Vector Calculus Independent Study

Unit 4: Maximization and Minimization

To find the maximium and minimum points of a function $f(\vec{x})$ on a set D, follow this procedure:

1. Look at all the critical points \vec{x} where $\nabla f(\vec{x})=0$. Throw out any that aren't in D.
2. Look at any points where f is non-differentiable.
3. Look at the boundary of D. You can do this either by

- Parameterizing the boundary so that you have an unconstrained \max / min problem, or by
- Lagrange multipliers: if the boundary of D is described as a level set by $g(\vec{x})=0$, then the critical points of f constrained to be on the boundary of D can be found by solving $\nabla f=\lambda \nabla g$.

4. If $\nabla h(\vec{x})=0$, then you can tell if \vec{x} is a local max, min, or saddle point by looking at the Hessian:

$$
H(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

If all of the upper-left square sub-matrices of the Hessian have positive determinant, then the critical point is a local minimum. If the determinants alternate in sign starting with $\frac{\partial^{2} f}{\partial x_{1}^{2}}<0$, then the critical point is a local maximum. If any of the determinants are zero, then the test is indeterminant. Finally, if none of the above ifs apply, you have a saddle point.

Suggested Procedure:

1. Read and do some problems from

- Rogers Chapters 12 and 13,
- Marsden and Tromba 3rd edition chapter 4,
- Marsden and Tromba 4th edition chapter 3, or
- Simmons, sections 19.7 and 19.8.

2. Take the sample test.
3. Take a unit test.
