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@ Prehistory: Early 1900s - 1949.

o Caratheodory, Minkowski, Steinitz, Farkas.
o Properties of convex sets and functions.

@ Fenchel - Rockafellar era: 1949 - mid 1980s.

o Duality theory.
@ Minimax/game theory (von Neumann).
o (Sub)differentiability, optimality conditions, sensitivity.

@ Modern era - Paradigm shift: Mid 1980s - present.

o Nonsmooth analysis (a theoretical/esoteric direction).
@ Algorithms (a practical/high impact direction).
@ A change in the assumptions underlying the field.



Duality

@ Two different views of the same object.

@ Example: Dual description of signals.

Time domain P Frequency domain

@ Dual description of closed convex sets

A union of points An intersection of halfspaces



Dual Description of Convex Functions

@ Define a closed convex function by its epigraph.
@ Describe the epigraph by hyperplanes.
@ Associate hyperplanes with crossing points (the conjugate function).
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Fenchel Duality Framework

A

fi(z)
AN

\/

|
|
|
|
|
I
|
\
|
|
|
|
|
|
0 xr* x

ming {f1(z) + fa(2) }



Fenchel Primal and Dual Problem Descriptions
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Crossing Point Differentials



Fenchel Duality

min, { f1(z) + fa(z)} = max, { 7 (y) + f5(=y)}



A More Abstract View of Duality

@ Back to the primal and dual description of a set M.



A More Abstract View of Duality

@ Back to the primal and dual description of a set M.

@ Two simple prototype problems dual to each other.



Min-Common/Max-Crossing Duality
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Abstract Framework for Duality Analysis

Abstract Geometric Framework
(Set M)
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Minimax Duality
( MinMax = MaxMin )

Constrained Optimization
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The Modern Era: Duality Coupled with Algorithms

@ Traditional view: Pre 1990s
@ LPs are solved by simplex method (G. Dantzig view).
@ NLPs are solved by gradient/Newton methods (M. Powell view).
o Convex programs are special cases of NLPs.

Simplex Duality Gradient /Newton
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The Modern Era: Duality Coupled with Algorithms

@ Traditional view: Pre 1990s
@ LPs are solved by simplex method (G. Dantzig view).
@ NLPs are solved by gradient/Newton methods (M. Powell view).
o Convex programs are special cases of NLPs.

Simplex Duality Gradient /Newton

@ Modern view: Post 1990s
@ LPs are often solved by nonsimplex/convex methods.
o Convex problems are often solved by the same methods as LPs.
e "Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar)

Duality Gradient/Newton

Simplex Cutting plane
Interior point

Subgradient
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Methodological Trends

@ Convex programs and LPs connect around duality and large-scale
piecewise linear problems.

@ New methods, renewed interest in old methods
Interior point methods
Subgradient methods
Polyhedral approximation/cutting plane methods
Regularization/proximal methods

@ Renewed emphasis on complexity analysis

Nesterov, Nemirovski, and others ...
Extrapolated gradient methods
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Synergy Between Duality, Algorithms, and Applications

@ Duality-based decomposition

Large-scale resource allocation
Lagrangian relaxation, discrete optimization
Stochastic programming

@ Conic programming

Robust optimization
Semidefinite programming

@ Machine learning

Support vector machines
I; regularization/Robust regression/Compressed sensing
Incremental methods
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Speculation - What’s Next?

@ Very large problems/new applications.

Problems with network overlays (e.g., smart grids).
Huge data sets in machine learning.

@ New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic
programming).

Reduced space approximations.

Sampling mechanisms.

@ Better hardware/better algorithms multiplier effect?

@ A new paradigm?



Fenchel, Dantzig, Rockafellar

Werner Fenchel George Dantzig Terry Rockafellar



Paul Tseng, 1959-2009




