and curl of the vector field $\vec{F}(x, y, z)=$ $\left(4 x y,-x^{2}, 4 z\right)$.
5. [20 points] Verify that the path $\vec{\sigma}(t)=\left(\sin (t), \cos (t), e^{t}\right)$ is a flow line of the velocity vector field $\vec{F}(x, y, z)=(y,-x, z)$.
