Vector Calculus Independent Study

Unit 1: Vectors and Three Dimensional Geometry

In this unit you should/will learn:

1. Points and Vectors in 3 space.

- How to associate cartesian coordinates to a point in \mathbf{R}^{3}.
- How to find the distance between two points (Pythagorean theorem).
- The definition of a vector, and the meaning of $\overrightarrow{0}, \vec{i}, \vec{j}$, and \vec{k}.
- How to find the length of a vector, $|\vec{v}|$.
- How to find the vector between two points, $\vec{v}_{a, b}=\vec{b}-\vec{a}$.
- How to add and subtract vectors. Geometric meaning.
- How to multiply/divide a vector by a constant. Geometric meaning.

2. Lines in 3 space.

- Parametric definition: $l(t)=\vec{p}+t \vec{v}$
- How to find the line between 2 points.
- How to find the vector lying along the line (\vec{v}).
- How to find the line going through a point along a given vector.
- How to convert between parametric and implicit definitions of a line. (Implicit is $A_{1} x+B_{1} y+C_{1} z+D_{1}=0, A_{2} x+B_{2} y+C_{2} z+D_{2}=$ $0)$.

3. Planes in 3 space.

- Implicit definition: $A x+B y+C x+D=0$.
- How to find the plane containing 3 points.
- How to find the plane containing a line and a point.
- How to find the plane containing 2 intersecting lines.
- How to find the normal to a plane. (A, B, C).
- How to find the plane through a point with a given normal vector: $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$.
- How to convert between implicit and parametric $P(r, s)=\vec{p}+$ $r \overrightarrow{v_{1}}+s \overrightarrow{v_{2}}$. (\vec{p} is a point on the plane, $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are vectors lying on the plane.)

4. Dot Products.

- Algebraic definition: $\vec{a} \cdot \vec{b}=a_{1} b_{2}+a_{2} b_{2}+a_{3} b_{3}$.
- Geometric definition: $\vec{a} \cdot \vec{b}=|a||b| \cos \theta$.
- How to find the angle between 2 vectors using the dot product.
- How to project a vector onto another vector.
- How to project a point onto a line.
- How to find the distance between a point and a line.
- How to test if two vectors are perpindicular $(\vec{a} \cdot \vec{b}=0$?)

5. Cross Products.

- Geometric definition: $|\vec{a} \times \vec{b}|=|a||b| \sin \theta$, with direction given by right hand rule.
- Algebraic definition: $\vec{a} \times \vec{b}=\operatorname{det}\left[\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]=\left(a_{2} b_{3}-b_{2} c_{3}\right) \vec{i}-$ $\left(a_{1} b_{3}-a_{3} b_{1}\right) \vec{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}$
- How to find a vector perpendicular to two other vectors.
- How to find the area of a parallelogram spanned by two vectors.
- How to find the area of a triangle spanned by two vectors.
- How to find the plane going through two given vectors.

6. Other Coordinate Systems

- The definition of the cylindrical coordinate system (r, θ, z).
- The definition of the spherical coordinate system (ρ, θ, ϕ).
- How to convert a point in cartesian coordinates to cylindrical or spherical coordinates, or vice-versa.
- How to convert an equation in cartesian coordinates to cylindrical or spherical coordinates, or vice-versa.

Suggested Procedure:

1. Read and do some problems from

- Rogers Chapters 1, 2, 3, 4, and sections 7.1, 7.2, and 17.1.
- Marsden and Tromba, chapter 1. [Section 1.5 is optional.]
- Thomas \& Finney chapter 13, or
- Simmons section 17.3, and chapter 18.

2. Take the sample test.
3. Take a unit test.
