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Preface

The area of Lagrange multiplier methods for constrained minimization
has undergone a radical transformation starting with the introduction of
augmented Lagrangian functions and methods of multipliers in 1968 by
Hestenes and Powell. The initial success of these methods in computational
practice motivated further efforts aimed at understanding and improving
their properties. At the same time their discovery provided impetus and a
new perspective for reexamination of Lagrange multiplier methods proposed
and nearly abandoned several years earlier. These efforts, aided by fresh
ideas based on exact penalty functions, have resulted in a variety of interest-
ing methods utilizing Lagrange multiplier iterations and competing with
each other for solution of different classes of problems.

This monograph is the outgrowth of the author’s research involvement in
the area of Lagrange multiplier methods over a nine-year period beginning
in early 1972. It is aimed primarily toward researchers and practitioners of
mathematical programming algorithms, with a solid background in intro-
ductory linear algebra and real analysis.

Considerable emphasis is placed on the method of multipliers which,
together with its many variations, may be viewed as a primary subject of the
monograph. Chapters 2, 3, and 5 are devoted to this method. A large portion
of Chapter 1 is devoted to unconstrained minimization algorithms on which

xi



xii PREFACE

the method relies. The developments on methods of multipliers serve as a
good introduction to other Lagrange multiplier methods examined in
Chapter 4.

Several results and algorithms were developed as the monograph was
being written and have not as yet been published in journals. These include
the algorithm for minimization subject to simple constraints (Section 1.5),
the improved convergence and rate-of-convergence results of Chapter 2, the
first stepsize rule of Section 2.3.1, the unification of the exact penalty methods
of DiPillo and Grippo, and Fletcher, and their relationship with Newton’s
method (Section 4.3), the globally convergent Newton and quasi-Newton
methods based on differentiable exact penalty functions (Section 4.5.2), and
the methodology for solving large-scale separable integer programming
problems of Section 5.6.

The line of development of the monograph is based on the author’s
conviction that solving practical nonlinear optimization problems effi-
ciently (or at all) is typically a challenging undertaking and can be accom-
plished only through a thorough understanding of the underlying theory.
This is true even if a polished packaged optimization program is used, but
more so when the problem is large enough or important enough to warrant
the development of a specialized algorithm. Furthermore, it is quite common
in practice that methods are modified, combined, and extended in order to
construct an algorithm that matches best the features of the particular
problem at hand, and such modifications require a full understanding of
the theoretical foundations of the method utilized. For these reasons, we
place primary emphasis on the principles underlying various methods and
the analysis of their convergence and rate-of-convergence properties. We
also provide extensive guidance on the merits of various types of methods
but, with a few exceptions, do not provide any algorithms that are specified
to the last level of detail.

The monograph is based on the collective works of many researchers as
well as my own. Of those people whose work had a substantial influence on
my thinking and contributed in an important way to the monograph I
would like to mention J. D. Buys, G. DiPillo, L. Dixon, R. Fletcher, T. Glad,
L. Grippo, M. Hestenes, D. Luenberger, O. Mangasarian, D. Q. Mayne,
E. Polak, B. T. Poljak, M. J. D. Powell, B. Pschenichny, R. T. Rockafellar,
and R. Tapia. My research on methods of multipliers began at Stanford
University. My interaction there with Daniel Gabay, Barry Kort, and
David Luenberger had a lasting influence on my subsequent work on the
subject. The material of Chapter 5 in particular is largely based on the
results of my direct collaboration with Barry Kort. The material of Sec-
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tion 5.6 is based on work on electric power system scheduling at Alphatech,
Inc. where I collaborated with Greg Lauer, Tom Posbergh, and Nils R.
Sandell, Jr.

Finally, I wish to acknowledge gratefully the research support of the
National Science Foundation, and the expert typing of Margaret Flaherty,
Leni Gross, and Rosalie J. Bialy.






Chapter 1

Introduction

1.1 General Remarks

Two classical nonlinear programming problems are the equality con-
strained problem

(ECP) minimize f(x)
subject to  h(x) =0

and its inequality constrained version

(ICP) minimize f(x)
subject to  g(x) < 0,

where f* R" — R, h: R" — R™, g: R" — R" are given functions. Computational
methods for solving these problems became the subject of intensive investiga-
tion during the late fifties and early sixties. We discuss three of the approaches
that were pursued.

The first approach was based on the idea of iterative descent within
the confines of the constraint set. Given a feasible point x,, a direction d,
was chosen satisfying the descent condition Vf(x,)'d, < 0 and the condition
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2 1. INTRODUCTION

X, + od, : feasible for all « positive and sufficiently small. A search along the
line {x, + adi|a > 0} produced a new feasible point x,., = x; + o.d;
satisfying f(x;+,) < f(x;). This led to various classes of feasible direction
methods with which the names of Frank—Wolfe, Zoutendijk, Rosen, Goldstein,
and Levitin-Poljak are commonly associated. These methods, together with
their more sophisticated versions, enjoyed considerable success and still
continue to be very popular for problems with linear constraints. On the
other hand, feasible direction methods by their very nature were unable to
handle problems with nonlinear equality constraints, and some of them
were inapplicable or otherwise not well suited for handling nonlinear
inequality constraints as well. A number of modifications were proposed for
treating nonlinear equality constraints, but these involved considerable
complexity and detracted substantially from the appeal of the descent idea.

A second approach was based on the possibility of solving the system of
equations and (possibly) inequalities which constitute necessary conditions
for optimality for the optimization problem. For (ECP), these conditions are

(1a) V.L(x, ) = Vf(x) + Vh(x)A = 0,
(1b) V,L(x,4) = h(x) = 0,
where L is the (ordinary) Lagrangian function

L(x, A) = f(x) + Ah(x).

A distinguishing feature of this approach is that the Lagrange multiplier
A is treated on an equal basis with the vector x. Iterations are carried out
simultaneously on x and 4, by contrast with the descent approach where
only x is iterated upon and the Lagrange multiplier plays no direct role.
For this reason algorithms of this type are sometimes called Lagrangian
methods. Several methods of this type were considered in Arrow et al. (1958).
In addition to Newton’s method for solving system (1), a gradient method
was also proposed under the condition that the local convexity assumption

) V2, L(x*, 1*) > 0

holds at a solution (x*, A*). It was noted, however, by Arrow and Solow
(1958) that if the local convexity assumption did not hold, then (ECP) could
be replaced by the equivalent problem

3) minimize f(x) + 3c|h(x)|?
subject to  h(x) = 0,

where ¢ is a scalar and |-| denotes Euclidean norm. If ¢ is taken sufficiently
large, then the local convexity condition can be shown to hold for problem (3)
under fairly mild conditions. The idea of focusing attention on the necessary
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conditions rather than the original problem also attracted considerable
attention in optimal control where the necessary conditions can often be
formulated as a two-point boundary value problem. However, it quickly
became evident that the approach had some fundamental limitations,
mainly the lack of a good mechanism to enforce convergence when far from a
solution, and the difficulty of some of the methods to distinguish between
local minima and local maxima.

A third approach was based on elimination of constraints through the
use of penalty functions. For example the quadratic penalty function method
(Fiacco and McCormick, 1968) for (ECP) consists of sequential uncon-
strained minimization of the form

%) minimize f(x) + 3cx|h(x)|?

subjectto xeR",

where {c,} is a positive scalar sequence with ¢, < Cx+1 for all k and ¢; — 0.
The sequential minimization process yields

Q) lim inf {f(x) + 3cilh(x)[*}.

cx— o0 xeR™

On the other hand, the optimal value of (ECP) can be written as

(©) inf lim {f(x) + el ()}

x€R™ ¢ 0

and hence the success of the penalty method hinges on the equality of the
expressions (5) and (6), ie., the validity of interchanging “lim” and “inf.”
This interchange is indeed valid under mild assumptions (basically con-
tinuity of f and h—see Chapter 2). Lagrange multipliers play no direct role
in this method but it can be shown under rather mild assumptions that the
sequence {c,h(x,)}, where x, solves problem (4), converges to a Lagrange
multiplier of the problem. Despite their considerable disadvantages [mainly
slow convergence and ill-conditioning when solving problem (4) for large
values of ¢, ], penalty methods were widely accepted in practice. The reasons
can be traced to the simplicity of the approach, its ability to handle nonlinear
constraints, as well as the availability of very powerful unconstrained
minimization methods for solving problem (4).

The main idea of the descent approach also made its appearance in a
dual context whereby an ascent method is used to maximize the dual func-
tional for (ECP) given by

d(A) = inf{f(x) + Xh(x)} = inf L(x, ).
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In the simplest such method one minimizes L(-, 4,) (perhaps in a local
sense) over x for a sequence of multiplier vectors {4,}. This sequence is
generated by

@) A1 = A + ah(xy),

where x, is a minimizing point of L(-, 4,) and « is a stepsize scalar parameter.
It is possible to show under the appropriate assumptions (see Section 2.6)
that h(x,) = Vd(4,), so (7) is actually a steepest ascent iteration for maxi-
mizing the dual functional d. Such methods have been called primal-dual
methods. Actually the dual functional and the method itself make sense only
under fairly restrictive conditions including either the local convexity
assumption (2) or other types of convexity conditions. The method is also
often hampered by slow convergence. Furthermore in many cases it is diffi-
cult to know a priori an appropriate range for the stepsize o. For this reason
primal-dual methods of the type just described initially found application
only in the limited class of convex or locally convex problems where mini-
mization of L(-, 4,) can be carried out very efficiently due to special structure
involving, for example, separable objective and constraint functions (Everett,
1963).

Starting around 1968, a number of researchers have proposed a new
class of methods, called methods of multipliers, in which the penalty idea is
merged with the primal-dual and Lagrangian philosophy. In the original
method of multipliers, proposed by Hestenes (1969) and Powell (1969), the
quadratic penalty term is added not to the objective function f of (ECP)
but rather to the Lagrangian function L = f + A'h thus forming the aug-
mented Lagrangian function

@® L(x,4) = f(x) + A'h(x) + c|h(x)[*.
A sequence of minimizations of the form
©) minimize L, (x, 4;)

subject to xeR"

is performed where {c,} is a sequence of positive penalty parameters. The
multiplier sequence {4,} is generated by the iteration

(10) Aevr = A + ch(xy),

where x, is a solution of problem (9). The initial vector A, is selected a priori,
and the sequence {c,} may be either preselected or generated during the
computation according to some scheme.

One may view the method just described within the context of penalty
function methods. If ¢, — oo and the generated sequence {4,} turns out to
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be bounded, then the method is guaranteed to yield in the limit the optimal
value of (ECP), provided sufficient assumptions are satisfied which guarantee
the validity of interchange of “lim” and “inf ” in the expression

lim inf{f(x) + A h(x) + %ci|h(x)|*},
similarly as for the penalty method considered earlier.
Another point of view (see Chapter 2) is based on the fact that iteration
(10) is a steepest ascent iteration for maximizing the dual functional

d, () = inf {f(x) + Yh(x) + 3| h(x)[*},

which corresponds to the problem
minimize f(x) + 3¢, |h(x)|?
subjectto  h(x) = 0.

As noted earlier, if ¢, is sufficiently large, this problem has locally convex
structure, so the primal-dual viewpoint is applicable.

It turns out that, by combining features of the penalty and the primal-
dual approach, the method of multipliers actually moderates the dis-
advantages of both. As we shall see in the next chapter, convergence in
the method of multipliers can usually be attained without the need to increase
¢, to infinity thereby alleviating the ill-conditioning problem that plagues
the penalty method. In addition the multiplier iteration (10) tends to converge
to a Lagrange multiplier vector much faster than iteration (7) of the primal-
dual method, or the sequence {c, h(x,)} in the penalty method. Because of these
attractive characteristics, the method of multipliers and its subsequently
developed variations have emerged as a very important class of constrained
minimization methods. A great deal of research has been directed toward
their analysis and understanding. Furthermore their discovery provided
impetus for reexamination of Lagrangian methods proposed and nearly
abandoned many years ago. These efforts aided by fresh ideas based on
penalty functions and duality have resulted in a variety of interesting methods
utilizing Lagrange multiplier iterations and competing with each other for
solution of different classes of problems.

The purpose of this monograph is to provide a rather thorough analysis
of these Lagrange multiplier methods starting with the quadratic method of
multipliers for (ECP) just described. This method is the subject of Chapter 2.
In Chapter 3, the method is extended to handle problems with both equality
and inequality constraints. In addition the Lagrange multiplier approach is
utilized to construct algorithms for solution of nondifferentiable and minimax
problems. In Chapter 4, we consider a variety of Lagrangian methods and
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analyze their local and global convergence properties. Finally, in Chapter 5,
we explore the possibility of using a penalty function other than quadratic,
and we analyze multiplier methods as applied to convex programming
problems.

1.2 Notation and Mathematical Background

The purpose of this section is to provide a selective list of mathematical
definitions, notations, and results that will be frequently used. For detailed
expositions, the reader should consult texts on linear algebra and real
analysis.

Algebraic Notions

We denote by R the real line and by R” the space of all n-dimensional
vectors. Intervals of real numbers or extended real numbers are denoted
as usual by bracket-parentheses notation. For example forae Rora = — o0
and beR or b = + 0 we write (a,b] = {x|a < x < b}. Given any subset
§ <= R which is bounded above (below), we denote by sup S (inf S) the least
upper bound (greatest lower bound) of S. If S is unbounded above (below)
we write sup S = oo (inf S = —o0). In our notation, every vector is con-
sidered to be a column vector. The transpose of an m x n matrix A is denoted
A'. A vector x € R" will be treated as an n x 1 matrix, and thus x’ denotes a

1 x n matrix or row vector. If x,, ..., x, are the coordinates of a vector
x € R", we write x = (x4, X5, ..., X,). We also write

x>0 if x>0, i=1,...,n,

x<0 if x,<0, i=1,...,n

A symmetric n x n matrix 4 will be said to be positive semidefinite
if x’Ax > O for all x € R". In this case we write

A=0.
We say that A is positive definite if x’Ax > 0 for all x # 0, and write
A>0.

When we say that A is positive (semi)definite we implicitly assume that
it is symmetric. A symmetric n X n matrix 4 has n real eigenvalues y,,
Y25 ---»> ¥» @and n nonzero real eigenvectors ey, e,, . .., e, which are mutually
orthogonal. It can be shown that

) Px'x < x'Ax < I'x'x VYV xeR",
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where
y = min{')]h R Yn}a r = maX{YI’ M y"}

For x equal to the eigenvector corresponding to I' (), the inequality on the
right (left) in (1) becomes equality. It follows that 4 > 0(A4 > 0), if and only
if the eigenvalues of A are positive (nonnegative).

If A is positive definite, there exists a unique positive definite matrix the
square of which equals 4. This is the matrix that has the same eigenvectors
as A and has as eigenvalues the square roots of the eigenvalues of A. We
denote this matrix by 42

Let 4 and B be square matrices and C be a matrix of appropriate dimen-
sion. The very useful equation

(A+ CBC) ' =A4"'—A"'CB™' + cCA™'0)"cA™?

holds provided all the inverses appearing above exist. The equation can
be verified by multiplying the right-hand side by (4 + CBC") and showing
that the product is the identity.

Consider a partitioned square matrix M of the form

M=[g ﬁ]

M—l — Q _QBD—1
_D-'CQ D'+ D-'COBD™'[

There holds

where
Q=(4-BD'O)7,

provided all the inverses appearing above exist. The proof is obtained by
multiplying M with the expression for M~ ! given above and verifying that
the product yields the identity matrix.

Topological Notions

We shall use throughout the standard Euclidean norm in R denoted |-|;
i.e., for a vector x € R", we write

x| = /X'x.

The Euclidean norm of an m x n matrix 4 will be denoted also |-|.
It is given by

|A| = max = max
x%0 |X] x#0

| Ax| XA Ax
JX'x '
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In view of (1), we have

|[A] = \/ max eigenvalue(A4'A).

If A is symmetric, then if 4,, ..., 4, are its (real) eigenvalues, the eigenvalues
of A% are A%, ..., A%, and we obtain

|4 = max{|4;], ..., |4.[}.

A sequence of vectors xg, Xy, ..., X, - .., 10 R" denoted {x,}, is said to
converge to a limit vector x if |x, — x| —0 as k— oo (that is, if given ¢ > 0,
there is an N such that for all k > N we have |x, — x| < ¢). If {x;} con-
verges to x we write x, — x or lim,_, ., x, = x. Similarly for a sequence of
m X n matrices {4,}, we write 4, - A4 or lim,_ A4, = A if |4, — A]| >0
as k — oo. Convergence of both vector and matrix sequences is equivalent
to convergence of each of the sequences of their coordinates or elements.

Given a sequence {x,}, the subsequence {x,|k € K} corresponding to an
infinite index set K is denoted {x,}x. A vector x is said to be a limit point
of a sequence {x,} if there is a subsequence {x,}x which converges to x.

A sequence of real numbers {r,} which is monotonically nondecreasing
(nonincreasing), i.e., satisfies r, < ryq (re = 1y q) for all k, must either
converge to a real number or be unbounded above (below) in which case we
write limy_, o r, = + 00 (limy., , 7, = —00). Given any bounded sequence
of real numbers {r,}, we may consider the sequence {s,} where s, =
sup{r;|i > k}. Since this sequence is monotonically nonincreasing and
bounded, it must have a limit called the limit superior of {r,} and denoted by
lim sup, ., 1. We define similarly the limit inferior of {r,} and denote it by
lim inf,_,  r,. If {r;} is unbounded above, we write lim sup;_, o, r, = + 00,
and if it is unbounded below, we write lim inf,_, , r, = — c0.

Open, Closed, and Compact Sets

For a vector x € R" and a scalar ¢ > 0, we denote the open sphere cen-
tered at x with radius ¢ > 0 by S(x; ¢); i.e.,

@ S(x;8) = {z]lz — x| < &}.

Forasubset X — R"and ascalare > 0, we write by extension of the preceding
notation

3) S(X;e) = {z]|lz — x| < eforsome x € X}.

A subset S of R" is said to be open, if for every vector x € S one can find an
& > 0 such that S(x;¢) = S. If S is open and x €S, then S is said to be a
neighborhood of x. The interior of a set S = R" is the set of all x € S for which
there exists ¢ > 0 such that S(x;¢) = S. A set S is closed if and only if its
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complement in R" is open. Equivalently S is closed if and only if every
convergent sequence {x,} with elements in S converges to a point which also
belongs to S. A subset S of R" is said to be compact if and only if it is both
closed and bounded (i.e., it is closed and for some M > 0 we have |x| < M
for all xeS). A set S is compact if and only if every sequence {x,} with
elements in S has at least one limit point which belongs to S. Another impor-
tant fact is that if Sy, Sy, ..., Sk, ... is a sequence of nonempty compact
sets in R" such that S, o Sy, for all k then the intersection (Vo Sk is a
nonempty and compact set.

Continuous Functions

A function f mapping a set S; = R" into a set S, < R™ is denoted by
f:8, = S,. The function f is said to be continuous at x € S, if f(x) = f(x)
whenever x, — x. Equivalently f is continuous at x if given & > 0 there
is a >0 such that |y — x| <& and yeS, implies |f(y) — f(x)| <e.
The function f'is said to be continuous over S, (or simply continuous) if it is
continuous at every point xe §,. If S;, S,, and S5 are sets and f;:S; = S,
and f,:S, — S; are functions, the function f,- f;:8; — S defined by
(f> - f1)(x) = fo[ f1(x)] is called the composition of f; and f,. If f;:R"—R"™
and f,: R™ — RP are continuous, then f, - f is also continuous.

Differentiable Functions

A real-valued function f: X — R where X = R" is an open set is said to
be continuously differentiable if the partial derivatives of (x)/0x, . . ., Of (x)/0x,
exist for each x € X and are continuous functions of x over X. In this case
we write fe C! over X. More generally we write fe C” over X for a function
f:X — R, where X < R" is an open set if all partial derivatives of order p
exist and are continuous as functions of x over X. If fe C? over R", we
simply write f€ C?. If fe C* on X, the gradient of fat a point x € X is defined
to be the column vector

o)

0x4
v =| |
o)
0x,,

If fe C? over X, the Hessian of f at x is defined to be the symmetric n X n
matrix having 02/ (x)/dx; éx; as the ijth element
o*f (X)]

Vi) = [6x~6x» '
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If f: X — R™ where X < R”, then f will be alternatively represented by

the column vector of its component functions f;, f5, . . ., f
f1(x)
fx)=1 :
Jon%)

If X is open, we write fe CP on X if f, € C?, f, € C? ...,f,€CPon X. We
shall use the notation

Vi(x) = [Vi(x) - - - V()]

Thus, the n x m matrix Vf has as columns the gradients Vf;(x), ..., Vf,(x)
and is the transpose of the Jacobian matrix of the function f.

On occasion we shall need to consider gradients of functions with
respect to some of the variables only. The notation will be as follows:

If f: R"*" — R is a real-valued function of (x, y) where x = (x, ..., x,) €
Ry =y, ..., y,)ER", wewrite
9 (x,y) of (x, )
0x, oy,
V. f(x,y) = S Yy = |
I (x, y) o (x, y)
0x, ay,
R ACR) )
Vxxf(-x’ y) - I:Taxj]’ nyf(x7 y) = I:axi ayj >
| (x,y)
Vyyf(x, y) - I:@y, ayj ]

Iff:R"™" > R™ f= (fi,fas---»fom), WeE Write
fo(xa y) = [fol(x> y) e fom(x’ .V)]’
Vo 1%, 9) = [V, fi(x, p) - -V, fiulx, Y]

For h:R" — R™and g: R" — R’, consider the function f: R" — R™ defined
by

f () = hlg(x)].

Then if h e C? and g € C?, we also have f'e C?. The chain rule of differentiation
is stated in terms of our notation as

Vf(x) = Vg(x)Vh[g(x)].
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Mean Value Theorems and Taylor Series Expansions

Let /2 X — R, and fe C! over the open set X — R" Assume that X
contains the line segment connecting two points x, y € X. The mean value
theorem states that there exists a scalar o with 0 < a < 1 such that

fO) =) + Vf[x + oy = )G — x).

If in addition fe C?, then there exists a scalar « with 0 < « < 1 such that
) =f() + V(X = x) + 3 =)'V [x + oy = )y — x).

Letf: X — R™andfe C! onthe openset X — R". Assume that X contains
the line segment connecting two points x, y € X. The first-order Taylor series
expansion of f around x is given by the equation

1
fO) =)+ L Vilx + oy — x)]'(y — x) do.

If in addition feC? on X, then we have the second-order Taylor series
expansion

fO) =) + VfX)(y — x)
1 4
+ J (J (v — x)Vf[x + oy — x)](y — x) doz) dé.
0 \Jo

Implicit Function Theorems
Consider a system of n equations in m + n variables
h(xa y) =0,

where h: R"*" — R" x € R™, and y € R". Implicit function theorems address
the question whether one may solve the system of equations for the vector
y in terms of the vector x, i.e., whether there exists a function ¢, called the
implicit function, such that h[x, ¢(x)] = 0. The following classical implicit
function theorem asserts that this is possible in a local sense, i.., in a neigh-
borhood of a solution (X, 7), provided the gradient matrix of h with respect
to y is nonsingular.

Implicit Function Theorem 1: Let S be an open subset of R™*" and
h:S — R" be a function such that for some p > 0, h € C? over S, and assume
that V,h(x, y) exists and is continuous on S. Let (X, y) € S be a vector such
that h(X, 7) = 0 and the matrix V,h(X, y) is nonsingular. Then there exist
scalars ¢ > 0 and & > 0 and a function ¢: S(x; &) — S(j; 6) such that ¢ € C*
over S(X;¢), 7 = $(X), and h[x, ¢(x)] = 0 for all x € S(x;¢). The function
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¢ is unique in the sense that if x € S(X; ¢), y € S(y; 0), and h(x, y) = 0, then
y = ¢(x). Furthermore, if p > 1, then for all x € S(X; ¢)

Vé(x) = — V. hlx, ¢(x)I[V,hlx, p(x)]]17 "
We shall also need the following implicit function theorem. It is a special

case of a more general theorem found in Hestenes (1966). The notation (3)
is used in the statement of the theorem.

Implicit Function Theorem 2: Let S be an open subset of R™*", X be a
compact subset of R™, and h:S — R" be a function such that for some
p =0, he C” on S. Assume that V h(x, y) exists and is continuous on S.
Assume that j € R" is a vector such that (X, y) € S, h(X, ) = 0, and the matrix
V,h(x, y) is nonsingular for all X e X. Then there exist scalars ¢ > 0, § > 0,
and a function ¢:S(X;e) — S(7; 6) such that ¢ € C? on S(X;¢), § = ¢(X)
for all X € X, and h[x, ¢(x)] = O for all x € S(X; ¢). The function ¢ is unique
in the sense that if x e S(X;¢), ye S(¥;6), and h(x, y) = 0, then y = ¢(x).
Furthermore, if p > 1, then for all x e S(X ; ¢)

Vé(x) = — V. hlx, ¢(x)I[V,hlx, p(x)]]7 .
When X consists of a single vector X, the two implicit function theorems

coincide.

Convexity

Aset S < R"is said to be convex if for every x, y € S and o € [0, 1] we have
ax + (1 — )y e S. A function f: S — R is said to be convex over the convex
set S if for every x, y € S and « € [0, 1] we have

flox + (1 =yl < of (x) + (1 — ) f ().

If fis convex and f'e C! over an open convex set S, then

“4) ) =f)+ Vfx)(y —x) Vx,yeSs.
If in addition fe C? over S, then V?f(x) > 0 for all xeS. Conversely, if

fe C*! over S and (4) holds, or if fe C? over S and V*f(x) > 0 for all xe S,
then fis convex over S.

Rate of Convergence Concepts

In minimization algorithms we are often interested in the speed with
which various algorithms converge to a limit. Given a sequence {x,} = R"
with x, — x*, the typical approach is to measure speed of convergence in
terms of an error function e: R" — R satisfying e(x) > 0 for all x e R" and
e(x*) = 0. Typical choices are

ex) =[x —x*|,  e(x)=]f(x)=fF)],
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where fis the objective function of the problem. The sequence {e(x;)} is then
compared with standard sequences. In our case, we compare {e(x;)} with
geometric progressions of the form

ry = qﬁka
where ¢ > 0 and B €(0, 1) are some scalars, and with sequences of the form
Iy = qﬂpk’

where g > 0, B€(0, 1), and p > 1 are some scalars. There is no reason for
selecting these particular sequences for comparison other than the fact
that they represent a sufficiently wide class which is adequate and convenient
for our purposes. Our approach has much in common with that of Ortega
and Rheinboldt (1970), except that we do not emphasize the distinction
between Q and R linear or superlinear convergence.

Let us introduce some terminology:

Definition: Given two scalar sequences {e;} and {r,} with
OSek, OSrk, ek_)09 rk_.)O?

we say that {e,} converges faster than {r,} if there exists an index k > 0 such
that

0<e<r, Vk>k

We say that {e,} converges slower than {r.} if there exists an index k > 0
such that

0<rn<e Vk=>k

Definition: Consider a scalar sequence {e,} with ¢, > 0, ¢, —» 0. The
sequence {e,} is said to converge at least linearly with convergence ratio B,
where 0 < B < 1, if it converges faster than all geometric progressions of
the form gp* where g > 0, Be (B, 1). It is said to converge at most linearly
with convergence ratio 8, where 0 < 8 < 1, if it converges slower than all
geometric progressions of the form gf*, where g > 0, B (0, f). It is said to
converge linearly with convergence ratio f, where 0 < f < 1, if it converges
both at least and at most linearly with convergence ratio . It is said to
converge superlinearly or sublinearly if it converges faster or slower, respec-
tively, then every sequence of the form gB¥, where g > 0, f € (0, 1).

Examples: (1) The following sequences all converge linearly with
convergence ratio f3:

k lk lk k + (1/k)
qﬁ,qﬁ+;,qﬁ—z,qﬁ ,
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where ¢ > 0 and fe(0,1). This fact follows either by straightforward
verification of the definition or by making use of Proposition 1.1 below.
(2) Let0 < B; < B, < 1, and consider the sequence {e,} defined by

e = Bif5, ex+1 = Py 165
Then clearly {e,} converges at least linearly with convergence ratio 8, and
at most linearly with convergence ratio f,. Actually {e,} can be shown to
converge linearly with convergence ratio ./f,f, a fact that can be proved
by making use of the next proposition.
(3) The sequence {1/k} converges sublinearly and every sequence
of the form gB”, where g > 0, (0, 1), p > 1, can be shown to converge

superlinearly. Again these facts follow by making use of the proposition
below.

Proposition 1.1: Let {¢,} be a scalar sequence with ¢, > 0, ¢, — 0.
Then the following hold true:

(a) The sequence {e;} converges at least linearly with convergence
ratio f € (0, 1) if and only if

®) lim sup el’* < B.

k=
It converges at most linearly with convergence ratio f € (0, 1) if and only if

6) lim inf e!* > B.

k= ©
It converges linearly with convergence ratio f € (0, 1) if and only if

@ lim ef* = B.
k= oc
(b) If {e} converges faster (slower) than some geometric progression of
the form gB* q > 0, Be(0, 1), then it converges at least (at most) linearly
with convergence ratio S.
(c) Assume that ¢, # O for all k, and denote

. . €k+1
By = limin , B, = lim sup =1

ko €k k- €k

fek+l

If 0 < B, < B, < 1, then {e,} converges at least linearly with convergence
ratio 8, and at most linearly with convergence ratio f3,.
(d) Assume that ¢, # O for all k and that

. €kt
lim = 6.
k= €k
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If0 < B < 1, then {e;} converges linearly with convergence ratio B. If f = 0,
then {e;} converges superlinearly. If § = 1, then {e,} converges sublinearly.

Proof: (a) If (5) holds, then for every B € (B, 1) there exists a k>0
suchthate, < f*forallk > k.Since {B*} converges faster than every sequence
of the form g, with ¢ > 0, f € (B, 1), the same is true for {e;}. Since B can be
taken arbitrarily close to f, it follows that {e,} converges at least linearly
with convergence ratio f. Conversely if {e;} converges at least linearly with
convergence ratio B, we have for every B € (8, 1), ¢, < p* for all k sufficiently
large. Hence, lim sup,., e;* < . Since B can be taken arbitrarily close
to B, (5) follows. An entirely similar argument proves the statement con-
cerning (6). The statement regarding (7) is obtained by combining the two
statements concerning (5) and (6).

(b) If ¢ < (=)gp* for all k sufficiently large then etk < (=)q**B
and lim supy o, (lim inf, . . Je’* < (=)B. Hence, by part (a), {e,} converges
at least (at most) linearly with convergence ratio f.

(c) For every B, € (B, 1), there exists k > 0 such that

ek+1/ek < Bz Vk > E.

Hence, ej.,, < Pregand et/®rm < pr/t+mel/k+m Taking the limit superior

as m — o0, we obtain
lim sup e < B,.
k= o0

Since j, can be taken arbitrarily close to §, we obtain lim sup. el* < B,,
and the result follows by part (a). Similarly we prove the result relating to B;-

(d) If 0 < B < 1, the result follows directly from part ©. If =0,
then for any Be(0,1) we have, for some k >0, ;43 < Bey for all k > k.
From this, it follows that {e,} converges faster than {B*}, and since j can be
taken arbitrarily close to zero, {e,} converges superlinearly. Similarly we
prove the result concerning sublinear convergence. Q.E.D.

When {e,} satisfies lim sup; o, ex+1/ex = f <1 as in Proposition 1.1d,
we also say that {e,} converges at least quotient-linearly (or Q-linearly) with
convergence ratio p. If B = 0, then we say that {e,} converges Q-superlinearly.

Most optimization algorithms which are of interest in practice produce
sequences converging either linearly or superlinearly. Linear convergence
is quite satisfactory for optimization algorithms provided the convergence
ratio f is not very close to unity. Algorithms which may produce sequences
having sublinear convergence rates are excluded from consideration in
most optimization problems as computationally inefficient. Several optimiza-
tion algorithms possess superlinear convergence for particular classes of
problems. For this reason, it is necessary to quantify further the notion of
superlinear convergence.
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Definition: Consider a scalar sequence {e,} with ¢, > 0 converging
superlinearly to zero. Then {e,} is said to converge at least superlinearly
with order p, where 1 < p, if it converges faster than all sequences of the
form gp?*, where g > 0, fe(0,1), and pe(l,p). It is said to converge at
most superlinearly with order p, where 1 < p, if it converges slower than all
sequences of the form g7, where g > 0, f€(0, 1), and p > p. It is said to
converge superlinearly with order p, where p > 1, if it converges both at least
and at most superlinearly with order p.

We have the following proposition, the proof of which is similar to the
one of Proposition 1.1 and is left as an exercise to the reader.

Proposition 1.2: Let {¢,} be a scalar sequence with ¢, > 0 and ¢, — 0.
Then the following hold true:

(a) The sequence {¢,} converges at least superlinearly with order
p > lifand only if
lime!” =0 Vpe(,p)

k— o

It converges at most superlinearly with order p > 1 if and only if

lim e}/P* = 1 Yp>p.

k= oo

(b) If {e,} converges faster (slower) than some sequence of the form
qp”, where ¢ > 0, (0, 1), and p > 1, then it converges at least (at most)
superlinearly with order p.

(c) Assume that ¢, # O for all k. If for some p > 1, we have

. €k +1
lim sup —

k= o €x

< o0,

then {e,} converges at least superlinearly with order p. If

.. s
lim inf !
k— €y

>0,

then {e,} converges at most superlinearly with order p.
If

€+ 1
ex

lim sup < o0,

k—

as in Proposition 1.2c, then we say that {e,} converges at least Q-super-
linearly with order p.
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Cholesky Factorization

Let A = [a;;] be an n x n positive definite matrix and let us denote
by A; the leading principal submatrix of A of order i,i = 1, ..., n, where

air Qi 0t A4y

Azy Qzz - 4y
Ai = . . .l .

a4y Gz - Gy

It is easy to show that each of the submatrices 4; is a positive definite matrix.
Indeed for any y € R, y # 0, we have by positive definiteness of 4

VAy =1y OJA[g] > 0,

which implies that A; is positive definite.
The matrices A; satisfy

Ay = [ay4],
A._ .
®) Ai=[‘,‘ “‘], =2
% Gy
where «; is the column vector in R'™ ! given by
ayi
©) &% = :
Ai—1,i

We now show that A can be written as
A=LL,

where L is a unique lower triangular matrix and L' is the transpose of L—an
upper triangular matrix. This factorization of A4 is called the Cholesky
factorization.

The Cholesky factorization may be obtained by successively factoring
the principal submatrices A4; as

(10) A; = L;L;, i=12,...,n
We have
A, = L,Lj, L, = [\/011]-
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Direct calculation using (8) yields that if 4;_; = L;_,L;_,, then we also
have A; = L;L;, where

an Li= [ " lﬁ],
(12) li= Li_—llaia
(13) Ai = ai — Ll

and «; is given by (9). Thus, to show that the factorization given above is
valid, it will be sufficient to show that

a;; — l:ll > 0,

and thus 1; is well defined as a real number from (13). Indeed define b =
A% o;. Then because 4; is positive definite, we have

b

0 < [bl - l]Al[—l:l = b,Ai—lb - 2b,ai + a;;
= b'ai - 2b'tx,~ + a; = a;; — b'a,-

= a; — wA; Yoy = a; — OCE(Li—lL:‘-J—l“i
= a4 — (Li_-llai)l(Li_—llai) = a; — Ll

Thus, A; as defined by (13) is well defined as a positive real number. In order
to show uniqueness of the factorization, a similar induction argument may
be used. The matrix 4, has a unique factorization, and if 4;_, has a unique
factorization A;_, = L;_,L}_,, then L; is uniquely determined by the
requirement A; = L;L; and Egs. (8)-(13).

In practice the Cholesky factorization is computed via the algorithm
(10)-(13) or some other essentially equivalent algorithm. Naturally the
vectors [; in (12) are computed by solving the triangular system

Li_ili=o

rather than by inverting the matrix L;_,. For large n the process requires
approximately n3/6 multiplications.

1.3 Unconstrained Minimization

We provide an overview of analytical and computational methods for
solution of the problem
(UP) minimize f(x)

subject to xeR",
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where f: R" — R is a given function. We say that a vector x* is a local minimum
for (UP) if there exists an ¢ > 0 such that

f(x*) < f(x) V xeS(x*;e).
It is a strict local minimum if there exists an ¢ > 0 such that
f(x*) < f(x) VxeS(x*;¢e), x # x*

We have the following well-known optimality conditions. Proofs may be
found, for example, in Luenberger (1973).

Proposition 1.3: Assume that x* is a local minimum for (UP) and, for
some ¢ > 0, fe C! over S(x*; ¢). Then

Vf(x*) = 0.
If in addition fe C? over S(x*; ¢), then
V3 (x*) > 0.

In what follows, we refer to a vector x* satisfying Vf(x*) = 0 as a critical
point.

Proposition 1.4:  Let x* be such that, for some ¢ > 0, fe C?over S(x*; &)
and

VIGx*) =0, V3(x*) > 0.

Then x* is a strict local minimum for (UP). In fact, there exist scalars y > 0
and 6 > 0 such that

f(X) = f(x*) + y]x — x*|>  VxeS(x*;d).

When x* satisfies the assumptions of Proposition 1.4 we say that it
is a strong local minimum for (UP).
We say that x* is a global minimum for (UP) if

fOx*) < f(x) vV xeR"

Under convexity assumptions on f, we have the following necessary and
sufficient condition:

Proposition 1.5:  Assume that fe C' and is convex over R". Then a
vector x* is a global minimum for (UP) if and only if

Vi (x*) = 0.

Existence of global minima can be guaranteed under the assumptions
of the following proposition which is a direct consequence of Weierstrass’
theorem (a continuous function attains a global minimum over a compact
set).
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Proposition 1.6: If f is continuous over R" and f(x;) = o for every
sequence {x,} such that |x,| — oo, or, more generally, if the set {x| f(x) < o}
is nonempty and compact for some o € R, then there exists a global minimum
for (UP).

1.3.1 Convergence Analysis of Gradient Methods

We assume, without further mention throughout the remainder of Section
1.3, that fe C* over R". The reader can easily make appropriate adjustments
if fe C*! over an open subset of R" only.

Most of the known iterative algorithms for solving (UP) take the form

Xpe1 = Xk + o4 dy,
where if Vf (x;) # O, d, is a descent direction, i.e., satisfies
dVf(x) <0 if Vi(x) #0,
d,=0 if Vf(x) =0.

The scalar «, is a positive stepsize parameter. We refer to such an algorithm
as a generalized gradient method (or simply gradient method). Specific
gradient methods that we shall consider include the method of steepest
descent [d, = —Vf(x,)] and scaled versions of it, Newton’s method, the
conjugate gradient method, quasi-Newton methods, and variations thereof.
We shall examine several such methods in this section. For the time being,
we focus on the convergence behavior of gradient methods. Rate of con-
vergence issues will be addressed in the next subsection.

Stepsize Selection and Global Convergence

There are a number of rules for choosing the stepsize a; [assuming
Vf(x,) # 0]. We list some that are used widely in practice:

(a) Minimization rule: Here a, is chosen so that
f(x + o4dy) = min f(x;, + ody).
a0
(b) Limited minimization rule: A fixed number s > 0 is selected and o,
is chosen so that
f(xk + akdk) = min f(xk + adk)'
ael0.s]
(c) Armijo rule: Fixed scalars s, , and ¢ with s >0, f€(0, 1), and
o €(0,2) are selected, and we set o = f™s, where my is the first nonnegative
integer m for which

fo) —fGa + Bsdy) = —af"sVf (xi) di,
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ie,m=0,1,...are tried successively until the inequality above is satisfied
for m = m,. (A variation of this rule is to use, instead of a fixed initial stepsize
s, a sequence {s,} with s, > 0 for all k. But this case can be reduced to the
case of a fixed stepsize s by redefining the direction d, to be d, = (s/s)dy.)

(d) Goldstein rule: A fixed scalar ¢ € (0, 1) is selected, and «, is chosen to
satisfy

SO+ aedy) — f(xi)
ST a4, ST

It is possibleto show that if f is bounded below there exists an interval of
stepsizes o, for which the relation above is satisfied, and there are fairly
simple algorithms for finding such a stepsize through a finite number of
arithmetic operations. However the Goldstein rule is primarily used in
practice in conjunction with minimization rules in a scheme whereby an
initial trial stepsize is chosen and tested to determine whether it satisfies
the relation above. If it does, it is accepted. If not, a (perhaps approximate)
line minimization is performed.
(e) Constant stepsize: Here a fixed stepsize s > 0 is selected and

Otk=S Vk

The minimization and limited minimization rules must be implemented
with the aid of one-dimensional line search algorithms (see, e.g., Luenberger,
1973; Avriel, 1976). In general, one cannot compute exactly the minimizing
stepsize, and in practice, the line search is stopped once a stepsize o, satisfying
some termination criterion is obtained. An example of such a criterion is
that o, satisfies simultaneously

Y] fa) = O + oedy) = — o0, Vf (x,) dy
and
2 IVf (i + adi)'die| < BIVF(xi)dil,

where ¢ and f are some scalars with ¢ € (0, 3) and S € (o, 1). If o, is indeed a
minimizing stepsize then Vf(x; + o.dp)'d, = of (x, + o4 d)/0x = 0, so (2) is
in effect a test on the accuracy of the minimization. Relation (1), in view of
Vf(x,)d, < 0, guarantees a function decrease. Usually ¢ is chosen very
close to zero, for example ¢ € [107°,107 1], but trial and error must be
relied upon for the choice of f. Sometimes (2) is replaced by the less stringent
condition

©)) Vi (xi + aedi)'dy = BV (xi)'d.

The following lemma shows that under mild assumptions there is an interval
of stepsizes o satisfying (1), (2) or (1), (3).
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Lemma 1.7: Assume that there is a scalar M such that f(x) > M for all
xeR" let 6e(0,1) and fe(s,1), and assume that Vf(x,)d, <O. There
exists an interval [c,,c,] with 0 < ¢; < c,, such that every a€[cy,c,]
satisfies (1) and (2) [and hence also (1) and (3)].

Proof: Define g(«) = f (x; + ad,). Note that dg(a)/do = Vf (x; + odi) dy.
Let B be such that ¢ < < f, and consider the set A defined by

{ >0’ ﬁag(O) dg(e) <0}

“oa
Since g(«) is bounded below and dg(0)/da = Vf(x,)'d) < Oitis easily seen that
A is nonempty. Let
& = min{o|a € A}.
Clearly & > 0 and it is easy to see using the fact § < B that
og(@) _ » 59(0)

@ < pgE<0, Vaeldl
and there exists a scalar ¢, € (0, &) such that
ag(a
WO 197 (o + Y] < BV 1
- ﬁ’ag(o) . Voae[@—0.,8+ 5]
O
We have from (4)
0 s
g(a)—g(0)+f B0 e < g0) + B2 < 40) + 025,
or equivalently

fOa) — f(x + Gdy) > — 08Vf (x,) dy.
Hence there exists a scalar 6, € (0, &) such that
fGa) = fCu + ady) = —ooVf (x)dy,  Vae[s — 05,8+ 5]

Take 6 = min{d,, d,}. Then for all « in the interval [& — J, & + &] both
inequalities (1) and (2) are satisfied. Q.ED.

In practice a line search procedure may have to be equipped with various
mechanisms that guarantee that a stepsize satisfying the termination criteria
will indeed be obtained. We refer the reader to more specific literature for
details. In all cases, it is important to have a reasonably good initial stepsize
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(or equivalently to scale the direction d, in a reasonable manner). We discuss
this in the next paragraph within the context of the Armijo rule.

The Armijo rule is very easy to implement and requires only one gradient
evaluation per iteration. The process by which o, is determined is shown in
Fig. 1.1. We start with the trial point (x; + sd,) and continue with (x, + fsd,),
(xx + B3sdy), ... until the first time that f™s falls within the set of stepsizes «
satisfying the desired inequality. While this set need not be an interval, it
will always contain an interval of the form [0, §] with 6 > 0, provided
Vf(x,)d, <0. For this reason the stepsize «, chosen by the Armijo rule is
well defined and will be found after a finite number of trial evaluations of
the value of f at the points (x; + sdy), (xx + Bsdy), ... . Usually ¢ is chosen
close to zero, for example, o € [107°, 107 1]. The scalar § is usually chosen
from 1 to 10~ ! depending on the confidence we have on the quality of the
initial stepsize s. Actually one can always take s = 1 and multiply the
direction d, by a scaling factor. Many methods incorporate automatic
scaling of the direction d,, which makes s = 1a good stepsize choice (compare
with Proposition 1.15 and the discussion on rate of convergence later in this
section). If a suitable scaling factor for d, is not known, one may use various
ad hoc schemes to determine one. A simple possibility is to select a point &
on the line {x, + ad,|o > 0}, evaluate f(x, + &d,), and perform a quadratic

STEPSIZE a,

SET OF ACCEPTABLE / UNSUCCESSFUL TRIAL
STEPSIZES STEPSIZES
N’I
0 ¥ " N
st ' Bs S a

\{f(xk+adk)—f(xk)}

avi(x )

k

FIG. 1.1 Line search by the Armijo rule
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interpolation on the basis of f(x,), Vf(x,)d, = 0f (x; + ady)/0x],=o, and
f(xi + ady). If & minimizes the quadratic interpolation, d, is replaced by
d, = &d,, and an initial stepsize s = 1 is used.

The constant stepsize rule is the simplest. It is useful in problems where
evaluation of the objective function is expensive and an appropriate constant
stepsize value is known or can be determined fairly easily. Interestingly
enough, this is the case in the method of multipliers as we shall explain in the
next chapter.

We now introduce a condition on the directions d, of a gradient method.

Definition: Let {x,} be a sequence generated by a gradient method
Xp+1 = X + od,. We say that the sequence {d,} is uniformly gradient
related to {x,} if for every convergent subsequence {x,}x for which

) lim Vf(x,) # 0
ek
there holds
6) 0 < lim inf | Vf(x,)'d, ]|, lim sup|d,| < oo.
k— k—
keK ke K

In words, {d,} is uniformly gradient related if whenever a subsequence
{Vf(x,)}x tends to a nonzero vector, the corresponding subsequence of
directions d is bounded and does not tend to be orthogonal to Vf(xy).
Another way of putting it is that (5) and (6) require that d, does not become
“too small” or “too large” relative to Vf(x,) and the angle between d, and
Vf (x,) does not get “too close” to /2. Two examples of simple conditions
that, if satisfied for some scalars ¢; > 0,¢, > 0, p; > 0,and p, > Oand all k,
guarantee that {d,} is uniformly gradient related are

@) il < VDI, eIV < =V (x)'dy;
(®) di = —DVf (x),
with D, a positive definite symmetric matrix satisfying
IV (xo)lP |z < 2Dyz < | Vf () I2|z]> Y zeR™

For example, in the method of steepest descent where D, = I, this condition
is satisfied if we take ¢; = ¢, = 1,p; = p, =0.
We have the following convergence result:

Proposition 1.8: Let {x,} be a sequence generated by a gradient method
Xx+1 = X + o d, and assume that {d,} is uniformly gradient related and
o, is chosen by the minimization rule, or the limited minimization rule,
or the Armijo rule. Then every limit point of {x,} is a critical point.
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Proof: Consider first the Armijo rule. Assume the contrary, ie., that
% is a limit point with Vf(X) # 0. Then since {f(x,)} is monotonically
decreasing and f is continuous, it follows that {f(x,)} converges to f(X).
Hence,

[f () — f(+1)] = 0.

By the definition of the Armijo rule, we have

f) = f(esr 1) = — o Vf (x) dy.
Hence, o,Vf(x,)d, — 0. Let {x,}x be the subsequence converging to X.
Since {d,} is uniformly gradient related, we have

lim inf | Vf (x;)'d,] > O,
k— o
keK

and hence,
{ox — 0.

Hence, by the definition of the Armijo rule, we must have for some index
k>0

(D ) =S+ @/Pdi] < —o(/PVf(x)de  YkeK, k=k;

i.e., the initial stepsize s will be reduced at least once for all ke K, k > k.
Denote

px = di/|dxl, & = oy |dy|/P.

Since {d,} is uniformly gradient related, we have lim supy_. o, xex |di| < 0,
and it follows that

{4}k = 0.

Since |p;| = 1 for all k € K, there exists a subsequence {p;}z of {px}x such
that {p,}zx — P where p is some vector with |p| = 1. From (7), we have

F(x0) _fExk + % Pr) <
Ay

—O'Vf(xk)’[)k Vk € I_{, k 2 E

®

Taking limits in (8) we obtain
—Vf(x)p < —aVf(X)Pp or 0< (1 —aVf(X)p.
Since ¢ < 1, we obtain
(€] 0 < Vi(x)P.
On the other hand, we have

=V pe = —Vf (xi)di/1dyc]-
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By taking the limit as ke K, k — o,

lim inf | Vf () d|

: 0,
imsup|d,]

-VfX)p =

which contradicts (9). This proves the result for the Armijo rule.

Consider now the minimization rule, and let {x,}, converge to X with
Vf(x) # 0. Again we have that {f(x,)} decreases monotonically to f(x).
Let X, ., be the point generated from x, via the Armijo rule, and let &, be
the corresponding stepsize. We have

SO = fae1) 2 f(x) = f(Kis 1) = —0&Vf (x)dy.

By simply replacing o, by &, and repeating the arguments of the earlier
proof, we obtain a contradiction. In fact the line of argument just used
establishes that any stepsize rule that gives a larger reduction in objective
function value at each step than the Armijo rule inherits its convergence
properties. This proves also the proposition for the limited minimization
rule. Q.E.D.

Similarly the following proposition can be shown to be true. Its proof
is left to the reader.

Proposition 1.9: The conclusions of Proposition 1.8 hold if {d,} is
uniformly gradient related and ¢ is chosen by the Goldstein rule or satisfies
(1) and (2) for all k.

The next proposition establishes, among other things, convergence for
the case of a constant stepsize.

Proposition 1.10: Let {x,} be a sequence generated by a gradient
method x, ,, = x;, + o d,, where {d,} is uniformly gradient related. Assume
that for some constant L > 0, we have

(10) IV/(x) = Vf(WI < L|x —y| Vx,yeR’,
and that there exists a scalar ¢ such that for all k we have d, # 0 and

2 — & |Vf(xy)dy|
L ldl®

(11) O<e<o<

Then every limit point of {x,} is a critical point of f.

Note: If {d;} is such that there exist ¢,, ¢, > 0 such that for all k we
have

(12) “Vi()de 2 ¢ IVf(x) %, el V(3 = [del,



1.3 UNCONSTRAINED MINIMIZATION 27

then (11) is satisfied if for all k we have
(13) 0<e<a <(2—¢c/Le,.

For steepest descent [d, = — Vf(x,)] in particular, we can takec; =c, =1,
and the condition on the stepsize becomes

O<e<o <(2-—¢)L

Proof: We have the following equality for o > 0,

fOa + ady) = f(a) + aVf (x)di + J:[Vf (% + tdi) — Vf(x)]'dy .
By using (10), we obtain

fa + ady) — f(xi) < aVf (x)'dy + J:Wf(’% + tdy) — Vf(xi)| || dt

< aVf(x)dy + J tL|d,|* dt
0

= o[ — |V (x)'de| + 3oL |di|?].

From (11), we have o, > ¢ and 2o L|d, > — |Vf(x)'di] < —3&|Vf (xi)'del.
Using these relations in the inequality above, we obtain

F0) — f o+ o) = 4621V (x) d]

Now if a subsequence {x,}x converges to a noncritical point X, the above
relation implies that |Vf(x,)d;| — 0. But this contradicts the fact that
{d,} is uniformly gradient related. Hence, every limit point of {x,} is critical.
Q.E.D.

Note that when d, = —D,Vf(x,) with D, positive definite symmetric,
relation (12) holds with

= 172
¢ =7 cZ=r’

if the eigenvalues of D, lie in the interval [, I'] for all k. It is also possible to
show that (10) is satisfied for some L > 0, if fe C* and the Hessian V3fis
bounded over R". Unfortunately, however, it is difficult in general to obtain
an estimate of L and thus in most cases the interval of stepsizes in (11) or
(13) which guarantees convergence is not known a priori. Thus, experi-
mentation with the problem at hand is necessary in order to obtain a range
of stepsize values which lead to convergence. We note, however, that in the
method of multipliers, it is possible to obtain a satisfactory estimate of L
as will be explained in Chapter 2.
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Gradient Convergence

The convergence results given so far are concerned with limit points
of the sequence {x,}. It can also be easily seen that the corresponding sequence
{f(x)} will converge to some value whenever {x,} has at least one limit
point and there holds f(x;+,) < f(x,) for all k. Concerning the sequence
{Vf(x1)}, we have by continuity of Vf that if a subsequence {x,}x converges
to some point X then {Vf(x,)}x — Vf(X). If X is critical, then {Vf(x;)}x — O.
More generally, we have the following result:

Proposition 1.11: Let {x,} be a sequence generated by a gradient
method x, . ; = X, + o d,, which is convergent in the sense that every limit
point of sequences that it generates is a critical point of f. Then if {x,} is a
bounded sequence, we have Vf(x,) — 0.

Proof: Assume the contrary, i.e., that there exists a subsequence {x;}x
and an ¢ > 0 such that |Vf(x,)| > ¢ for all ke K. Since {x;}x is bounded,
it has at least one limit point X and we must have |Vf(X)| > e. But this
contradicts our hypothesis which implies that X must be critical. Q.E.D.

The proposition above forms the basis for terminating the iterations
of gradient methods. Thus, computation is stopped when a point x;z is ob-
tained with

(14 IVf(xpl <,

where ¢ is a small positive scalar. The point x; is considered for practical
purposes to be a critical point. Sometimes one terminates computation
when the norm of the direction d, becomes too small; i.c.,

(15) ld;| < e.
If d, satisfies
e VI Pt < lde] < el VF(x) 172

for some positive scalars ¢y, ¢,, py, p,, and all k, then the termination cri-
terion (15) is of the same nature as (14). Unfortunately, it is not known a
priori how small one should take ¢ in order to guarantee that the final point
xg is a “good” approximation to a stationary point. For this reason it is
necessary to conduct some experimentation prior to settling on a reasonable
termination criterion for a given problem, unless bounds are known (or
can be estimated) for the Hessian matrix of f (see the following exercise).

Exercise: Let x* be a local minimum of f and assume that for all x
in a sphere S(x*; d) we have, for some m > 0and M > 0,

m|z|* < ZV*f(x)z < M|z]* VzeR™
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Then every x € S(x*; 8) satisfying | Vf(x)| < ¢ also satisfies
Ix — x*| < ¢g/m,  f(x) = f(x*) < Me?/2m?.

Local Convergence

A weakness of the convergence results of the preceding subsection is
that they do not guarantee that convergence (to a single point) of the gen-
erated sequence {x,} will occur. Thus, the sequence {x,} may have one,
more than one, or no limit points at all. It is not infrequent for a gradient
method to generate an unbounded sequence {x;}. This will typically occur
if the function f has no critical point or if f decreases monotonically as
|x| = oo along some directions. However {x,} will have at least one limit
point if the set {x| f(x) < f(xo)} is bounded or more generally if {x;} is a
bounded sequence.

On the other hand, practical experience suggests that a sequence gener-
ated by a gradient method will rarely have more than one critical limit
point. This is not very surprising since the generated sequence of function
values {f(x,)} is monotonically nonincreasing and will always converge to
a finite value whenever {x,} has at least one limit point. Hence, any two
critical limit points, say X and %, of the sequence {x,} must simultaneously
satisfy Vf(X) = Vf(%) = 0 and f(X) = (%) = lim_, £ (x;)- These relations
are unlikely to hold if the critical points of f are “jsolated” points. One may
also prove that if f has a finite number of critical points and the Armijo
rule or the limited minimization rule is used in connection with a gradient
method with uniformly gradient-related direction sequence {d,}, then the
generated sequence {x,} will converge to a unique critical point provided
that {x,} is a bounded sequence. We leave this as an exercise for the reader.

The following proposition may also help to explain to some extent why
sequences generated by gradient methods tend to have unique limit points.
It states that strong local minima tend to attract gradient methods.

Proposition 1.12:  Let fe C* and {x,} be a sequence satisfying f (X +1) <
f(x;) for all k and generated by a gradient method x4 ; = X + %ds which
is convergent in the sense that every limit point of sequences that it generates
is a critical point of f. Assume that there exist scalars s > 0 and ¢ > 0 such
that for all k there holds «, < s and |d,| < ¢|Vf(x,)|. Then for every local
minimum x* of f with V2f(x*) > 0, there exists an open set L containing
x* such that if x; € L for some k > 0 then x, € L for all k > k and {x;}—x*.
Furthermore, given any scalar & > 0, the set L can be chosen so that
L <= S(x*;¢).

Note: The condition &, < s is satisfied for the Armijo rule and the
limited minimization rule. The condition |di| < c|Vf(x;)| is satisfied if
d, = —D,Vf(x,) with the eigenvalues of D uniformly bounded from above.
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Proof: Let x* be a local minimum with V2f(x*) positive definite. Then
there exists & > 0 such that for all x with |x — x*| < &, the matrix V3f(x)
is also positive definite. Denote

y= min z’V3f(x)z, T = max zV*f(x)z.
s i
We have y > O and I' > 0. Consider the open set
L = {x]lx — x*| <& f(x) <f(x*) + $y[E/(1 + sc)]?}.

We claim that if x; € L for some k > 0 then x, € L for all k > k and further-
more x; — x*.
Indeed if x; € L then by using Taylor’s theorem, we have

W xe — x* 2 < f(xp) — f(x*) < B/ + scT)]?
from which we obtain
(16) |xg — x*| < &/(1 + csI).
On the other hand, we have
Ixge1 — X*| =[xz — x* + odz| < |xg — x*| + agldg]
<|xz — x*| + sc|Vf(xp)|.

By using Taylor’s theorem, we have |Vf(xg)| < I'|xg — x*| and substituting
in the inequality above, we obtain

[Xg41 — X*] < (1 + scD)|xzp — x*|.
By combining this relation with (16), we obtain
[Xg+q1 — x*| < &
Furthermore, using the hypothesis /' (x, ;) < f(x,) for all k, we have
e 1) < fOx) < fOx*) + [E/(1 + seD)]2

It follows from the above two inequalities that xz.; €L and similarly
x; € L for all k > k. Let L be the closure of L. Since L is a compact set, the
sequence {x;} will have at least one limit point which by assumption must
be a critical point of . Now the only critical point of f within L is the point x*
(since fis strictly convex within L). Hence x; — x*. Finally given any ¢ > 0,
we can choose & < ¢ in which case L < S(x*; ¢). Q.E.D.

Rate of Convergence—Quadratic Objective Function

The second major question relating to the behavior of a gradient method
concerns the speed (or rate) of convergence of generated sequences {x,}.
The mere fact that x, converges to a critical point x* will be of little value in
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practice unless the points x; are reasonably close to x* after relatively few
iterations. Thus, the study of the rate of convergence of an algorithm or a
class of algorithms not only provides useful information regarding compu-
tational efficiency, but also delineates what in most cases are the dominant
criteria for selecting one algorithm in favor of others for solving a particular
problem.

Most of the important characteristics of gradient methods are revealed
by investigation of the case where the objective function is quadratic. Indeed,
assume that a gradient method is applied to minimization of a function
f:R" - R, fe C?, and it generates a sequence {x,} converging to a strong
local minimum x* where

Vf(x*) = 0, V3f(x*) > 0.
Then we have, by Taylor’s Theorem,
F(x) = f(x¥) + Hx — x¥Y VA (x*)x — x*) + o(lx — x* %),

where o(|x — x*|?)/|x — x*|* > 0 as x — x*. This implies that f can be
accurately approximated near x* by the quadratic function

¥ + 5(x = x*)VH () = x5).
We thus expect that rate-of-convergence results obtained through analysis
of the case where the objective function is the quadratic function above
have direct analogs to the general case. The validity of this conjecture can
indeed be established by rigorous analysis and has been substantiated by

extensive numerical experimentation.
Consider the quadratic function

f(x) = 5(x — x*YQ(x — x*)
and the gradient method

an Xp+1 = Xk — oD,
where
(18) g = Vf(x) = Q(x — x*).

We assume that Q and D, are positive definite and symmetric. Let
M, = max eigenvalue of (Di’?QD;'?),
m, = min eigenvalue of (D{*QD;"?).

We have the following proposition:

Proposition 1.13:  Consider iteration (17), and assume that o is chosen
according to the minimization rule

[ — o, Dygi) = min [ — oDy gi)-

a=0
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Then
19) S+ 1) < (Mk ) S Gx)-

Proof: The result clearly holds if g, = 0, so we assume g, # 0. We
first compute the minimizing stepsize «,. We have

(d/do) f (x; — aDygi) = —gi D Q(xx — aDygy — x*)
= —giDrgi + 29i D, QD gy
Hence, by setting this derivative equal to zero, we obtain

(20) % = 9iDigi/gi D ODy G-
We have, using (17) and (20),

f v 1) = f — ouDigi) = 3(x, — x* — %Dy gi) Q(xic — x* — a Dyegy)
= 3% — x*)Y Q0 — x*) + 3029 D, OD, gi — %94 D O — X*)
= f(x) + 34¢9. D ODygx — % gi Dy,

and finally

1 (ngkgk)2
21 ‘1 _ -
(21) SOr1) = f0a) 29.D:0Dyds’

Also we have
(22) f(x) = 3% — x*)Q(x, — x*)
= 3(q — x*)QD{*(Di*QDY*) "' DI Q(x, — x*)
= 29:.Di"*(D;*QD/*)~'Di/%g,
Setting y, = D;’g,, L, = D}/>QD}/?, and using (21) and (22), we obtain

(y;‘}’k)z
23 k+ = - —1
@ TOns) =100 = G i T
Oive)? ]
=11 - 3
[ GiLeyo0i L o | ¥

We shall now need the following lemma, a proof of which can be found in
Luenberger (1973, p. 151).

Lemma (Kantorovich Inequality): Let L be a positive definite symmetric
n x n matrix. Then for any vector y € R", y # 0, there holds

Oy 4Mm
L)L)~ (M + m)*
where M and m are the largest and smallest eigenvalues of L.
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Returning to the proof of the proposition, we have by using Kantorovich’s
inequality in (23)

aM M, — m\?
f o) < [1 - Mf%]ﬂxk) - (M—+—Z> fGx).  QED.

From (19), we obtain, assuming g, # 0 for all k,

. f(xk+1) . <Mk - mk)2
lim sup ——=* < lim sup | —/—— £ 8
k—»oop fx0) k—-oop M, + my 4

If B < 1 (as will be the case if {m/M .} is bounded away from zero), it follows
that {f(x,)} converges at least Q-linearly with convergence ratio f (see
Section 1.2). If = 0, then the convergence rate is superlinear. If p < 1, then
the sequence {f(x;+1)} 18 majorized for all k sufficiently large by any geo-
metric progression of the form gB*, where ¢ >0, B > B (see Section 1.2).
If y is the minimum eigenvalue of Q, we have

Plxe = x*12 < f(x)

so the same conclusion can be drawn for the sequence {1% — x* |2}. Relation
(19) also indicates that the iteration x4, = Xx — 0% Dygx yields a large
relative reduction in objective function value if My/my ~ 1. This shows that
in order to achieve fast convergence, one should select Dy so that the eigen-
values of DL/2QD}/? are close together, such as when D ~ Q™ 1, and this is
the main motivation for introducing the matrix D instead of taking D, = I.
If in particular D, = Q™', then we obtain M, = m, = 1 and, from (19),
f(x¢+1) = 0 which implies x,,; = x*; i.e., convergence to the minimum is
attained in a single iteration.

When the ratio M,/m, is much larger than unity, then (19) indicates that
convergence can be very slow. Actually, the speed of convergence of {x;}
depends strongly on the starting point x,. However, if Dy is constant, it is
possible to show that there always exist “worst” starting points for which
(19) is satisfied with equality for all k. [The reader may wish to verify this by
considering the case D, = I, f(x) = IS yx,where0 <y, <y, < =
7,, and the starting point xo = (y7 ', 0, ..., 0, 7 H.]

Similar convergence rate results can be obtained for the case of the limited
minimization rule. For example, notice that from (20), we obtain

o = Yiy/y Di*ODi i
where y, = Di'?g,. Hence, we have o < 1/my, and (19) also holds when o
is chosen by the limited minimization rule

[l — o D gi) = min f(x, — aDygy)

O0<a<s
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provided that
s> 1/my, k=0,1,....

Qualitatively, similar results are also obtained when other stepsize rules
are used, such as a constant stepsize. We have the following proposition:

Proposition 1.14: Consider the iteration x,,, = x, — oDy gy For all
o > 0 and k, we have

Q4 Oy — X*)D (X y — x*)

< max{| 1 — oem|%, |1 — o M| }(x, — x*) D}, — x*).
Furthermore, the right-hand side of (24) is minimized when
(25) % = 2/(my + M,),
and with this choice of «,, we obtain
(26)  (xker — x*YD Moy — x¥) < (H)Z(xk = x*) D (% — x*).

Proof: We have ‘
X1 — X* = — x* — o4 Dygp = x; — x* — o D, Q(x; — x¥).
A straightforward calculation yields
(ke1 = X*Y D Mgy — x¥)
= (s = x*)'Dy V(I = %, DY2QDI)D; 2, — x*).
Hence,
ey = XD (X1 — x¥) < AR5 — x*) Dy (g — x¥),

where A, is the maximum eigenvalue of G, = (I — o, D}?QD}?). The
eigenvalues of G, are 1 — oy e,(D;/>QD}/?),i = 1,..., n, where e(D}/>QD}/?)
is the ith eigenvalue of D;/2QD;". From this we obtain by an elementary
calculation

[Ag| = max{|1 — amy|, |1 — o, M, |},

and (24) follows. The verification of the fact that o, as given by (25) minimizes
the right-hand side of (24) is elementary and is left to the reader. Q.E.D.
The result shows that if D, = D for all k where D is positive definite and
lim sup max{|1 — qm|? |1 — o, M|?} = B,
k— o0

where m, M are the smallest and largest eigenvalues of (D/2QD'/?), then
{(xi = x*)D™!(x, — x*)} converges at least linearly with convergence
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ratio B provided 0 < f < 1.If ¢ > 0 is the smallest eigenvalue of D™ ' and I’
is the largest eigenvalue of 0, we have

(/D) f(xi) < Felxy = x* < 306 — x*YD ™ (xx — x*).

Hence, if0 < f < 1, we have that { f(x,)} and {|x, — x*|*} will also converge
faster than linearly with convergence ratio f. The important point is that

[compare with (26)]
_ 2
(M m) <8
M+m

and hence if M/m is much larger than unity, again the convergence rate can
be very slow even if the optimal stepsize o, = 2/(m, + M) (which is generally
unknown) were to be utilized. From this, it follows again that D, should
be chosen as close as possible to Q™! so that M, ~ m; ~ 1. Notice that
if D, has indeed been so chosen, then (25) shows that the stepsize o, = 1
is a good choice. This fact also follows from (20), which shows that when
D, ~ Q™! then the minimizing stepsize is near unity.

Rate of Convergence—Nonquadratic Objective Function

One can show that our main conclusions on rate of convergence carry over
to the nonquadratic case for sequences converging to strong local minima.
Let fe C? and consider the gradient method

(27) X1 = X — D V(%)

where D, is positive definite symmetric. Consider a generated sequence
{x,} and assume that

(28) X = x%, Vf(x*) =0, V2f(x*) > 0,

and that x, # x* for all k. Then it is possible to show the following:

(a) If a, is chosen by the line minimization rule there holds

. e 1) = f(x¥) : M, — m\?
@ imap G D <t ([

where M, and m, are the largest and smallest eigenvalues of Dy/?Vf (x*)D;/>.
(b) There holds

lim sup (cx+1 — x*)YDy l(xk+1 — x*)
koo (o — X*Y D (X — x¥)

< lim sup max{|1 — om|?, |1 — o M, |*}.
k— o0
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The proof of these facts involves essentially a repetition of the proofs of
Propositions 1.13 and 1.14. However, the details are somewhat more tech-
nical and will not be given.

When D, — V?f(x*)~!, then (29) shows that the convergence rate of
{f(xx) — f(x*)} is superlinear. A somewhat more general version of this
result for the case of the Armijo rule is given by the following proposition:

Proposition 1.15: Consider a sequence {x;} generated by (27) and
satisfying (28). Assume further that Vf(x,) # O for all k and
Dy = VA (x*) IV (x|
30 lim = 0.
) o VAl
Then if «, is chosen by means of the Armijo rule with initial stepsize s = 1,
we have

. x — x*
1lmLi=0,

koo Xk — X¥|

and hence {|x, — x*|} converges superlinearly. Furthermore, there exists
an integer k > 0 such that we have o = 1 for all k > k (i.e., eventually no
reduction of the initial stepsize will be taking place).

Proof: We first prove that there exists a k > 0 such that for all k > k
we have o, = 1. By the mean value theorem we have

£ = fTx — DV ()] = VF (i) DiVf () — VS () DiV2f () DiVS (%10,

where X, is a point on the line segment joining x; and x, — D, Vf(xy). It
will be sufficient to show that for k sufficiently large we have

VI (x)' DiVf (i) — %Vf (-xk),DkVZf (XD Vf (x) = aVf (x) D VS (i)
or equivalently, by defining p, = Vf(x.)/|Vf (x)1,
(31) (1 = O)piDiPe = 3Pk DiVf (X)Dycpic-

From (28), (30), we obtain D,Vf(x,) — 0. Hence, x,, — D, Vf(x;) — x*, and it
follows that X, — x* and V3£ () — V2f(x*). Now (30) is written as

Dypi = [V (x*)] 'px + Br

where {f;} denotes a vector sequence with f, — 0. By using the above
relation and the fact that V3f(X,) — V3f(x*), we may write (31) as

(1 = )PV ()] o = 2oV )17 P + e
where {y,} is some scalar sequence with y, — 0. Thus (31) is equivalent to
3 = OV ] P = i
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Since £ — ¢ > 0, |px| = 1, and V?f(x*) > 0, the above relation holds for k
sufficiently large, and we have o, = 1 for k > k where k is some index.
To show superlinear convergence we write, for k > k,

(32) Xpr1 — X* =X, — x* = D Vf(x).
We have, from (30) and for some sequence {§,} with 5, — 0,
(33) DYVf () = VA (x*)71Vf (%) + [V (%) 0
From Taylor’s theorem we obtain

Vi (x) = V2 (x*)(x — x*) + o(|x; — x*|)
from which

[V (x*)]7'Vf () = X — x* + o(]x, — x*]),
VI (x| = O(x, — x*|).
Using the above two relations in (33), we obtain
DVf (x) = x;, — x* + o(|x — x*[)
and (32) becomes
Xp+1 — X* = o(|x;, — x*|),

from which
X — x¥| . o(]x, — x*[)
Im ————— = lim ——==0. Q.E.D.
I b el koo Xk — X*|

We note that one can prove that Eq. (30) is equivalent to

(34) lim 12" = VY DI ()l _

k= oo | D Vf (x|
assuming (28) holds. Equation (34) has been used by Dennis and Moré (1974)
in the analysis of quasi-Newton methods and is sometimes called the Dennis-
Moré condition (see also McCormick and Ritter, 1972).

A slight modification of the proof of Proposition 1.15 shows also that
its conclusion holds if o, is chosen by means of the Goldstein rule with
initial trial stepsize equal to unity. Furthermore for all k sufficiently large,
we shall have o, = 1 (i.e., the initial stepsize will be acceptable after a certain
index).

Several additional results relating to the convergence rate of gradient
methods are possible. The main guideline which consistently emerges from
this analysis (and which has been supported by extensive numerical ex-
perience) is that in order to achieve fast convergence of the iteration

X1 = Xx — % DEV(x),

0
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one should try to choose the matrices Dy as close as possible to [V*f(x*)]™* so
that the corresponding maximum and minimum eigenvalues of D{/*V*f (x*)D;/?
satisfy M, ~ 1 and m ~ 1. This fact holds true for all stepsize rules that we
have examined. Furthermore, when M, ~ 1 and m, ~ 1, the initial stepsize
s = 1isagood choice for the Armijo rule and other related rules or as a starting
point for one-dimensional minimization procedures in minimization stepsize
rules.

Spacer Steps in Descent Algorithms

Often in optimization problems, we utilize complex descent algorithms
in which the rule used to determine the next point may depend on several
previous points or on the iteration index k. Some of the conjugate direction
algorithms to be examined in the next chapter are of this type. Other al-
gorithms may represent a combination of different methods and switch
from one method to the other in a manner which may either be prespecified
or may depend on the progress of the algorithm. Such combinations are
usually introduced in order to improve speed of convergence or reliability.
However, their convergence analysis can become extremely complicated.
It is thus often of value to know that if in such algorithms one inserts, perhaps
irregularly but infinitely often, an iteration of a convergent algorithm such
as steepest descent, then the theoretical convergence properties of the overall
algorithm are quite satisfactory. Such an iteration will be referred to as a
spacer step. The related convergence result is given in the following proposi-
tion. The only requirement imposed on the iterations of the algorithm other
than the spacer steps is that they do not increase the value of the objective
function.

Proposition1.16:  Consider a sequence {x,} such that

fCae) <fC) VYk=0.1,....

Assume that there exists an infinite set K of nonnegative integers for which
we have

Xk+1 =xk+akdk VkGK,

where {d, } ¢ is uniformly gradient related and o, is chosen by the minimization
rule, or the limited minimization rule, or the Armijo rule. Then every limit
point of the subsequence {x,} is a critical point.

The proof requires a simple modification of the proof of Proposition
1.8 and is left to the reader. Notice that if f is a convex function, it is possible
to strengthen the conclusion of the proposition and assert that every limit
point of the whole sequence {x,} is a global minimum of f.
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1.3.2 Steepest Descent and Scaling

Consider the steepest descent method
Xe+1 = X — 4V (xi),

and assume that fe C2. We saw in the previous section that the convergence
rate depends on the eigenvalue structure of the Hessian matrix V2. This
structure in turn depends strongly on the particular choice of variables x
used to define the problem. A different choice may change substantially the
convergence rate.

Let T be an invertible n x n matrix. We can then represent points in
R" either by the vector x which enters in the objective function f(x), or by
the vector y, where

(35 Ty = x.
Then the problem of minimizing f'is equivalent to the problem
(36) minimize h(y) £ f(Ty)
subject to yeR"
If y* is a local minimum of h, the vector x* = Ty* is a local minimum of f.
Now steepest descent for problem (36) takes the form
(37 V1 = Vi — aVh(yi) = yi — o0 T'Vf (Typ).
Multiplying both sides by T and using (35) we obtain the iteration in terms
of the x variables
Xe+1 = X — 04 TT'Vf(xy).
Setting D = TT’, we obtain the following scaled version of steepest descent
(38) Xe+1 = X — o4 DVF(x)

with D being a positive definite symmetric matrix. The convergence rate
of (37) or equivalently (38), however, is governed by the eigenvalue structure
of V2h rather than of V. We have V?h(y) = T'V*f(Ty)T, and if T is sym-
metric and positive definite, then T = D*/? and

V2h(y) = DY2V3f(x)D*2,

When D ~ [V3f(x)]~!, we obtain V2h(y) ~ I, and the problem of mini-
mizing h becomes well scaled and can be solved efficiently by steepest
descent. This is consistent with the rate of convergence results of the previous
section.

The more general iteration

Xee1 = Xk — %DV (x)



40 . INTRODUCTION

with D, positive definite may be viewed as a scaled version of the steepest
descent method where at each iteration we use different scaling for the
variables. Good scaling is obtained when D, ~ [V3f(x*)]~?!, where x* is a
local minimum to which the method is assumed to converge ultimately.
Since V3f(x*) is unavailable, often we use D, = [V*f(x,)]~! or D =
[V3f(xo)]™ !, where these matrices are positive definite. This type of scaling
results in modified forms of Newton’s method. A less complicated form of
scaling is obtained when D is chosen to be diagonal of the form

d’l
with
d' ~ [ (x0)/(0x)* 17, i=1,...,m;

Le., the Hessian matrix is approximated by a diagonal matrix. The approxi-
mate inverse second derivatives d' are obtained either analytically or by
finite differences of first derivatives at the starting point x,,. It is also possible
to update the scaling factors d’ periodically. The scaled version of steepest
descent takes the form

Xk = xt — o d 0f (x,)/0x, i=1,...,n
While such simple scaling schemes are not guaranteed to improve the
convergence rate of steepest descent, in many cases they can result in spec-
tacular improvements. An additional advantage when using the simple
diagonal scaling device described above is that usually the initial stepsize

s =1 will work well for the Armijo rule, thus eliminating the need for
determining a range of good initial stepsize choices by experimentation.

1.3.3 Newton’s Method and Its Modifications

Newton’s method consists of the iteration
(39) Xer1 = % — %[V ()] VS (%),
assuming that [V3f(x,)] ! exists and that the Newton direction
de = — [V ()]~ 'V (x)

is a direction of descent (i.e., d;Vf(x;) < 0). This direction is obtained as the
solution of the linear system of equations

sz (i = —Vf(xy).
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As explained in the section on scaling, one may view this iteration as a
scaled version of steepest descent where the “optimal” scaling matrix
D, = [V*(x)]™ ! is utilized. It is also worth mentioning that Newton’s
method is “scale-free” in the sense that the method cannot be affected by a
change in coordinate system as is the case with steepest descent (Section 1.3.2).
Indeed if we consider a linear invertible transformation of variables x = Ty,
then Newton’s method in the space of the variables y is written as

Yek+1 = Yk — ak[Vﬁyf(Tyk)]_IVyf(Tyk) =Yk — O‘kT_IVZf(TJ’k)_ lVf(TYk),

and by applying T to both sides of this equation we recover (39).

When the Armijo rule is utilized with initial stepsize s = 1, then no
reduction of the stepsize will be necessary near convergence to a strong
minimum, as shown in Proposition 1.15. Thus, near convergence the method
takes the form

(40) Xk+1 = X — [sz ()17 1Vf (x40,

which will be referred to as the pure form of Newton’s method. A valuable
interpretation of this iteration is obtained by observing that x, ., ; as given
above minimizes the second-order Taylor’s series expansion of f around x;
given by

Julx) = (i) + V(e (x = xi) + 32(x = %'V (x)(x — x0).

Indeed by setting the derivative of f; equal to zero, we obtain

VAi(x) = Vf (xi) + Vf (e)(x — xi) = 0.

The solution of this equation is x,,, as given by Eq.(40). It follows that
when f is positive definite quadratic the pure form of Newton’s method
yields the unique minimum of f in a single iteration. Thus, one expects that
iteration (40) will have a fast rate of convergence. This is substantiated by
the following result which applies to Newton’s method for solving systems
of equations:

Proposition 1.17: Consider a mapping g: R" — R”, and let ¢ > 0 and
x* be such that geC! on S(x*;¢), g(x*) = 0, and Vg(x*) is invertible.
Then thereexistsa é > Osuch that if x, € S(x*; J), the sequence {x, } generated
by the iteration

Xe+1 = X — [Vg(x)]™ lg(xk)

is well defined, converges to x*, and satisfies x, € S(x*; 9) for all k. Further-
more, if x, # x* for all k, then

vk
41) lim LM_' =0;

k= o |xk - x*[
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ie., {|x, — x*|} converges Q-superlinearly. In addition given any r > 0, there
exists a §, > 0 such that if x, € S(x*; J,), then

(42) [xpe 1 — X*[ < rlx — x*,

(43) l9(xi+ )] < rlglxi)]-

If we assume further that for some L > 0 and M > 0, we have
(44a) [Vg(x) = Vg(y)| < L|x — y|  Vx,yeS(x*;e),
(44b) I[Vg(x)17' < M, Vx € S(x*; ¢),
then

[Xps, — x*| < ILM|x, — x*|? Vk=0,1,...,
and {|x, — x*|} converges Q-superlinearly with order at least two.

Proof: Let 6€(0,¢) and M > 0 be such that [Vg(x)] ™! exists for all
x € S(x*; 0) and

45) [[Vg(x)]1 <M V x € S(x*; 9).
If x, € S(x*; 9), we have

1
405 = L Valx* + i, — x*)] dt(x, — x*)

from which

(46)
Xpry — X* = x, — x* — [Vg(x,) ]~ "g(x,)

= [Vg(x) 1™ [Vg(a) (i — x*) — g(x)]

= [Vg(xk)']’l[Vg(xk)' - fo Vglx* + t(xe — x*)] dt](xk —x¥)

= [Vg(x1™* L {Vg(xi)' — Vglx* + 10 — x*)]'} de(x, — x*).

By continuity of Vg, we can take ¢ sufficiently small to ensure that

47) - IVg(x) — Vg(y)| <3M™1 V¥ x,yeS(x*;d).
Then from (45), (46), and (47), we obtain
(48)

1
X1 = x*| < [[Vg(x) 17 L IVg(x,) — Vglx* + 1(x, — x*)]'| dt [x; — x*
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and
|Xp1 — X*| < 3% — x*].
It follows that if x, € S(x*; 8) then x; € S(x*; &) for all k and x;, — x*. Equation

(41) then follows from (48).
We have

gix) = V&) (x — x*)  Vi=1...,n,

where %, is a vector lying in the line segment connecting x and x*. Therefore
by denoting Vg(%X) the matrix with columns Vg,(%;), we have

lg(x)* = (x — x*)'Vg(£)Vg(%) (x — x*).
Choose 9, > 0 sufficiently small so that Vg(X)Vg(X)' is positive definite
for all x with |x — x*| < J,, and let A > 0 and A > 0 be upper and lower
bounds to the eigenvalues of [Vg(%)Vg(%)']*/* for x € S(x*; 8,). Then
Ax — x*2 < (x — x*)Vg(R)Vg(R) (x — x*)
< A?|x — x*|? vV xeS(x*;0,)
Hence, we have
Ax — x*| < |g(x)| < Alx — x*| YV xeS(x*;0,).
Now from (48), it follows easily that given any r > 0, we can find a 6, € (0, 6,]
such that if x, € S(x*; 6,), then
IXpe1 — x| < (Ar/A)x — x*| < rlxg — x*,

thereby showing (42). Combining the last two inequalities we also obtain

lgCxi+ )| < rlglx)] YV xeS(x*;0,),

and (43) is proved.
If (44a) and (44b) hold, then from (48) we have

1 ML
[Xpeq1 — X[ < Mf Lt|x, — x*|dt|x;, — x*| = —2—|xk — x*|2
0
Q.E.D.

For g(x) = Vf(x), the result of the proposition applies to the pure form
of Newton’s method (40). Extensive computational experience suggests
that the fast convergence rate indicated in the proposition is indeed realized
in a practical setting. On the other hand, Newton’s method in its pure form
has several serious drawbacks. First, the inverse [V?f(x,)]~! may fail to
exist, in which case the method breaks down. This may happen, for example,
if f is linear within some region in which case V2f = 0. Second, iteration (40)
is not a descent method in the sense that it may easily happen that f (x4 ;) >
£ (). Third, the method tends to be attracted by local maxima just as much
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as it is attracted by local minima. This is evident from Proposition 1.17 where
it is assumed that Vg(x*) is invertible but not necessarily positive definite.

For these reasons, it is necessary to modify the pure form of Newton’s
method (40) in order to convert it to a reliable minimization algorithm.
There are several schemes by means of which this can be accomplished.
All these schemes convert iteration (40) into a gradient method with a uni-
formly gradient-related direction sequence, while guaranteeing that whenever
the algorithm gets sufficiently close to a point x* satisfying the second-order
sufficiency conditions, then the algorithm assumes the pure form (40) and
achieves the attendant fast convergence rate.

First Modification Scheme: This method consists of the iteration
Xk+1 = Xp + 0dy,

where o is chosen by the Armijo rule with initial stepsize unity (s = 1), and
d, is chosen by

(49) d = —[Vf ()1~ 'Vf (%),

if [V3f(x,)] ! exists and

(50) V) TV (1™ 1V (i) = eq |V (x|,
(51) e |V (x| = 1[IV ()17 'V (i) 1P

while otherwise
di = —DVf(xp).

The matrix D is some positive definite symmetric scaling matrix. The scalars
¢y, C2, P1, and p, satisfy

¢y >0, ¢y >0, p1 > 2, and p, > L

In practice ¢, should be very small, say 10~>, ¢, should be very large, say
10°, and p, and p, can be chosen equal to three and two, respectively.

It is clear, from Proposition 1.8, that a sequence {d,} generated by the
scheme above is uniformly gradient related and hence the resulting al-
gorithm is convergent in the sense that every limit point of a sequence that
it generates is a critical point of f. Now consider the algorithm near a local
minimum x* satisfying

Vi(x*) =0, V3(x*) > 0.

Then it is easy to see that for x, close enough to x*, the Hessian V3f(x,)
will be invertible and the tests (50) and (51) will be passed. Thus, d, will be
the Newton direction (49) for all x, sufficiently close to x. Furthermore,
from Propositions 1.12 and 1.15, we shall have x, — x*, and the stepsize
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o, will equal unity. Hence, if x, is sufficiently close to x*, then x,, — x*, and
the pure form of Newton’s method will be employed after some index, thus
achieving the fast convergence rate indicated in Proposition 1.17.

A variation of this modification scheme is given by the iteration

Xer1 = X + lody — (1 — 0)DVf (xi)],
where D is a positive definite matrix and d} is the Newton direction
& = —[Vf(x)]™ 'V (%),

if [V2f(x)]~ ! exists. Otherwise df = —DVf (). The stepsize o is chosen by
an Armijo-type rule with initial stepsize unity whereby «, = ™ and m,
is the first nonnegative integer m for which

S = fDx + Brdi(Bm] = —ap™Vf (el
where ¢ € (0, %), (0, 1), and
d(Bm) = rdy — (1 — B)DVS (xy)-
This is a line search along the curve of points of the form
z, = ofody — (1 — ®)DVf ()]

with a €[0,1]. For « = 1 we obtain the Newton direction, while as o — 0
the vector z,/o tends to the (scaled) steepest descent direction —DVf(x).
Assuming ¢ is chosen sufficiently small, one can prove similar convergence
and rate of convergence results as the ones stated earlier for this modified
version of Newton’s method.

Second Modification Scheme: Since calculation of the Newton direction
d, involves solution of the system of linear equations

sz (xd, = —Vf(x0),

it is natural to compute d, by attempting to form the Cholesky factorization
of V?f(x,) (see the preceding section). During the factorization process,
one can detect whether V2f(x,) is either nonpositive definite or nearly
singular, in which case V2f(x,) is replaced by a positive definite matrix of
the form F, = V*f(x,) + E,, where E, is a diagonal matrix. The elements
of E, are introduced sequentially during the factorization process, so that
at the end we obtain F, in the form F, = L, L;, where L, is lower triangular.
Subsequently d, is obtained as the solution of the system of equations
L,L;d, = —Vf(x), and the next point x,,; is determined from x,,; =
x, + o.dy, where oy is chosen according to the Armijo rule. The matrix E,
is such that the sequence {d,} is uniformly gradient related. Furthermore,
E, = 0 when x, is close enough to a point x* satisfying the second-order
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sufficiency conditions for optimality. Thus, near such a point, the method
is again identical to the pure form of Newton’s method and achieves the
corresponding superlinear convergence rate. The precise mechanization
of the scheme is as follows.

Let ¢ > 0, 1 > 0, and p > 0 denote fixed scalars and let af; denote the
elements of V3f(x,). Consider the i x i lower triangular matrices L}, i =
1, ..., n,defined recursively by the following modified Cholesky factorization
process (compare with Section 1.2):

Ll — ai, ifaf; >0 and |/d}; = c|V/(x)P,
* u otherwise,

Lt 0
L;(=[';,F, l,.‘], i=2...,n,

where
K
ay;
i—1y— 1,k k .
=W Y 'a, a= .
k
ai-1,i
/& Tk : K’ 1k k Ik
/1" _ aii - l{( li lf af‘,> li li and a,~,~ - li li 2 ClVf(xk) lp,
" u otherwise.

Then the direction d, is determined from
LyLidy = —Vf(x),

where L, = Lj. The next point x, ; is determined from
Xi+1 = X + 04dy,

where o, is chosen by the Armijo rule with initial stepsize s = 1 whenever
VY (x) = Li L.

Some trial and error may be necessary in order to determine appropriate
values for c, 4, and p. Usually, one takes ¢ very small so that the Newton
direction will be modified as infrequently as possible. The value of u should
be considerably larger than that of ¢ in order that the matrix L, L; is not
nearly singular. A choice 0 < p < 1 is usually satisfactory. Sometimes one
takes p = 0, although in this case the theoretical convergence rate properties
of the algorithm depend on the value of c.

The following facts may be verified for the algorithm described above:

(a) The direction sequence {d,} is uniformly gradient related, and hence
the resulting algorithm is convergent in the sense that every limit point of
{xx} 1s a critical point of f.
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(b) For each point x* satisfying Vf(x*) =0 and V2f(x*) > 0, there
exists a scalar & > 0 such that if |x, — x*| < & then L, L; = V*f(xy); ie,
the Newton direction will not be modified, and furthermore the stepsize
will equal unity. Thus, when sufficiently close to such a point x*, the algorithm
assumes the pure form of Newton’s method and converges to x* with
superlinear convergence rate.

There is another interesting modification scheme that can be used when
V3f(x,) is indefinite. In this case one can use, instead of the direction
[V (x)]~ 1Vf(x), a descent direction which is also a direction of negative
curvature, i.., a d; such that Vf(x;)d, < 0 and 4, V?*f (x,)d, < 0. This can
be done in a numerically stable and efficient manner via a form of triangular
factorization of V3f(x,). For a detailed presentation we refer to Fletcher and
Freeman (1977), More and Sorensen (1979), and Goldfarb (1980).

Periodic Reevaluation of the Hessian

Finally, we mention that a Newton-type method, which in many cases is
considerably more efficient computationally than those described above, is
obtained if the Hessian matrix V3f is recomputed every p iterations (p > 2)
rather than at every iteration. This method in unmodified form is given by

X+1 = Xk — o Dy Vf (x4,
where
Dipsj= [sz(xip)]_l, j=0,1,...,p—1, i= 0,1,....

A significant advantage of this method when coupled with the second
modification scheme described above is that the Cholesky factorization of
V2f(x;,) is obtained at the ipth iteration and is subsequently used for a total
of p iterations in the computation of the direction of search. This reduction in
computational burden per iteration is achieved at the expense of what is
usually a small or imperceptible degradation in speed of convergence.

Approximate Newton Methods

One of the main drawbacks of Newton’s method in its pure or modified
forms is the need to solve a system of linear equations in order to obtain
the descent direction at each iteration. We have so far implicitly assumed
that this system will be solved by some version of the Gaussian elimination
method which requires a finite number of arithmetic operations [on®)].
On the other hand, if the dimension n is large, the amount of calculation
required for exact solution of the Newton system can be prohibitive and
one may have to be satisfied with only an approximate solution of this
system. This approach is often used in fact for solving large linear systems
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of equations where in some cases an adequate approximation to the solution
can be obtained by iterative methods such as successive overrelaxation
(SOR) much faster than the exact solution can be obtained by Gaussian
elimination. The fact that Gaussian elimination can solve the system in a
finite number of arithmetic operations while this is not guaranteed by SOR
methods can be quite irrelevant, since the computational cost of finding the
exact solution can be entirely prohibitive.

Another possibility is to solve the Newton system approximately by
using the conjugate gradient method to be presented in the next section.
More generally any system of the form Hd = —g, where H is a positive
definite symmetric n x n matrix and g € R" can be solved by the conjugate
gradient method by converting it to the quadratic optimization problem

minimize 3d'Hd + g'd
subjectto deR"

It will be seen in the next section that actually the conjugate gradient method
solves this problem exactly in at most n iterations. However this fact is not
particularly relevant since for the type of problems where the use of the
conjugate gradient method makes sense, the dimension 7 is very large and
the main hope is that only a few conjugate gradient steps will be necessary
in order to obtain a good approximation to the solution.

For the purposes of unconstrained optimization, an important property
of any approximate method of solving a system of the form H d = —Vf(xy),
where H, is positive definite, is that the approximate direction d obtained
is a descent direction, i.e., it satisfies Vf(x,)d < 0. This will be automatically
satisfied if the approximate method used is a descent method for solving
the quadratic optimization problem

minimize 3d'H,d + Vf(x,)d
subjectto deR",
and the starting point d, = 0 is used, for the descent property implies
2 Hyd + Vf(x)d < 3dyHydo + Vf (x)do = O,

or Vf(x,)'d < —3d'H,d < 0. As will be seen in the next section, the conjugate
gradient method has this property.

Conditions on the accuracy of the approximate solution 4 that ensure
linear or superlinear rate of convergence in connection with approximate
methods are given in Dembo et al. (1980). Generally speaking if H, —
V?f(x,) and the approximate Newton directions d, satisfy

i | Hade + V/ (5]

-0,
ke V()]
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the superlinear convergence rate property of the method to a strong local
minimum is maintained (compare with Proposition 1.15). Approximate
Newton methods based on the conjugate gradient method are applied to
large scale nonlinear multicommodity flow problems in Bertsekas and
Gafni (1981).

1.3.4 Conjugate Direction and Conjugate Gradient M ethods

Conjugate direction methods are motivated by a desire to accelerate
the convergence rate of steepest descent while avoiding the overhead and
evaluation of second derivatives associated with Newton’s method. Con-
jugate direction methods are typically analyzed for the purely quadratic
problem

(52) minimize f(x) = 3x'0x
subjectto x€R’,

where Q > 0, which they can solve in at most n iterations (see Proposition
1.18 that follows). It is then argued that the general problem can be approxi-
mated near a strong local minimum by a quadratic problem. One therefore
expects that conjugate direction methods, suitably modified, should work
well for the general problem—a conjecture that has been substantiated by
analysis as well as practical experience.

Definition: Given a positive definite n x n matrix 0, we say that a
collection of nonzero vectors dy,...,d € R" is mutually Q-conjugate if
for all i and j with i # j we have d;Qd; = 0.

It is clear that if d,, . . ., d, are mutually Q-conjugate then they are linearly
independent, since if, for example, we had for scalars oy, ..., %—1

dy = oqdy + -+ - 1dk— 15
then
4, Qd, = 0, diQdy + -+ + -1, Qdy— = 0,

which is impossible since d, # 0, and Q is positive definite.

Given a collection of mutually Q-conjugate directions doy---sdn-15
we define the corresponding conjugate direction method for solving problem
(52) by

(53) xk+1=.xk+akdk, k=0,1,...,n—1,

where x, is a given vector in R" and o, is defined by the line minimization
rule

(54) f(x + o dy) = min f(x; + ody).
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We shall employ in what follows in this and the next section the notation
9 = Vf (x) = Ox;.

We have the following result:

Proposition 1.18: If x,, x,, ..., x;, are the vectors generated by the con-
Jjugate direction method (53), we have
(55) gk+1d; =0 Vi=0,...,k

Furthermore, for k =0,1,...,n — 1,x,,, minimizes f over the linear
manifold

My = {z|z = xo + yodo + -+ + Vidy, Vo> ..., ER},
and hence x,, minimizes f over R".
Proof: By (54), we have
of (x; + o;dy)/oo = g}y ,d; = 0, i=0,...,n—1,

so we need only verify (55)fori = 0,1,...,k — 1. We have,fori =0, 1, ...,
k—1,

k ’
Gk+1d; = X4,0d; = <Xi+l + ) Z ajdj) 0d; = x;,,0d; = giy,d; = 0.

j=i+1
To show the last part of the proposition, we must show that

0f(xo + yodo + -+ + dek)/a)’i|yo=:ao= 0 Vi=0,...,k
Vi =
or
gk+14; =0 Vi=0,...,k,

which is (55). Q.E.D.

It is easy to visualize the result of Proposition 1.18 for the case where
Q = L, for in this case, the surfaces of equal cost of f are concentric spheres,
and the notion of Q-conjugacy reduces to usual orthogonality. By elementary
geometry or a simple algebraic argument, we have that minimization
along n orthogonal directions leads to the global minimum of f, ie., the
center of the spheres. The case of a general positive definite Q can actually
be reduced to the case where Q = I by means of a scaling transformation.
By setting y = Q'/?x, the problem becomes min {1|y|?|yeR"}. If w, ...,
w,_ are any set of orthogonal nonzero vectors in R", the algorithm

Yk+1 = Vi + 4 Wy, k=0,1,....,n—1,
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where o, minimizes 7|y, + ow,|* over «, terminates in at most n steps at
yn = 0. To pass back to the x-coordinate system, we multiply this equation
by Q0 '/? and obtain
Xp+1 = X + o4 dy, k=0,1,...,n—1,

where d, = Q7 !?w;. Since wjw; = 0 for i # j, we obtain d;Qd; = 0 for
i # j; i.e, the directions d,, ..., d,_; are Q-conjugate. This argument can
be reversed and shows that the collection of conjugate direction methods for
the problem min{3x'Qx|x € R"} is in one-to-one correspondence with the
set of methods for solving the problem min{|y|?|y € R"}, which consist
of successive minimization along n orthogonal directions.

Given any set of linearly independent vectors &,,..., ¢,_,, we can
construct a set of mutually Q-conjugate directions d,, ..., d,_; as follows.
Set

(56) do = &o,

andfori=1,2,...,n — 1, define successively
i—1

(57) d=¢ + Z ¢;;d;,
j=0

where the coefficients c;; are chosen so that d; is Q-conjugate to the previous
directions d;_,, ..., d,. Thiswill be so if, fork = 0,...,i — 1,

i—-1
(58) d;Qdy = &Qd, + Y. ¢;;d;Qd, = 0.
j=0
If previous coefficients were chosen so that d, ..., d;_, are Q-conjugate,
then we have d;0d, = 01if j # k, and (58) yields
(59) ¢;; = —¢i0d;/d;Qd; Vi=12...,n—1, j=0,1,...,i— 1

Thus the set of directions d,, ..., d,_; defined by (56), (57) and (59) is Q-
conjugate, and (56) and (57) show also that, for i = 0, ..., n — 1, we have

(60) (subspace spanned by do, ..., d;) = (subspace spanned by &, ..., &).

We now define the most important conjugate direction method.

The Conjugate Gradient Method

The conjugate gradient method is obtained by the procedure described
above by taking &, = —go,..., ¢,—y = —g,_,. More specifically, starting
at xo with g, # 0, we use g, as our first conjugate direction, i.e., dy = —g,.
We find x; = x, + ayd, by line search and obtain our second direction
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d, using the procedure defined by (56), (57) and (59) with &, = —g, and
&, = —g,. This yields, from (57) and (59),

g10d,
doQd,

(61) dy = —g; + do-

By using the equation
g1 — go = Q(xy — Xxo) = 09 Qdy,
we can write (61) as

9191 — 9o)

do(91 — 90) °

By repeating the process with &, = —go, & = —gy,...,and & = —g;,
we obtain at the (k + 1)st step

dy=—g: +

k=1
9. Qd;
d = — + : Jd.
k 9k jgodedj j
from which
k=1 e
(62) dk= _gk + Z gk(g]+l g_])

=odigj+1 — 9 "
By using the fact that the subspace spanned by go, ..., gi—; is also the

subspace spanned by dy,...,d,_,; [compare with (60)] and the relation
gid; =0forj=0,...,k — 1 (Proposition 1.18), we obtain

g99; = 0, j=0,....k—1,

s0 (62) reduces to the simple formula

(63) di = —gi + Budi-1>
with
(64) ﬁk _ gk(gk - gk—l)

B di-1(gx — gk—l)‘

Note that by using the facts g,g; = g;d; =0,j=0,...,k — 1,and d; -, =
—gu—1 + Br—1dx_,, we see that the coefficient B, of (64) can also be written
as

B, = 9k — Gr-1) _ 99k
, Gk—19k-1 Gk -19k-1

An important observation from (63) and (64) is that in order to generate
the direction d, one need only know the current and previous gradients g, and

(65)
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gik—1 and the previous direction d,_,. This fact is particularly significant
when the method is extended to nonquadratic problems.
Scaled Conjugate Gradient Method

This method, also referred to as the preconditioned conjugate gradient
method, is really the conjugate gradient method implemented in a new
coordinate, system. Suppose we make a change of variables, as in Section
1.3.2, x '= Ty, where T is a symmetric invertible n x n matrix, and apply the
conjugate gradient method to the equivalent problem

minimize h(y) = f(Ty) = 3y TQTy
subjectto yeR"
The method is described by [compare with (63) and (65)]
(66) Virr = Vi + oy,

where o, is obtained by line minimization and d, is generated by

(67) dy = —Vh(yo), di= —Vh(y) + Bedy-1, k=1,2,....n,
where

Vh(y) Vh(y
68) B, = Vi) Vh(yi)

- Vh(yi- 1) Vh(y- 1)

Setting x, = Ty,, VA(y) = Tgx, di = Td,, and H = T?, we obtain from
(66)-(68) the equivalent method

(69) Xe+1 = X + %edy,
(70) dy = —Hg,, d, = —Hg, + Brdi_1, k=1,...,n

where

(71) Bx = 9« Hgi/gi - 1Hgi - 1

Since V2h(y) = TQT, we have that do, ...,d,_, are (TQT)-conjugate, and
in view of d, = Td,, we have that d,, ..., d,_, are Q-conjugate. By carrying

further this line of argument we see that
g Hg; = gd; =0 Vi=0,....,k—1,
and x, minimizes f over the linear manifold

M, = {z]z = xo + yodo + - + Vk-1dk—1,V0>-- > Vk-1 ER}
= {z]z =xo + 70Hgo + -+ + V- 1Hgi-1, Vo> ---» Te-1 ER}.
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The motivation for employing scaling typically stems from a desire to improve
the speed of convergence of the method within an n-iteration cycle (see the
following analysis). This in turn may be important even for a quadratic
problem if n is large.

Rate of Convergence of the Conjugate Gradient Method

There are a number of results relating to the convergence rate of the
conjugate gradient method applied to quadratic problems. We describe a
particular result due to Luenberger (1973).

Consider an algorithm of the form

Xy = Xo + Y0090

X, = Xo + + ,
(72) 2‘ o T Y1090 T V1191

Xk+1 = Xo + Vkogo + - + Yk Gks

where y;; are arbitrary scalars. Since g; = Qx;, we have that for suitable
scalars (,; the algorithm above can be written for all k

Xee1 = Xo + 00X + (1Q%X0 + -+ + L@ " 1xo
= [I + QP(Q)]xo,

where P, is a polynomial of degree k. Among all algorithms of the form (72),
the conjugate gradient method is optimal in the sense that for every k,
it minimizes f (x, ) over all sets of coefficients 7o, - - - , Y- It follows from
the equation above that in the conjugate gradient method we have, for everyk,

(73) [ (ke 1) = min 5x0[1 + QPUQ)]*Xo-
Py
Let A,,..., 4, be the eigenvalues of Q, and let ey, ..., e, be corresponding

orthogonal eigenvectors normalized so that |e;| = 1. Since ey, ..., e, form
a basis, any vector x, € R" can be written as

n
Xo = Z (e
i=1

for some scalars ;. Since

n n

Oxo = ZCiQei = Zgi/‘l’iei,

i=1 i=1

we have, using the orthogonality of e;, ..., e, and the fact that |e;| = 1,

1 1/ ! 12
f(xo) = szon = 2 (._ZICiei) < ICi'liei> = 2 _ZIA‘ICIZ

M=
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Applying the same process to (73), we obtain for any polynomial P, of de-
gree k

1 n
fOgs1) < 3 -21[1 + L P A)TPALE,

and it follows that
(74) fxes1) < max [1 + 4 PyA)]*f (x0) V Py, k.

One can use this relationship for different choices of polynomials P,
to obtain a number of convergence rate results. We provide one such result.

Proposition 1.19: Assume that Q has n — k eigenvalues in an interval
[a, b] with a > 0, and the remaining k eigenvalues are greater than b. Then
for every x,, the vector x,, ; generated after (k + 1) steps of the conjugate
gradient method satisfies

b — a\?

(75) fxer ) < (b—-l—a) S (xo0)-
This relation also holds for the scaled conjugate gradient method (69)-(71)
if the eigenvalues of Q are replaced by those of H>QH*'/.

Proof: Let Ay, 4, ..., 4 be the eigenvalues of Q that are greater than
b and consider the polynomial P, defined by
2 a+b
76) 1+ AP(A) = —A)Ay = A (A — A)
(76) X (a+b)llﬁ_.)_k(2 )<1 ) (i = )

Since 1 + 4;P,(1;) = 0 we have, using (74), (76), and a simple calculation,
fCsy) < max [1 4+ AP(1)]% (xo)

a<isb
< max [A — 3(a + b)] b—a

2
< e by 0 (b - a) f(x0).  QED.

An immediate consequence of the proposition is that if the eigenvalues
of Q take only k distinct values then the conjugate gradient method will
find the minimum of the quadratic function f in at most k iterations. (Simply
take a = b in the proposition.) Another interesting possibility, arising for
example in some optimal control problems, is when Q has the form

k
(77 Q=M+ Y v,
i=1
where M is positive definite symmetric, and v; are some vectors in R". We
have the following result, the proof of which we leave as an exercise for the
reader.
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Exercise: Show that if Q is of the form (77), then the vector x,,,
generated after (k + 1) steps of the conjugate gradient method satisfies

b _ 2
F(iay) < (ﬁ) (o),

where a and b are the smallest and largest eigenvalues of M. Show also
that the vector x,,, generated by the scaled conjugate gradient method
with H = M ™' minimizes /. [Hint : Use the interlocking eigenvalues lemma
of Luenberger (1973, p. 202).]

The (k + 1)-step scaled conjugate gradient method is particularly inter-
esting when Q is of the form (77), k is small relative to n, and systems of
equations involving M can be solved easily (see Bertsekas, 1974a).

We also leave the following strengthened version of Proposition 1.19
as an exercise to the reader.

Exercise (Hessian with Clustered Eigenvalues): Assume that Q has all
its eigenvalues concentrated at k intervals of the form

[Zi—éi,2i+5,~], i=1,...,k,
where we assume that 6, > 0,i = 1,...,k,0 <z, — §,,and
'0<21<ZZ<“'<Zk, Zi+5,~SZ,-+!—(5,-+1, l=1,,k—l

Show that the vector x;., generated after (k + 1) steps of the conjugate
gradient method satisfies

(X 1) < Rf(xo),

where
R = max)01 B2+ 0 = 20" 03 + 05 = 2% + 05 — 1)
= 2323 ’ 227323 ’

cey

2.2 2
21227 2%

Oz + 0 — 212+ (2 + O — zk—l)z}

The Conjugate Gradient Method Applied to Nonquadratic
Problems

The conjugate gradient method can be applied to the not necessarily
quadratic problem

minimize f(x)

subjectto x e R"™
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It takes the form
(78) xk+1 == Xk + akdk)

where o, is obtained by line search

(79 S (X + o4di) = min f(x, + ody),
and d, is generated by
(80) di = —Vf(x) + Bidi-1-
The two most common ways to compute f, are
_ V) Vf ()
& P = G I G )
and
82) B, = Vf G TVf (e — VO 1)

VI (- 1)'Vf (x- 1)

The use of (81) has been suggested by Fletcher and Reeves (1964) while the
use of (82) was proposed by Polak and Ribiere (1969), Poljak (1969a), and
Sorenson (1969). The direction d, generated by (80) will be a direction of
descent in either case. To see this, note that if Vf(x,) # 0, then

V(x)d = = V(> + BVf ()de—y = — | Vf(x)I” <0,

since Vf(x,)d,_; = 0 in view of (79). However, while these two formulas,
along with several others, are equivalent when the method is applied to a
quadratic problem, this is no more true in the general case. Extensive
computational experience has established that the use of (82) results in
much more efficient computation than the use of (81). A heuristic reason
that can be given is that due to nonquadratic terms in the objective function
and possibly inaccurate line searches, conjugacy of the generated directions
is progressively lost and a situation may be created where the method
temporarily “jams” in the sense that the generated direction d, is nearly
orthogonal to the gradient Vf(x,). When this occurs, then Vf(x;,;) ~
Vf(x,). In that case B, ,, generated by (82), will be nearly zero and the next
direction d, , ;, generated by (80), will be close to — Vf (x, + ) thereby breaking
the jam. This is not the case when (81) is used. A more detailed explanation
of this phenomenon is given by Powell (1977).

Regardless of the formula for computing the scalar f;, one must deal
with the loss of conjugacy that results from nonquadratic terms in the
objective function. The conjugate gradient method is often employed in
problems where the number of variables n is large, and it is not unusual
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for the method to start generating nonsensical and inefficient directions
of search after a few iterations. For this reason it is important to operate the
method in cycles of conjugate direction steps given by (80), with the first
step in the cycle being a steepest descent step. Some possible restarting
policies are:

(a) Restart with a steepest descent step n iterations after the preceding
restart.

(b) Restart with a steepest descent step k iterations after the preceding
restart with k < n. This is recommended when the problem has special
structure so that the resulting method has good convergence rate (compare
with Proposition 1.19 and the following discussion).

(c) Restart with a steepest descent step n iterations after the preceding
restart or if

(83) IV o' Vf = D1 > 71V G- ) 12,

where 7y is a scalar with 0 < y < 1, whichever comes first. Relation (83)
is a test on loss of conjugacy, for if the generated directions were indeed
. conjugate then we would have Vf(x,)Vf(x,-,) = 0. This procedure was
suggested by Powell (1977) who recommended the choice of y = 0.2.

Note that in all these restart procedures the steepest descent iteration
serves as a spacer step and guarantees global convergence (Proposition 1.16).
If the scaled version of the conjugate gradient method is used, then a scaled
steepest descent iteration is used to restart a cycle. The scaling matrix may
change at the beginning of a cycle but should remain unchanged during the
cycle. Another possibility, stemming from a suggestion of Beale (1972), is
to use the last direction generated in a cycle as the first direction in the new
conjugate direction cycle instead of using steepest descent. We refer to papers
by Powell (1977) and Shanno (1978a,b) for a discussion of this possibility.

An important practical issue relates to the line search accuracy that is
necessary for efficient computation. An elementary calculation shows that if
line search is carried out to the extent that

V() dy—y < |Vf (=) 1%,

then d,, generated by (80) and (81), satisfies Vf(x,)'d, < 0 and is a direction
of descent. On the other hand, a much more accurate line search may be
necessary in order to keep loss of direction conjugacy and deterioration of
rate of convergence within a reasonable level. At the same time, insisting
on a very accurate line search can be computationally expensive. Consider-
able research has been directed towards clarifying these questions, and
several implementations of the conjugate gradient method with inexact line
search have been proposed by Klessig and Polak (1972), Lenard (1973,
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1976), and Powell (1977). Among recent works, Shanno (1978a,b) suggests
a rather imprecise line search coupled with a method for computing conjugate
gradient directions which views each iteration as a memoryless quasi-
Newton step. This method appears relatively insensitive to line search errors
and yields descent directions under essentially no restriction on line search
accuracy.

1.3.5 Quasi-Newton Methods

Quasi-Newton methods are descent methods of the form
(84) Xp+1 = X + OGdy,
(85) d, = — D Vf (%),

where D, is a positive definite matrix adjusted during the course of the com-
putation in a way that (84) tends to approximate Newton’s method. The
stepsize o is determined by one of the stepsize rules of Section 1.3.1. The
popularity of the most successful of these methods stems from the fact
that they tend to exhibit a fast rate of convergence while avoiding the second
derivative calculations associated with Newton’s method.

There is a large variety of quasi-Newton methods, but we shall restrict
ourselves to the so-called Broyden class of quasi-Newton algorithms where
D, ., is obtained from D, and the vectors

(86) P = Xg+1 — Xk
(87 gk = Vf Carr) — V(X0
by means of the equation

PPk Diax kD

(88) k+1 kY 4.Deds + (i T Uk Uk

where

Pk Dy gy
89 V=5 — — ———
®9) kT Pgy Tk
(90) T = Gk Di i
the scalars {, satisfy, for all k,
91) 0<G <1,

and D, is an arbitrary positive definite matrix. If {, = 0, one obtains the
Davidon-Fletcher—Powell (DFP) method (Davidon, 1959; Fletcher and
Powell, 1963), which is historically the first quasi-Newton method. Ifg, =1,
one obtains the Broyden—Fletcher-Goldfarb-Shanno (BF GS) method
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(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) for which
there is growing evidence that it is the best general purpose quasi-Newton
method currently available.

We first show that under a mild assumption the matrices D, generated
by (88) are positive definite. This is a most important property, since it
guarantees that the search direction d, is a direction of descent.

Proposition 1.20: If D, is positive definite, Vf(x;.;) # 0, and the
stepsize o, is chosen so that x, ., ; satisfies

€2 V(%) di < Vf (X4 1)'dy

(or equivalently p;q, > 0), then D, given by (88) is well defined and is
positive definite.

Proof:  First note that (92) implies that g, # 0 and
93) Pidi = i [Vf (Xis 1) — Vf(x)] > 0.
Thus all denominator terms in (88), (89), and (90) are nonzero, and D, is
well defined.

Now for any z # 0, we have
@p)*  (@De2)?

Pdx  GDidi

Define a = D;/’z, b = D}/?q,, and write (94) as

, lal?|b]> — (ab)*  (Z'ps)?
95 zZDy iz = ;
©3) ket [bJ? 121

From (90), (91), (93), and the Cauchy-Schwarz inequality we have that
all the terms on the right-hand side of (95) are nonnegative. In order that
Z'Dy+ 1z > 0, it will suffice to show that we cannot have simultaneously

lal*|b]* = (@b)* and  zp, = 0.

(94) Z/D,H.IZ = Z,DkZ + + Cka(U;‘Z)Z.

+ Get(vi2)®.

Indeed if [a|?|b|* = (a'b)?, we must have a = Ab for some A # 0 or z = Aq,,
so if z2'p, = 0, we must have g; p, = 0, which is impossible by (93). Q.E.D.

Note that if D, is positive definite, we have Vf(x,)'d, < 0, so in order to
satisfy condition (92), it is sufficient to carry out the line search to a point
where

IVf (e 1)l < 1Vf(x)'dy].-.

If o, is determined by the line minimization rule, then Vf(x, . 1)d, = 0 and
(92) is certainly satisfied.
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A most interesting property of the Broyden class of algorithms is that
when applied to the positive definite quadratic function

f(x) = 3x'0x,

with the stepsize o, determined by line minimization, they generate a Q-
conjugate direction sequence, while simultaneously constructing the inverse
Hessian Q! after n iterations. This is the subject of the next proposition.

Proposition 1.21: Let {x,} and {d,} be sequences generated by the
algorithm (84)-(90) applied to minimization of the positive definite quadratic
function f(x) = $x'Qx with «, chosen by

(96) f(x + ody) = min f(x; + ady).

Assume none of the vectors xg, - . ., X, is optimal. Then

(a) The vectors d,, ..., d,—, are mutually Q-conjugate.
(b) There holds

D,=Q .
Proof: It will be sufficient to show that for all k
©7) 40d; =0, 0<i<j<k
(98) Dy 149: = Dy+1Qpi = i, 0<i<k

Equation (97) proves (a). Equation (98) proves (b), since fork=n—-11t
shows that pg, ..., p.—; are eigenvectors of D,Q corresponding to unity
eigenvalue. Since p; = «;d; and d, ..., d,-, are Q-conjugate, it follows that
the eigenvectors po, ..., p,—; are linearly independent and therefore D, Q
equals the identity.

We first verify that for all k

(99) D+ 14k = Di+19Opi = Pi-
From (88), we have

PxPi4x _ Dy.qy.qx Dic 4x
P4k 9k Dy g

Dy+ 14k = Digy + + (e Tk VG = P + i Toe Uk U -
An elementary calculation shows that v;, g, = 0, and (99) follows.

We now show (97) and (98) simultaneously by induction. For k = 0
there is nothing to show for (97), while (98) holds in view of (99). Assuming
that (97) and (98) hold for k, we prove them for k + 1. We have, for i <k,

(100) Vf(xp+1) = Vf(xi41) + Qpisy + - + D)
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Using (96), (97), (100), the fact p; = o;d;, and the fact Vi (xk+1) =0, we
obtain

PVf (s 1) = piVf(xi41) =0, O0<i<k+ 1
Hence from (98),
PiODy+ Vf (x¢+1) = 0, O0<i<k+1,
and since p; = o;d;, dy vy = — Dy Vf (x4 ), We obtain
d;Qdy,, =0, O<i<k+1
This proves (97) for k + 1.
From the induction hypothesis (98) and (97), we have

(101) Gi+1Dx+19: = Qs 1Dy 1 0P = Gies1Pi = Pics1Qpi = O,
0<i<k

Using (88), (89), (97), (101), and a straightforward calculation, we have, for

0<i<k,

, D , '
Dys2G; = Dys1q: + Pkl+1Pk+1‘1. _ e+ 19k + 19k + 1Dk + 14

’
Pr+19k+1 G+ 1Dx 1G4 4
F Gkt 1T+ 1Uk+ 10k +19;
= Dy119; = p;.

Taking into account (99), we have a proof of (98) for k + 1. Q.E.D.

It is also interesting to note that the sequence {x,} in Proposition 1.21 is
identical to the one that would be generated by the scaled conjugate gradient
method with scaling matrix H = Dy; ie., for k =0, 1,...,n — 1, the vector
Xy +1 minimizes f over the linear manifold

M, = {z]z = xo + 7oDon(Xo) + -+ %DoVf (i), v05 -+ Tk ER].

This can be proved for the case where D, = I by verifying by induction that

for all k there exist scalars S}; such that

M=

Dk=1+

k
Z ijVf (x)Vf (x j)'~
0j=0
Therefore, for some scalars b* and all k, we have
k
dy = —D\Vf(x) = Z b{"vf(xi)'
i=0

Hence, for all i, x;, , lies on the manifold

M; = {z]z = xo + 7oVf(x0) + -+ + 2V (x)), 70, --., ;€ R},
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and since the algorithm is a conjugate direction method the result follows
using Proposition 1.18. The proof for the case where D, # I follows by
making a transformation of variables so that in the transformed space the
initial matrix is the identity. A consequence of this result is that any algorithm
in Broyden’s class employing line minimization generates identical sequences
of points for the case of a quadratic objective function. This is also true even
for a nonquadratic objective function (Dixon, 1972a,b) which is a rather sur-
prising result. Thus the choice of the scalar {;, makes a difference only if the
line minimization is inaccurate.

Computational Aspects of Quasi-Newton Methods

Consider now the case of a nonquadratic problem. Even though the
quasi-Newton method (84)-(90) is equivalent to the conjugate gradient
method for quadratic problems, it has certain advantages which manifest
themselves in the presence of inaccurate line search and nonquadratic terms
in the objective function. The first advantage is that when line search is
accurate the algorithm (84)-(90) not only tends to generate conjugate
directions but also constructs an approximation to the inverse Hessian
matrix which tends to be more accurate as the algorithm progresses. As a
result, near convergence to a strong local minimum, it tends to approximate
Newton’s method thereby attaining a fast convergence rate. This fact is
suggested by Proposition 1.21 and has also been established analytically
by Powell (1971) [for a proof, see also Polak (197 1)]. It is significant that this
property does not depend on the starting matrix D,, and as a result it is not
usually necessary to periodically restart the method with a steepest descent-
type step—something that is essential for the conjugate gradient method.
A second advantage over the conjugate gradient method is that quasi-
Newton methods are not as sensitive to accuracy in the line search. This has
been verified by extensive computational experience and can be substan-
tiated to some extent by analysis (see Broyden et al., 1973). One reason that
can be given is that, under essentially no restriction on the line search
accuracy, the quasi-Newton method (84)-(90) generates positive definite
matrices D, and hence directions of descent (Proposition 1.20).

In an effort to compare further the conjugate gradient method and
quasi-Newton methods, we consider their computational requirements per
iteration. The kth iteration of the conjugate gradient method requires
computation of the objective function and its gradient (perhaps several
times in view of the employment of line search) together with O(n)t multi-
plications to compute the conjugate direction d, and next point x; .. A

+ In this context O(n) multiplications means that there is an integer M such that the number
of multiplications per iteration is bounded by Mn, where n is the dimension of the problem.
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quasi-Newton method requires roughly the same amount of computation
for function and gradient evaluations together with O(n?) multiplications to
compute the matrix D, and next point x, , ;. If the computation time necessary
for a function and gradient evaluation is larger or comparable to O(n?)
multiplications, the quasi-Newton method requires only slightly more
computation per iteration than the conjugate gradient method and holds
the edge in view of its other advantages mentioned earlier. In problems where
a function and gradient evaluation requires computation time much less
than O(n*) multiplications, the conjugate gradient method is preferable. For
example in optimal control problems where typically n is very large (over
100 and often over 1000) and a function and gradient evaluation typically
requires O(n) multiplications, the conjugate gradient method is preferred.
In general, both methods require less computation per iteration than
Newton’s method which requires a function, gradient, and Hessian evaluation,
as well as O(n’) multiplications at each step. This is counterbalanced by
the faster speed of convergence of Newton’s method. The case for Newton’s
method is strengthened if periodic reevaluation of the Hessian is employed
since each step that utilizes a previously evaluated (and factored) Hessian
requires only O(n?) multiplications. The same is true if the problem has
special structure that can be exploited to compute the Newton direction
efficiently. For example in optimal control problems, Newton’s method
typically requires O(n) multiplications per iteration versus O(n?) multi-
plications for quasi-Newton methods.

Finally, we note that multiplying the initial matrix D, by a positive
scaling factor can have a significant beneficial effect on the behavior of the
algorithm. A popular choice is to compute

(102) ﬁo = (P690/90 Do 40)Dy

once the vector x, (and hence also p, and g,) has been obtained, and use
D, in place of D, in computing D,. The rationale for this is explained in
Luenberger (1973). Among other things it can be shown that if the initial
scaling (102) is used, then the condition number M, /m,, where

M, = max eigenvalue of (D}/2QD}/?),
my, = min eigenvalue of (D}/2QD}/?),

is not increased (and is usually decreased) at each iteration (compare with
the discussion on rate of convergence in Section 1.3.1). Sometimes it is
beneficial to scale Dy even after the first iteration by the factor p}q,/q; D, g,
and this has given rise to the class of self-scaling quasi-Newton algorithms
due to Oren and Luenberger [see Oren and Luenberger (1974), Oren (1973,
1974), Oren and Spedicato (1976)].
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1.3.6 Methods Not Requiring Evaluation of Derivatives

All the gradient methods examined so far in Section 1.3 require calculation
of at least the gradient Vf(x,) and possibly the Hessian matrix V3f(x,) at
each generated point x,. In many problems, these derivatives are either not
available in explicit form or else are given by very complicated expressions
and hence their evaluation requires excessive computation time. In such
cases, it is possible to use the same algorithms as earlier with all unavailable
derivatives approximated by finite differences. Thus, second derivatives
may be approximated by the forward difference formula

0% (xi) - l [af(xk + he;) _ af(xk)]

(103) oxtox) h ox' ox'

or the central difference formula

azf(xk) - i [af(xk + hej) _ of (i — hej)]

104 = . -
(104) ox'ox!  2h ox' ox'

In these relations, h is a small positive scalar and e; is the jth unit vector
(jth column of the identity matrix). Similarly first derivatives may be approxi-
mated by

(105) of (x)/0x' ~ (/ML f (xi + he) — f(x)]
or by
(106) of (x)/0x* ~ (1/2m)[f Cxi + hey) — f(xx — hey)].

The central difference formula has the disadvantage that it requires twice
as much computation as the forward difference formula. However, it is
much more accurate. By forming the corresponding Taylor series expansions,
it may be seen that the absolute value of the error between the approxi-
mation and the actual derivatives is O(h) for the forward difference formula
while it is O(h?) for the central difference formula. In some cases the sainc
value of i can be used for all partial derivatives, but in other cases, particularly
when the problem is poorly scaled, it is essential to use a different value of
h for each partial derivative.

From the point of view of reducing the approximation error (or trunca-
tion error), it is advantageous to choose the finite difference interval h as
small as possible. Unfortunately there is a limit to the amount that h can be
reduced due to the significant cancellation error, which occurs when quantities
of similar magnitude are subtracted by the computer. Cancellation error is
particularly evident in the approximate formulas (105) and (106) near a
critical point where Vf'is nearly zero.
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Practical experience suggests that a good policy is to keep the scalar h
for each derivative at a fixed value which balances the truncation error
against the cancellation error. When second derivatives are approximated
by finite differences of first derivatives in discretized versions of Newton’s
method, practical experience suggests that extreme. accuracy is not very
important in terms of speed of convergence. For this reason, exclusive use
of the forward difference formula (103) is advisable in most cases. By con-
trast, when first derivatives are approximated by finite differences of function
values, the approximation can become poor near a critical point and can
vitally affect the convergence characteristics of the algorithm if the forward
difference formula (105) is used exclusively. A good practical rule is to use
the forward difference formula (105) until the absolute value of the cor-
responding approximate derivative becomes less than a certain tolerance;
ie.,

I(A/MLf (x + hey) — f(x]] < e,

where ¢ > 0 is some small prespecified scalar. At that point a switch to the
central difference formula is made; i.e., the formula (106) is used whenever
the inequality above is satisfied. This has been suggested by Gill and Murray
(1972). An extensive discussion of implementation of gradient methods
based on finite difference approximations can be found in Gill et al. (1981).

There are several other algorithms for minimizing differentiable functions
without the explicit use of derivatives, the most interesting of which, at least
from the theoretical point of view, are coordinate descent methods. For a
discussion of these and other nonderivative methods we refer the reader to
Avriel (1976), Brent (1972), Luenberger (1973), Polak (1971), Powell (1964,
1973), Sargent and Sebastian (1973), and Zangwill (1967a, 1969).

1.4 Constrained Minimization

We consider the problem
(CP) minimize f(x)
subject to xe X,

where f: R" — R is a given function and X is a given subset of R". We say
that a vector x* € X is a local minimum for (CP) if there exists an ¢ > 0 such
that

f(x*) < f(x) VxeS(x*;e), xeX.
It is a strict local minimum if there exists an ¢ > 0 such that

f(x*) < f(x) VxeS(x*;¢), xeX, x# x*
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It is a global minimum if
f(x*) < f(x) VxeX.

We have the following optimality conditions for the case where X is
a convex set. Proofs may be found in the sources given at the end of the
chapter. ’

Proposition 1.22: Assume that X is a convex set and for some ¢ > 0
and x* € X, fe C! over S(x*; ¢).

(a) If x* is a local minimum for (CP), then
¢ VF(x*y(x —x*)>0 VxeX.

(b) If fis in addition convex over X and (1) holds, then x* is a global
minimum for (CP).

We shall be mostly interested in optimality conditions for problems
where the constraint set X is described by equality and inequality constraints.
Equality Constrained Problems

We consider first the following equality constrained problem
(ECP) minimize f(x)

subject to  h(x) = 0,

where f: R" — R and h: R* - R™ are given functions and m < n. The com-
ponents of h are denoted h, ..., h,,.

Definition: Let x* be a vector such that h(x*) = 0 and, for some ¢ > 0,
he C*on S(x*; ¢). We say that x* is aregular point if the gradients Vh,(x*), ...,
Vh,(x*) are linearly independent.

Consider the Lagrangian function L: R"*™ — R defined by
L(x,A) = f(x) + A'h(x).
We have the following classical results (see, e.g., Luenberger, 1973).

Proposition 1.23: Let x* be a local minimum for (ECP), and assume
that, for some ¢ > 0,fe C*, he C* on S(x*; &), and x* is a regular point. Then
there exists a unique vector 1* € R™ such that

o) V, L(x*, 2*¥) = 0.
If in addition fe C? and he C? on S(x*;¢) then
3) 2’V L(x*, 1¥)z > 0 VzeR" with Vh(x*)z = 0.
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Proposition 1.24: Let x* be such that A(x*) = 0 and, for some ¢ > 0,
feC? and he C? on S(x*;e¢). Assume that there exists a vector A* € R™
such that

€)) V.L(x*,A*) =0
and
%) ZV2, L(x*,A*)z > 0 Vz#0 with Vha(x*)z=0.

Then x* is a strict local minimum for (ECP).

It is instructive to provide a proof of Proposition 1.24 that utilizes
concepts that will be of interest later in the analysis of multiplier methods.
We have the following lemma:

Lemma 1.25: Let P be a symmetric n x n matrix and Q a positive
semidefinite symmetric n x n matrix. Assume that x'Px > 0 for all x # 0
satisfying x'Qx = 0. Then there exists a scalar ¢ such that

P+ cQ > 0.

Proof: Assume the contrary. Then for every integer k, there exists a
vector x;, with |x,| = 1 such that

6) x; Px;, + kx;0x, < 0.

The sequence {x,} has a subsequence {x,}x converging to a vector X with
|X| = 1. Taking the limit superior in (6), we obtain

@) X'Px + lim sup(kx;Qx,) < 0.

P
Since x;,0x; = 0, (7) implies that {x; Ox,}x converges to zero and hence
X'Qx = 0. From the hypothesis it then follows that X’Px > 0 and this contra-
dicts (7). Q.E.D.

Consider now a vector x* satisfying the sufficiency assumptions of
Proposition 1.24. By Lemma 1.25 it follows that there exists a scalar ¢ such
that

8) V2, L(x*, A*) + ¢Vh(x*)Vh(x*)' > 0.
Let us introduce the so-called, augmented Langrangian function,L.: R"*™* 1 —
R defined by

® L(x,2) = f(x) + Xh(x) + 3¢|h(x) |
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We have, by a straightforward calculation,

(10) V. L(x,4) = Vf(x) + VA(x)[A + ch(x)],

(11) Vi L(x,4) = V¥ (x) + i [A; + chi(x)]V?h(x) + cVh(x)Vh(x).

Therefore, using also (8), we have, for all ¢ > ¢,
(12) V. L(x* A*¥) = V_L(x*, A*) = 0,
(13) V2 L(x*, A¥) = V2 L(x*, A*) + ¢Vh(x*)Vh(x*)' > 0.

Now by using Proposition 1.4 and the preceding discussion, we obtain the
following result:

Proposition 1.26: Under the sufficiency assumptions of Proposition
1.24, there exist scalars ¢,y > 0,and 6 > O such that

(14)  Lx, A*) > L(x*, 2*) + y|x — x*|*  VxeS(x*;d), c¢=>C¢
Notice that from (9) and (14), we obtain
fO) = f(x*) + ylx = x*>  VxeS(x*;e), h(x)=0,

which implies that x* is a strict local minimum for (ECP). Thus a proof of
Proposition 1.24 has been obtained.

The next proposition yields a valuable sensitivity interpretation of
Lagrange multipliers. We shall need the following lemma:

Lemma 1.27: Let x* be a local minimum for (ECP) which is a regular
point and together with its associated Lagrange multiplier vector A* satisfies
the sufficiency assumptions of Proposition 1.24. Then the (n + m) x (n + m)
matrix

(15) Je [VixL(x*, A% Vh(x*)]

Vh(x*) 0
is nonsingular.

Proof: If J were singular, there would exist y € R" and z € R™ not both
zero such that (y, z) is in the nullspace of J or equivalently

(16) V2, L(x*, A*)y + Vh(x*)z = 0,

a7 Vh(x*)y = 0.

Premultiplying (16) by y" and using (17), we obtain
y'V2 L(x* A*)y = 0.
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Hence y = 0, for otherwise the sufficiency assumption is violated. It follows
that Vh(x*)z = 0, which in view of the fact that Vh(x*) has rank m implies
z = 0. This contradicts the fact that y and z cannot be both zero. Q.E.D.

Proposition 1.28: Let the assumptions of Lemma 1.27 hold. Then there
exists a scalar 6 > 0 and continuously differentiable functions x(-): S(0; 8) —
R", A(-): S(0; &) = R™ such that x(0) = x*, A(0) = A*, and for all u € S(0; 9),
{x(u), A(u)} are a local minimum-Lagrange multiplier pair for the problem

(18) minimize f(x)
subject to  h(x) = u.
Furthermore,

V, f[x)] = —A(u)  VueS0;0).

Proof: Consider the system of equations in (x, 4, u):
Vf(x) + Vh(x)A = 0, h(x) —u=0.

It has the solution (x*, A*, 0). Furthermore the Jacobian of the system with
respect to (x, A) at this solution is the invertible matrix J of (15). Hence
by the implicit function theorem (Section 1.2), there exists a 6 > 0 and
functions x(-)e C*, A(-) e C* on S(0; d) such that

19) Vf[x(u)] + VA[x(u)]JA(u) = 0, h[x(u)] = u Y ue S(0;9).

For u sufficiently close to u = 0, the vectors x(u), A(u) satisfy the sufficiency
conditions for problem (18) in view of the fact that they satisfy them by
assumption for u = 0. Hence & can be chosen so that {x(u), A(u)} are a local
minimum-Lagrange multiplier pair for problem (18).

Now from (19), we have

V. x(u)Vf[x(u)] + V,x(u)Vh[x(u)]A(u) = 0

or

(20) V. STx@)] = =V, x()VADx()]Aw).
By differentiating the relation h[x(u)] = u, we obtain
21 I = V,h[x(u)] = V,x(u)Vh[x(u)].

Combining (20) and (21), we have
Vuf[x(u)] = _}'(u)’
which was to be proved. Q.E.D.
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Inequality Constraints

Consider now the case of a problem involving both equality and inequality
constraints

(NLP) minimize f(x)
subject to  h(x) = 0, g(x) <0,

where f: R" —» R, h: R" > R™, g: R" - R’ are given functions and m < n.

The components of g are denoted by g;,...,9,. We first generalize the
definition of a regular point. For any vector x satisfying g(x) < 0, we denote
22) Ax) = {jlgx) =0,j=1,...,r}

Definition: Let x* be a vector such that h(x*) = 0, g(x*) < 0 and, for
some ¢ > 0, he C* and g € C! on S(x*;¢). We say that x* is a regular point
if the gradients Vh,(x*),..., Vh,(x*) and Vg(x*), je A(x*), are linearly
independent.

Define the Lagrangian function L: R"*™*" — R for (NLP) by
L(x, 4, 1) = f(x) + Xh(x) + 1'g(x).

We have the following optimality conditions paralleling those for equality
constrained problems (see, e.g., Luenberger, 1973).

Proposition 1.29: Let x* be a local minimum for (NLP) and assume
that, for some ¢ > 0, fe C!, he C*, ge C! on S(x*;¢), and x* is a regular
point. Then there exist unique vectors A* € R™, * € R" such that

(23) V. L(x*, A*, i) = 0,
(24) pk>0, pfgx*)=0 Vj=1...,r

If in addition fe C?, h e C?,and g € C* on S(x*; &), then for all z € R" satisfying
Vh(x*)z = 0and Vg(x*)'z = 0, j € A(x*), we have

25) ZV2 L(x*, A*, 1*)z > 0.

Proposition 1.30: Let x* be such that h(x*) = 0, g(x*) < 0, and, for
some ¢ > 0, fe C?, he C?, and ge C? on S(x*;¢). Assume that there exist
vectors A* € R™, u* € R" such that

(26) V, L(x*, A%, u*) = 0,
27 ur =0, prg(x*) =0 Vi=1,...,r,
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and for every z # 0 satisfying Vh(x*)z = 0, Vg;(x*)'z < 0, for all j € A(x*),
and Vg (x*)'z = 0, for all j € A(x*) with 1} > 0, we have

(28) Z'V2, L(x*, A*, 1*)z > 0.

Then x* is a strict local minimum for (NLP).

Optimality Conditions via Conversion to the Equality Constrained
Case

Some of the results for inequality constraints may also be proved by
using the results for equality constraints provided we assume that f, h;, g; € C 2,
In this approach, we convert the inequality constrained problem (NLP) into
a problem which involves exclusively equality constraints and then use the
results for (ECP) to obtain necessary conditions, sufficiency conditions,
and a sensitivity result for (NLP).

Consider the equality constrained problem

(29) minimize f(x)
subject to hi(x)=0,...,h,(x) =0,
g1() + 21 =0,...,9,(x) + 27 =0,

where we have introduced additional variables z,, ..., z,. It is clear that
(NLP) and problem (29) are equivalent in the sense that x* is a local minimum
for problem (NLP)if and only if (x*,[ —g,(x*)]"3, ..., [—g,(x*)]*?) isia
local minimum for (29). By introducing the vector z = (zy,...,z,) and
the functions

f(x,2) = f(x),
h{x, z) = hy(x), i=1,...,m
gj(x,z)=gj(x)+zf, j=1...,r
problem (29) may be written as
(30) minimize f(x, z)
subject to  hy(x,z) =0, gix,2)=0, i=1,....,m, j=1,...,r

Let x* be a local minimum for our original problem (NLP) as well as
a regular point. Then (x*, z¥), where z* = (z%, ..., z¥), z¥ = [—g;(x*)]"?,
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is a local minimum for problem (30). In addition (x*, z*) is a regular point
since the gradients

[Vhy(x*)]
L 0 ’
[Vg,(x*)

Vh(x*, z%) =

Vg(x*, z¥) =

can be easily verified to be linearly independent when x* is a regular point.
By the necessary conditions for equality constraints (Proposition 1.23),
there exist Lagrange multipliers A}, ..., A¥, u¥, ..., u¥ such that

J

Vi(x*, %) + Y AFVh(x*, z%) +
i=1

KEVG(x*, %) = 0.
=1

In view of the form of the gradients of f, 4;, and g;, the condition above is
equivalent to

(31a) Vf(x*) + Zl;“Vh,-(x*) + Z,u}‘ng(x*) =0,
i=1 j=1
(31b) 2[—g M =0, j=1,...,n

The last equation implies 4} = 0 for all j ¢ A(x*) and may also be written as
(32) prg(x*) =0, j=1,...,rn

The second-order necessary condition for problem (30) is applicable, in
view of our assumption f, h;, g;€ C* which in turn implies f, h;, g;€ C*. It
yields

(33) [y, v'] 0 ik 0
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forallyeR", v = (vy, ..., v,) € R" satisfying
34) Vh(x*)y = 0, Vg(x*)Yy + 2zfv; =0, j=1,...,r
By setting v; = 0 for j e A(x*) and taking into account the fact uj = 0 for
j # A(x*) [compare with (32)] we obtain, from (33) and (34),
(35) YV L(x*, 2%, u*)y = 0,
Yy, with Vh(x*)'y = 0, Vg(x*¥)y =0, je A(x*).

For every j with z¥ = 0, we may choose y = 0, v; # 0,and v = 0, for k # j,
in (33) to obtain
(36) >0,
Relations (31), (32), (35), and (36) represent all the necessary conditions
of Proposition 1.29. Thus we have obtained a proof of Proposition 1.29
(under the assumption f, h;, g;€ C?) based on the transformation of the
inequality constrained problem (NLP) to the equality constrained problem
(29).

The transformation described above may also be used to derive a set

of sufficiency conditions for (NLP) which are somewhat weaker than those
of Proposition 1.30.

Proposition 1.31: Let x* be such that h(x*) = 0, g(x*) < 0, and, for
some ¢ > 0, fe C?, he C%, and g€ C? on S(x*;¢). Assume that there exist
vectors A* € R™, u* € R” satisfying

V. L(x*, A*, u*) = 0,
ur=0, wgix*)=0, j=1,...,r,
as well as the strict complementarity condition
wf>0 if jeA(x*).

Assume further that for all y # 0 satisfying VA(x*)'y = 0 and Vg (x*)'y = 0,
for all j e A(x*), we have

YVEL(x*, 2%, y¥)y > 0.
Then x* is a strict local minimum for (NLP).

Proof: From (31), (33), and (34), we see that our assumptions imply
that the sufficiency conditions of Proposition 1.24 are satisfied for (x*, z*)
and A*, 1*, where z* = ([—g,(x*)]"3, ..., [—g,(x*)]*/?) for problem (29).
Hence (x*, z*) is a strict local minimum for problem (29) and it follows that
X* is a strict local minimum of f'subject to h(x) = 0,and g(x) < 0. Q.E.D.
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We formalize some of the arguments in the preceding discussion in the
following proposition.

Proposition 1.32: If the sufficiency conditions for (NLP) of Proposition
1.31 hold, then the sufficiency conditions of Proposition 1.24 are satisfied
for problem (29). If in addition x* is a regular point for (NLP), then (x*, z*),
where z* = ([—g,(x*)]'%, ..., [—g.(x*)]*/?), is a regular point for problem
(29).

Linear Constraints

The preceding necessary conditions rely on a regularity assumption on
the local minimum x* to assert the existence of a unique Lagrange multiplier
vector. When x* is not regular, there are two possibilities. Either there
does not exist a Lagrange multiplier vector or there exists an infinity of
such vectors. There are a number of assumptions other than regularity
that guarantee the existence of a Lagrange multiplier vector. A very useful
one is linearity of the constraint functions as in the following proposition.

Proposition 1.33: Let x* be a local minimum for the problem
minimize f(x)
subjectto ajx —b; <0, j=1,...,r,

where f:R" > R,beR",and q;eR", j = 1, ..., r. Assume that, for some ¢ > 0,
fe C! on S(x*; ¢). Then there exists a vector u* = (uf, ..., i) such that

Vf(x*) + Y uta; =0,
=1

J

p¥ =0, u¥(a;x* — by =0, j=1...,r

Sufficiency Conditions under Convexity Assumptions
Consider the convex programming problem
37 minimize f(x)
subject to  g(x) < 0,

where we assume that the functions f and ¢y, ..., g, are convex and differ-
entiable over R". Then every local minimum is global, and the necessary
optimality conditions of Proposition 1.29 are also sufficient as stated in the
following proposition.
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Proposition 1.34: Assume that f and ¢, ..., g, are convex and con-
tinuously differentiable functions on R". Let x* € R" and u* € R" satisfy

V() + Vg(x*)p* = 0,
g <0, w20, wgx) =0 j=1..,r

Then x* is a global minimum of problem (37).

1.5 Algorithms for Minimization Subject to Simple Constraints

There is a large number of algorithms of the feasible direction type for
minimization of differentiable functions subject to linear constraints. A
survey of some of the most popular ones may be found in the volume edited
by Gill and Murray (1974), and computational results may be found in the
paper by Lenard (1979). In this section, we shall focus on a new class of
methods that is well suited for problems with simple inequality constraints
such as those that might arise in methods of multipliers and differentiable
exact penalty methods, where the simple constraints are not eliminated by
means of a penalty but rather are treated directly (cf. Sections 2.4 and 4.3).
We shall restrict ourselves exclusively to problems involving lower and/or
upper bounds on the variables, but there are extensions of the class of al-
gorithms presented that handle problems with general linear constraints
(see Bertsekas, 1980c).

Consider the problem

(SCP) minimize f(x)
subjectto x >0,

where f: R" —» R is a continuously differentiable function. By applying
Proposition 1.22, we obtain the following necessary conditions for optimality
of a vector x* > 0.

(1a) of (x*)/ox' = 0 if x>0, i=1,...,n
(1b) of (x*)/ox" = 0 if x=0, i=1,...,n

An equivalent way of writing these conditions is
(@) x* = [x* — aVf (x)]",
where o is any positive scalar and [-]* denotes projection on the positive
orthant; i.e., for every z = (2%, ..., z"),

max{0, z!}

3) [z]" =

max {0, z"}
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If a vector x* > O satisfies (1), we say that it is a critical point with respect to
(SCP).

Equation (2) motivates the following extension of the steepest descent
method

4 Xee1 = [ — akvf(xk)]+’ k=0,1,...,

where a is a positive scalar stepsize. There are a number of rules for choosing
o, that guarantee that limit points of sequences generated by iteration (4)
satisfy the necessary condition (1) (Goldstein, 1964, 1974; Levitin and
Poljak, 1965; McCormick, 1969; Bertsekas, 1974c). The rate of convergence
of iteration (4) is however at best linear for general problems. We shall
provide Newton-like generalizations of iteration (4) which preserve its
basic simplicity while being capable of superlinear convergence.
Consider an iteration of the form

©) Xer1 =[x — akaVf(xk)]+’ k=0,1,...,

where D, is a positive definite symmetric matrix and o, is chosen by search
along the arc of points

©) x(@) = [x — aD Vf(x)]",  a=0.

It is easy to construct examples (see Fig. 1.2) where an arbitrary choice of
the matrix D, leads to situations where it is impossible to reduce the value

A X2

~ LN > X!

b g

[Xk - Dka(Xk)] +

Xy - Dy VE(xy)
CONTOURS OF f

FIG. 1.2
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of the objective by suitable choice of the stepsize a (i.e., f[xp(@)] = f (i)
¥ o > 0). The following proposition identifies a class of matrices D, for which
an objective reduction is possible. Define, for all x > 0,

o) I*(x) = {i|x = 0,3f (x)/ox' > O}.

We say that a symmetric matrix D with elements d” is diagonal with
respect to a subset of indices I = {1,2,...,n},if
®) di=0 Viel, j=12,...,n, j#I

Proposition 1.35: Let x > 0 and D be a positive definite symmetric
matrix which is diagonal with respect to I*(x), and denote

9) x(e) = [x — aDVf(x)]™" Yo>0.
(a) The vector x is a critical point with respect to (SCP), if and only if
x = x(a) Va>0.

(b) If x is not a critical point with respect to (SCP), there exists a scalar
& > 0 such that

(10) fIx@] <f(x) Vae(0,al

Proof: Assume without loss of generality that for some integer r, we
have

I"x)={r+1,...,n}

Then D has the form

D ___0 ]
(11) D _ : dr+1 0 ’

0 !
0 d"
where D is positive definite and &' > 0,i=r+1,...,n
Denote

(12) p = DVf(x).

(a) Assume x is a critical point. Then, using (1), (7),
f(x)ox' =0 Vi=1,...,r
f(x)ox' >0, x'=0 Vi=r+1,...,n
These relations and the positivity of d,i = r + 1, ..., n, imply that
pP=0 Vi=1,...,r,
pP>0 Vi=r+1,...,n
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Since xi(x) = [x' — ap']* and x' =0 for i =r + 1,...,n, it follows that
x'(x) = x', for all i, and a > 0.
Conversely assume that x = x(«) for all « > 0. Then we must have

pP=0 Vi=1...,n with x>0,
pP>0 Vi=1,...,n with x'=0.

Now by definition of I*(x), we have that if x' =0 and i¢I7(x), then
9f (x)/0x" < 0. This together with the relations above imply

; :9f (%) (X)
Since, by (11) and (12),
P of (x)/ox
|=p|
Pr of (x)/ox"

and D is positive definite, it follows that
pP=0f(x)ox'=0 Vi=1,...,r

Since, for i = r + 1,...,n, of (x)/dx' > 0, and x' = 0, we obtain that x is a
critical point.

(b) For i=r+1,...,n we have §f(x)/ox' > 0, x' = 0, and, from
(11) and (12), p > 0. Since x(2) = [x' — ap']*, we obtain

(13) x=xi()=0 VYax=0, i=r+1,...,n
Consider the sets of indices

(14 I, ={i|x>0 or x=0 and p'<0, i=1...,r}
15 I,={ix*=0 and p'>0, i=1...,r}

Let

(16) a, = sup{a > 0|x' — ap’ > 0,i€l,}.

Note that, in view of the definition of I, «, is either positive or + co. Define
the vector p with coordinates

o pt if el
17 b=
17 P {0 if iel, or i=r+1,...,n
In view of (13)-(16), we have

(18) x(a) = x — op Vae(0,oy).
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In view of (15) and the definition of I*(x), we have

(19) f (x)/ox' < 0 Viel,,
and hence
o (x) ;

Now using (17) and (20), we have

_ I« I
21 : Vi(x)p = ~p' > -~ p'.
@1 f (x)'P ; o P _i; o P
Since x is not a critical point, by part (a) and (18), we must have x # x(«)
for some o > 0, and hence also in view of (13), p’ # 0 for someie{l,...,r}.
In view of the positive definiteness of D and (11) and (12), it follows that

It follows, from (21), that
Vi(x)p > 0.

Combining this relation with (18) and the fact that «; > 0, it follows that
p is a feasible descent direction at x and there exists a scalar & > 0 for which
the desired relation (10) is satisfied. Q.E.D.

Based on Proposition 1.35, we are led to the conclusion that the matrix
D, in the iteration

Xer1 = [Xe — o4 DV ()]™
should be chosen diagonal with respect to a subset of indices that contains
I (x) = {ilxi = 0, 9f (x,)/0x" > 0}.

Unfortunately, the set I7(x,) exhibits an undesirable discontinuity at
the boundary of the constraint set whereby given a sequence {x,} of interior
points that converges to a boundary point X, all the sets I*(x,) may be
strictly smaller than the set I™(X). This causes difficulties in proving con-
vergence of the algorithm and may have an adverse effect on its rate of
convergence. (This phenomenon is quite common in feasible direction
algorithms and is referred to as zigzagging or jamming.) For this reason,
we shall employ certain enlargements of the sets I*(x,) with the aim of
bypassing these difficulties.
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The algorithm that we describe utilizes a scalar ¢ > 0 (typically small),
a fixedt diagonal positive definite matrix M (for example, the identity),
and two parameters € (0, 1) and o € (0, 3) that will be used in connection
with an Armijo-like stepsize rule. An initial vector x5 > 0 is chosen and at
the kth iteration of the algorithm, we have a vector x;, > 0. Denote

we = 1x =[x = MVf(x)]" |, & = min{e, w,}.

(Actually there are several other possibilities for defining the scalar ¢, as
can be seen by examination of the proof of the subsequent proposition. It is
also possible to use a separate scalar ¢ for each coordinate.)

(k + 1)st Iteration of the Algorithm

We select a positive definite symmetric matrix D, which is diagonal
with respect to the set I,” given by

(22) I} = {i|0 < x§ < &, of (x,)/0x" > O}.
Denote

(23) P = DV f(x),

(24) (o) =[x, — ap]” Va>0.
Then x, ,, is given by

(25) X1 = X,

where

(26) % = ™,

and m, is the first nonnegative integer m such that

@(Xk)p,' + Z (%_()CL) i

Q@7 fx) = fIx(BM] 2 0{/5'"2 Xk = Xi(ﬁ"’)]}-

Wi i

iere O0x ier, Ox

The stepsize rule (26) and (27) is quite similar to the Armijo rule of

Section 1.3. We have chosen a unity initial stepsize, but any other positive

initial stepsize can be incorporated in the matrix D;. so this choice involves
no loss of generality. The results that follow can also be proved if

5 T,

i k
i
iel? (?x

+ Actually the results that follow can also be proved if the fixed matrix M is replaced by a
sequence of diagonal positive definite matrices {M,] with diagonal elements that are bounded
above and away from zero.
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SET OF ACCEPTABLE ACCEPTABLE UNSUCCESSFUL
STEPSIZE)S/\‘ STEPSIZE oy TRIAL STEPSIZES
AN
0 N Bz | B 1
* X % > o

1

i yA—

E ; \—o aZ af(ka) D;i(

el t ox!

x +3 M x'i( - x,,i((a)
{ fx(a)] - fix) } el ax!

FIG. 1.3 Line search by the Armijo-like rule (26), (27).

in (27) is replaced by vy )¢, [9f (x,)/0x7]pi, where y, = min{1, &} and
&, = sup{a|xi — api > 0V i¢ I, }. Other variations of the stepsize rule are
also possible. The process of determining the stepsize o, is illustrated in
Fig. 1.3. When I, is empty, the right-hand side of (27) becomes o ™Vf (x;) pi
and is identical to the corresponding expression of the Armijo rule for
unconstrained minimization. Note that, for all k, I, > I*(x,) so D, is
diagonal with respect to I*(x,). It is possible to show that for all m > 0,
the right-hand side of (27) is nonnegative and is positive if and only if x;
is not a critical point. Indeed since D, is positive definite and diagonal with
respect to 1,7, we have

~pi. >0 Vk=0,1,...,
i axl pk

while for all i€ I}, in view of the fact df (x*)/ox’ > 0, we have pj > 0, and
hence

Xk — xi(a) >0 Va>0, ielf, k=0,1,...,

) . )
fa(xx.-k)EXi—Xi(a)JZO Va>0, iel, k=0,1,....

This shows that the right-hand side of (27) is nonnegative. If x; is not critical,
then it is easily seen [compare also with the proof of Proposition 1.35(b)]
that one of the inequalities (28) or (29) is strict for « > 0 so the right-hand
side of (27) is positive for all m > 0. A slight modification of the proof of
Proposition 1.35(b) also shows that if x, is not a critical point, then (27) will
be satisfied for all m sufficiently large so the stepsize «, is well defined and
can be determined via a finite number of arithmetic operations. If x, is a
critical point then, by Proposition 1.35(a), we have x, = x,(«) for all « > 0.

(29)
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Furthermore the argument given in the proof of Proposition 1.35(a) shows
that

Fx)
) fa(xxi") Pi=0,

i¢ry
so both terms in the right-hand side of (27) are zero. Since also x, = x,(«)
for all a >0, it follows that (27) is satisfied for m = O thereby implying
that
Xee1 = X(1) = x, if x,iscritical.

In conclusion the algorithm is well defined, decreases the value of the
objective function at each iteration k for which x, is not a critical point, and
essentially terminates if x, is critical. We proceed to analyze its convergence
and rate of convergence properties. To this end, we shall make use of the
following two assumptions:

Assumption (A): The gradient V f is Lipschitz continuous on each bounded
set of R"; i.e., given any bounded set S = R" there exists a scalar L (depending
on S) such that

(30) IV/(x) = ViWI < Lix —y| Vx,yeS.

Assumption (B):  There exist positive scalars A, and A, and nonnegative
integers q, and q,, such that

(Bl)  Awd|z]? < 2Dz < A,wl|z]2 VzeR', k=0,1,...,

where
wi =[x — [x — MVf(x)]" .

Assumption (A) is not essential for the result of Proposition 1.36 that
follows but simplifies its proof. It is satisfied for just about every problem
likely to appear in practice. For example, it is satisfied when f'is twice differ-
entiable, as well as when f is an augmented Lagrangian of the type con-
sidered in Chapter 3 for problems involving twice differentiable functions.
Assumption (B) is a condition of the type utilized in connection with un-
constrained minimization algorithms (compare with the discussion preceding
Proposition 1.8). When g, = g, = 0, relation (31) takes the form

(32) Mlz|? < 2Dyz < Ay|z)? VzeR", k=0,1,...,

and simply says that the eigenvalues of D, are uniformly bounded above
and away from zero.

Proposition 1.36: Under Assumptions (A) and (B) above, every limit
point of a sequence {x,} generated by iteration (25) is a critical point with
respect to (SCP).
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Proof: Assume the contrary; ie., there exists a subsequence {x;}x
converging to a vector X which is not critical. Since {f (x;)} is decreasing
and f is continuous, it follows that {f(x,)} converges to f(%) and therefore

L) — [ )] = 0.

Since each of the sums in the right-hand side of (27) is nonnegative [compare
with (28) and (29)], we must have

33 0y L0,
i¢lr 0%
(34) 5 TOD i w10,

i
ielf ox

Also since X is not critical and M is positive definite and diagonal, we have
clearly |X — [X — MVf(X)]*| # 0, so (31) implies that the eigenvalues of
{D,}x are uniformly bounded above and away from zero. In view of the
fact that D, is diagonal with respect to I/, it follows that there exist positive
scalars 1, and 7, such that, for all k € K that are sufficiently large,

35) 0 < 1, 0f efoxt < pi < T, of ()fox' Vielf,
of (xi) | ; Of (%) of (xi) |?
(36) 111';; ox' = iséZI:,:pk ox* = Zzig;t ox'

We shall show that our hypotheses so far lead to the conclusion that

37 liminf o, = 0.

k=

keK
Indeed since X is not a critical point, there must exist an index i such that
either

(38) >0 and of®X)oxi #0
or
(39) =0 and of(X)/dx <O.

If i¢ I for an infinite number of indices k € K, then (37) follows from
(33), (36), (38), and (39). If ie I, for an infinite number of indices k€ K,
then for all those indices we must have 9f (x;)/0x’ > 0, so (39) cannot hold.
Therefore, from (38),

(40) >0 and of (X)/ox' > 0.
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Since, for all k € K for which i€ I [compare with (29)], we have
of (x0) 6f (xk)
jezﬁ o [xt — xi(%)] >
it follows from (34) and (40) that
lim [xi — xi(e)] = O.

k= o0
kekK

[xi — xi(@)] = 0,

Using the above relation, (35), and (40), we obtain (37).

We shall complete the proof by showing that {«,}x is bounded away
from zero thereby contradicting (37). Indeed in view of (31), the subsequences
{xi}k> {P} k> and {x ()} g, @ € [0, 1], are uniformly bounded, so by Assump-
tion (A) there exists a scalar L > 0 such that, for all t € [0, 1], 2 € [0, 1], and
k e K, we have

(41) [Vf(xi) — VfDxi — t[xe — x(@)]]] < tL]x; — xi(@)].
For all ke K and « € [0, 1], we have
SIx@)] = f(x) + Vf () Txa(@) — x;]

1
+ fo Vf G = Vf Dxie — thxe — xi(@)]1} delx, — ()],
sO

£ = F T = VG T — )]
" fOI{Vf[xk ~ tfxe — x@)T] = VY difxe — )]

> V() T — %]
- Vo — 15 — @] — V0! del, — @)l

and finally, by using (41),
(42)  f(x0) = fIx@)] = V) Txe — x(0)] — 3L x — xp(0) |2

For ie I, we have xj(«) = [xi — api]* > xi — api and pi > 0, so
0 < xi — xi(®) < ap}. It follows, using (35), that

f( k)

43) > Ix; — xi(@) > <« Z Pilxi — xi(0)] < A, Z — xi(0)].

ielf ielf iel

Consider the sets

Liw={ilof (foxt > 0,i¢ I}, I = {ilaf (x)/ox' < 0,i¢ I}
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For all ie I, , we must have xi > ¢ for otherwise we would have ielf.
Since |X — [Xx — MVf(X)]*| # 0, we must have liminfy_ o xex & > 0 and
g > 0 for all k. Let £ > 0 be such that & < ¢, for all ke K, and let B be such
that | pkl < Bfor all i and k € K. Then, for all « € [0, &/B], we have xi(a) =
xi — apj, so it follows that

@) 3 ¥ (x")[ x@]=a Y Y Vae[O, %]

iely x 0 iely,k ox!

Also, for all « > 0, we have xi — xi(x) < ap, and since 9f (x;)/0x" <0,
foralliel, ,, we obtain

Z af(-xk) [x xk( )] > o Z af(xk) p,'

k
i ')
ielz x 0x ielz,k 0

(45)

Combining (44) and (45), we obtain

@y 3 L xezay L0y Vae[O,%].

igI ox' i¢It
For all « > 0, we also have
|x;¢_x;c(a)|sa|p;c| Vi:l)“"n

Furthermore, it is easily seen, using Assumption (B), that there exists 1 > 0
such that

2. (@ D<Ay af(x") p.  VkeKk.

i¢ I i¢I;f

Using the last two relations, we obtain, for all « > 0,

@7) > Ix - si@P <o ¥ LWy

i¢I} i¢It

We now combine (42), (43), (46), and (47) to obtain, for all a € [0, £/B]
witha < land ke K,

pL VkeKk.

22 )
@ o0 - rTa@) = (s - 5) 3 T

of (xk)

+ (1 — 304, L) Z+ [xi — xi(@)].

iely

Suppose « is chosen so that

(49) 0 <a< B, 1 — 3all > o, 1 —3ad,L >0, a<l,
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or equivalently

€ 21 — o) 2(1 — o) !
B’ AL ° I,L |
Then we have from (48) and (49), for all ke K,

af(xk) i af(-xk) i i
.-;:,: o Pt iEZI’: Pl b xk(a)]}.

(50) 0<a< min{

F0u) — fDx@] = a{a

This means that if (50) is satisfied with f™ = «, then the inequality (27) of
the Armijo-like rule will be satisfied. It follows from the way the stepsize is
reduced that «, satisfies

g 21 —0) 21 — o)

> in<— = .
(1) ozk_ﬂmm{B, L 4L ,1} VkeK

This contradicts (37) and proves the proposition. Q.E.D.

We now focus attention at a local minimum x* satisfying the following
second-order sufficiency conditions which are in fact the ones of Proposition
1.31 applied to (SCP), as the reader can easily verify. For all x > 0, we
denote by A(x) the set of indices of active constraints at x; i.e.,

(52) AX) = {ilx =0} Vx>0

Assumption (C): The local minimum x* of (SCP) is such that, for some
o0 > 0, f is twice continuously differentiable in the open sphere S(x*; 6) and
there exist positive scalars m, and m, such that

(53) my|z]* < ZV¥(x)z < my|z]* VYxeS(x*;0) and z #0,
suchthat z'=0 VieA(x*).

Furthermore,
(54) of (x*)/ox' > 0 Vie A(x*).

The following proposition demonstrates an important property of the
algorithm, namely, that under mild conditions it is attracted by a local
minimum x* satisfying Assumption (C) and identifies the set of active con-
straints at x* in a finite number of iterations. Thus, if the algorithm converges
to x*, then after a finite number of iterations it is equivalent to an unconstrained
optimization method restricted on the subspace of active constraints at x*.
This property is instrumental in proving superlinear convergence of the
algorithm when the portion of D,, corresponding to the indices i ¢ I, is
chosen in a way that approximates the inverse of the portion of the Hessian
of f corresponding to these same indices.
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Proposition 1.37: Let x* be a local minimum of (SCP) satisfying
Assumption (C), and let Assumption (B) hold in the stronger form whereby,
in addition to (31), it is assumed that there exists a scalar 4; > 0 such that
the diagonal elements dj of the matrices D, satisfy

(55) I, <di  Vk=01,...,icl.

There exists a scalar & > 0 such that if {x;} is a sequence generated by
iteration (25) and for some index k, we have

Ixg — x*| <9,
then {x,} converges to x*, and we have
If = A(x) = A(x*) Vk>k+ 1

Proof: Since f is twice differentiable on S(x*;9), it follows that there
exist scalars L > 0 and §, € (0, 6] such that for all x and X with |x — x*| < §,
and |X — x*| < 0,, we have

IVf(x) = Vf(3)| < L|x — X|.
Also for x, sufficiently close to x*, the scalar
wy =[x — [xe — Mf(xk)]+|

is arbitrarily close to zero while, in view of (54), we have

[x;; - m"af(—xik):l+ =0 VieA(x*®),
0x

where m' is the ith diagonal element of M. It follows that, for x, sufficiently
close to x*, we have

(56) xi<wo=¢g <e VieAX*),
while
57) XL > g Vi¢ A(x®).

Since, by Assumption (C), 9f (x,)/0x" > 0 for all i € A(x*) and x;, sufficiently
close to x*, (56) and (57) imply that there exists J, € (0, §,] such that

(58) A(x*) = I} Vk suchthat |x, — x*|<J,.
Also there exist scalars & > 0 and 65 € (0, d,] such that

(59) xi>& Vi¢A(x*) and k suchthat [x, — x*| < J3.
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By repeating the argument in the proof of Proposition 1.36 that led to (51),
we find that there exists a scalar & > 0 such that

(60) oy > a Vk suchthat |x, — x*| < ;.
By using (55) and (58), it follows that
61) 0 < 4, of (x)/0x" < pi Vie A(x*) and k

such that |x, — x*| < 65,
while, by Assumption (B), there exists a scalar A > 0 such that
of (%)
ox'

Since df (x*)/ox" > 0 for all i € A(x*) and 9f (x*)/dx" = O for all i ¢ A(x*), it
follows from (58)-(62) that there exists a scalar §, € (0, §5] such that

2

Vk suchthat |x, —x*| < J;.

(62) PN A ADY

i¢ A(x%) i¢ A(x*)

(63) A(x*) = A(X 4 1) Vk suchthat |x, — x*| <9,
and
(64) [ X1 — X*| < 05 Vk suchthat [x, —x*| <d,.

In view of (58), we obtain, from (63) and (64),
(65) A(x*) = A(re+q1) = I, Vk suchthat |x, — x*|<,.

Thus when |x, — x*| < J,, we have |x;.; — x*| < 85, A(x*) = A(x,+ ),
and the (k + 1)th iteration of the algorithm reduces to an iteration of an
unconstrained minimization algorithm on the subspace of active constraints
at x* to which Proposition 1.12 applies. From this proposition, it follows
that there exists an open set N(x*) containing x* such that N(x*) < S(x*;é,)
and with the property that if x,., e N(x*) and A(x,,,) = A(x*), then
X +2 € N(x*) and, by (63), A(x;+,) = A(x*). This argument can be repeated
and shows that if for some k > 0 we have

xg€ N(x*),  A(xp) = A(X*),
then {x,} - x* and
xke N(X*), A(xk) = A(x*) Vk Z E

To complete the proof, it is sufficient to show that there exists & > 0 such
that if |x, — x*| < J then x,,, € N(x*) and A(x;.,) = A(x*). Indeed by
repeating the argument that led to (63) and (64), we find that given any
5 > 0 there exists a & > 0 such that if |x, — x*| < &, then

IXke1 — x*| < 6, AXp 4 1) = A(x*).

By taking § sufficiently small so that S(x*;J) = N(x*) the proof is com-
pleted. Q.E.D.
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Under the assumptions of Proposition 1.37, we see that if the algorithm
converges to a local minimum x* satisfying Assumption (C) then it reduces
eventually to an unconstrained minimization method restricted to the
subspace

S* = {x|x' =0, Vie A(x*)}.

Furthermore, as shown in the proof of Proposition 1.37 [compare with
(58)], for some index k, we shall have

(66) I = Ax*) Yk=k

This shows that if the portion of the matrix D, corresponding to the indices
i¢ I is chosen to be the inverse of the Hessian of f with respect to the indices
i¢ I, then the algorithm eventually reduces to Newton’s method restricted
to the subspace S*.

More specifically, by rearranging indices if necessary, assume without
loss of generality that

67) If={r+1,...,n}

where r, is some integer. Then D, has the form

(68) D, =

where di > 0,i = r, + 1,..., n, and Dy can be an arbitrary positive definite
matrix. Suppose we choose D, to be the inverse of the Hessian of f with
respect to the indices i = 1, ..., ry; i.e., the elements [D; *];jof Dy ' are

(69) [D; 1= 0*f(xfoxiox!  Vijély.

By Assumption (C), V2f(x*) is positive definite on S*, so it follows from
(66) that this choice is well defined and satisfies the assumption of Proposition
1.37 for k sufficiently large. Since the conclusion of this proposition asserts
that the method eventually reduces to Newton’s method restricted to the
subspace S*, a superlinear convergence rate result follows. This type of
argument can be used to construct a number of Newton-like and quasi-
Newton methods and prove corresponding convergence and rate of con-
vergence results. We state one of the simplest such results regarding a
Newton-like algorithm which is well suited for problems where fis strictly
convex and twice differentiable. Its proof follows simply from the preceding
discussion and Propositions 1.15 and 1.17 and is left to the reader.
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Proposition 1.38:  Let f be convex and twice continuously differentiable.
Assume that (SCP) has a unique optimal solution x* satisfying Assumption
(C), and there exist positive scalars m; and m,, such that

my|z]> < 2V (0)z S mylzlP Vze{x[f(x) <f(xo)}-

Assume also that in the algorithm (22)-(27), the matrix D, is given by
D, = H; ', where H, is the matrix with elements H i/ given by

Hi = if i#j andeither iely or jely,

K7 08% (x)/0x' dx!  otherwise.
Then the sequence {x,} generated by iteration (25) converges to x*, and
the rate of convergence of {|x, — x*|} is superlinear (of order at least two if
V2fis Lipschitz continuous in a neighborhood of x*).

It is worth noting that when f(x) is a positive definite quadratic function,
the algorithm of Proposition 1.38 finds the unique solution x* in a finite
number of iterations, assuming x* satisfies Assumption (C).

An additional property of the algorithm of Proposition 1.38 is that after
a finite number of iterations and once the set of binding constraints is
identified, the initial unity stepsize is accepted by the Armijo rule. Computa-
tional experience with the algorithm suggests that this is also true for most
iterations even before the set of binding constraints is identified. In some
cases, however, it may be necessary to reduce the initial unity stepsize
several times before a sufficient reduction in objective function value is
effected. A typical situation where this may occur is when the scalar ¥
defined by

?k = min{l»&k}’ &k = SuP{alxi - (Xp;c = 09 x;.c > O’léllj-}

is much smaller than unity. Under these circumstances a nonbinding con-
straint that was not included in the set I becomes binding after a small
movement along the arc {x,(«)|o > 0} and it may happen that the objective
function value increases as o becomes larger than j,. To correct such a
situation, it may be useful to modify the Armijo rule so that if after a fixed
number r of trial stepsizes 1, B, ..., p7 ' have failed to pass the Armijo
rule test, then 7, is computed and, if it is smaller than pr~1, it is used as the
next trial stepsize.

Another (infrequent) situation, where the algorithm of Proposition 1.38
can exhibit a large number of stepsize reductions and slow convergence
when far from the optimum, arises sometimes if the set of indices

(70) I} = {il0 < xi < &, pi > 0},
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where p, = D,Vf(x,), is strictly larger than the set I; of (22). (Note that,
under the assumptions of Proposition 1.38, we always have I;}} < I,} with
equality holding in a neighborhood of the optimal solution x*.) Under these
circumstances, the initial motion along the arc {x(x)|« > 0} may be along a
search direction that is not a Newton direction on any subspace. A possible
remedy for this difficulty is to combine the Armijo rule with some form
of line minimization rule.

Extension to Upper and Lower Bounds

The algorithm (22)-(27) described so far in this section can be easily
extended to handle problems of the form

minimize f(x)
subjectto b; < x < b,,

where b, and b, are given vectors of lower and upper bounds. The set I;
is replaced by

IF = {i|b} < xi < b} + ¢ and df (x,)/0x' > 0
or by — g < xk < b}, and 9f (x,)/0x* < 0},
and the definition of x,(«) is changed to
x((2) =[x — aDVf (x)]%,

where for all ze R" we denote by [z]* the vector with coordinates

b} if by <z,

[z2]# =17 if by <z < b,

b} if 2 <bl.

The scalar ¢, is given by
& = min{e, [x, — [x, — MVf(x)]7 |}.

The matrix Dy is positive definite and diagonal with respect to I, and M
is a fixed diagonal positive definite matrix. The iteration is given by

Xe+1 = Xi(0),

where o, is chosen by the Armijo rule (26), (27) with [x} — xi(8™)]"* replaced
by [x; — xi(B™]1%.

Similar extensions of the basic algorithm can be provided for problems
where only some of the variables x' are simply constrained by upper and/or
lower bounds.
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1.6 Notes and Sources

Notes on Section 1.2:  The proof of the second implicit function theorem
may be found in Hestenes (1966, p. 23). The theorem itself is apparently due
to Bliss (Hestenes, personal communication).

Notes on Section 1.3: The convergence analysis of gradient methods
given here stems from the papers of Goldstein (1962, 1966), and bears sim-
ilarity with the corresponding analysis in Ortega and Rheinboldt (1970).
Some other influential works in this area are Armijo (1966), Wolfe (1969),
and Daniel (1971). Zangwill (1969) and Polak (1971) have proposed general
convergence theories for optimization algorithms. The gradient method
with constant stepsize was first analyzed by Poljak (1963). Proposition 1.12
is thought to be new. The linear convergence rate results stem from Kan-
torovich (1945) and Poljak (1963), while the superlinear rate results stem
from Goldstein and Price (1967). For convergence rate analysis of the
steepest descent method near local minima with singular Hessian, see Dunn
(1981b). The spacer step theorem (Proposition 1.16) is due to Zangwill
(1969). For an extensive analysis and references on Newton-like methods,
see Ortega and Rheinboldt (1970). The modification scheme for Newton’s
method based on the Cholesky factorization is related to one due to Murray
(1972).

Conjugate direction methods were originally developed in Hestenes and
Stiefel (1952). Extensive presentations may be found in Faddeev and Faddeeva
(1963), Luenberger (1973), and Hestenes (1980). Scaled (k + 1)-step con-
jugate gradient methods for problems with Hessian matrix of the form

k
Q=M+ ) v
i=1

were first proposed in Bertsekas (1974a). For further work on this subject,
see Oren (1978).

Extensive surveys of quasi-Newton methods can be found in Avriel
(1976), Broyden (1972), and Dennis and Mor¢ (1977).

Notes on Section 1.4: Presentations of optimality conditions for con-
strained optimization can be found in many sources including Fiacco and
McCormick (1968), Mangasarian (1969), Cannon et al. (1970), Luenberger
(1973), and Avriel (1976). For a development of optimality conditions based
on the notion of augmentability, which is intimately related to methods of
multipliers, see Hestenes (1975).

Notes on Section 1.5: The methods in this section are new and were
developed while the monograph was being written. Extensions to general
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linear constraints may be found in Bertsekas (1980c). The methods are par-
ticularly well suited for large scale problems with many simple constraints.
An example is nonlinear multicommodity flow problems arising in com-
munication and transportation networks (see Bertsekas and Gafni, 1981).
The constrained version of the Armijo rule (26), (27) is based on a similar
rule first proposed in Bertsekas (1974c). The main advantage that the methods
of this section offer over methods based on active set strategies [compare
with Gill and Murray (1974) and Ritter (1973)] is that there is no limit to the
number of constraints that can be added or dropped from the active set in
a single iteration, and this is significant for problems of large dimension. At
the same time, there is no need to solve a quadratic programming problem
at each iteration as in the Newton and quasi-Newton methods of Levitin
and Poljak (1965), Garcia-Palomares (1975), and Brayton and Cullum (1979).
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