

Lessons from AlphaZero for

Optimal, Model Predictive, and

Adaptive Control

by

Dimitri P. Bertsekas

Arizona State University
and

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

Athena Scientific
Post Office Box 805
Nashua, NH 03060
U.S.A.

Email: info@athenasc.com
WWW: http://www.athenasc.com

c© 2022 Dimitri P. Bertsekas
All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.
Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Con-
trol
Includes Bibliography and Index
1. Mathematical Optimization. 2. Dynamic Programming. I. Title.
QA402.5 .B465 2020 519.703 00-91281

ISBN-10: 1-886529-17-5, ISBN-13: 978-1-886529-17-5

2nd Printing: In this printing, minor typos were corrected, Section 6.5 was
expanded to include material on incremental rollout, and small editorial
changes were made.

ABOUT THE AUTHOR

Dimitri Bertsekas studied Mechanical and Electrical Engineering at the
National Technical University of Athens, Greece, and obtained his Ph.D.
in system science from the Massachusetts Institute of Technology. He has
held faculty positions with the Engineering-Economic Systems Department,
Stanford University, and the Electrical Engineering Department of the Uni-
versity of Illinois, Urbana. Since 1979 he has been teaching at the Electrical
Engineering and Computer Science Department of the Massachusetts Insti-
tute of Technology (M.I.T.), where he is McAfee Professor of Engineering.
In 2019, he joined the School of Computing and Augmented Intelligence at
the Arizona State University, Tempe, AZ, as Fulton Professor of Compu-
tational Decision Making.

Professor Bertsekas’ teaching and research have spanned several fields,
including deterministic optimization, dynamic programming and stochas-
tic control, large-scale and distributed computation, artificial intelligence,
and data communication networks. He has authored or coauthored nu-
merous research papers and nineteen books, several of which are currently
used as textbooks in MIT classes, including “Dynamic Programming and
Optimal Control,” “Data Networks,” “Introduction to Probability,” and
“Nonlinear Programming.” At ASU, he has been focusing in teaching and
research in reinforcement learning, and he has developed several textbooks
and research monographs in this field since 2019.

Professor Bertsekas was awarded the INFORMS 1997 Prize for Re-
search Excellence in the Interface Between Operations Research and Com-
puter Science for his book “Neuro-Dynamic Programming” (co-authored
with John Tsitsiklis), the 2001 AACC John R. Ragazzini Education Award,
the 2009 INFORMS Expository Writing Award, the 2014 AACC Richard
Bellman Heritage Award, the 2014 INFORMS Khachiyan Prize for Life-
Time Accomplishments in Optimization, the 2015 MOS/SIAM George B.
Dantzig Prize, and the 2022 IEEE Control Systems Award. In 2018 he
shared with his coauthor, John Tsitsiklis, the 2018 INFORMS John von
Neumann Theory Prize for the contributions of the research monographs
“Parallel and Distributed Computation” and “Neuro-Dynamic Program-
ming.” Professor Bertsekas was elected in 2001 to the United States Na-
tional Academy of Engineering for “pioneering contributions to fundamen-
tal research, practice and education of optimization/control theory, and
especially its application to data communication networks.”

ATHENA SCIENTIFIC

OPTIMIZATION AND COMPUTATION SERIES

1. Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control by Dimitri P. Bertsekas, 2022, ISBN 978-1-886529-17-5, 245
pages

2. Abstract Dynamic Programming, 3rd Edition, by Dimitri P. Bert-
sekas, 2022, ISBN 978-1-886529-47-2, 420 pages

3. Rollout, Policy Iteration, and Distributed Reinforcement Learning, by
Dimitri P. Bertsekas, 2020, ISBN 978-1-886529-07-6, 480 pages

4. Reinforcement Learning and Optimal Control, by Dimitri P. Bert-
sekas, 2019, ISBN 978-1-886529-39-7, 388 pages

5. Dynamic Programming and Optimal Control, Two-Volume Set, by
Dimitri P. Bertsekas, 2017, ISBN 1-886529-08-6, 1270 pages

6. Nonlinear Programming, 3rd Edition, by Dimitri P. Bertsekas, 2016,
ISBN 1-886529-05-1, 880 pages

7. Convex Optimization Algorithms, by Dimitri P. Bertsekas, 2015, ISBN
978-1-886529-28-1, 576 pages

8. Convex Optimization Theory, by Dimitri P. Bertsekas, 2009, ISBN
978-1-886529-31-1, 256 pages

9. Introduction to Probability, 2nd Edition, by Dimitri P. Bertsekas and
John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6, 544 pages

10. Convex Analysis and Optimization, by Dimitri P. Bertsekas, Angelia
Nedić, and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages

11. Network Optimization: Continuous and Discrete Models, by Dimitri
P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

12. Network Flows and Monotropic Optimization, by R. Tyrrell Rockafel-
lar, 1998, ISBN 1-886529-06-X, 634 pages

13. Introduction to Linear Optimization, by Dimitris Bertsimas and John
N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

14. Parallel and Distributed Computation: Numerical Methods, by Dim-
itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9,
718 pages

15. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N.
Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

16. Constrained Optimization and Lagrange Multiplier Methods, by Dim-
itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

17. Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P.
Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages

Dimitri Bertsekas Migrated

Contents

1. AlphaZero, Off-Line Training, and On-Line Play

1.1. Off-Line Training and Policy Iteration p. 3
1.2. On-Line Play and Approximation in Value Space -

Truncated Rollout p. 6
1.3. The Lessons of AlphaZero p. 8
1.4. A New Conceptual Framework for Reinforcement Learning p. 11
1.5. Notes and Sources p. 14

2. Deterministic and Stochastic Dynamic Programming Over an
Infinite Horizon

2.1. Optimal Control Over an Infinite Horizon p. 20
2.2. Approximation in Value Space p. 25
2.3. Notes and Sources p. 30

3. An Abstract View of Reinforcement Learning

3.1. Bellman Operators p. 32
3.2. Approximation in Value Space and Newton’s Method . . p. 39
3.3. Region of Stability p. 46
3.4. Policy Iteration, Rollout, and Newton’s Method p. 50
3.5. How Sensitive is On-Line Play to the Off-Line

Training Process? p. 58
3.6. Why Not Just Train a Policy Network and Use it Without .

On-Line Play? p. 60
3.7. Multiagent Problems and Multiagent Rollout p. 61
3.8. On-Line Simplified Policy Iteration p. 66
3.9. Exceptional Cases p. 72
3.10. Notes and Sources p. 79

4. The Linear Quadratic Case - Illustrations

4.1. Optimal Solution p. 82
4.2. Cost Functions of Stable Linear Policies p. 83
4.3. Value Iteration p. 86
4.4. One-Step and Multistep Lookahead - Newton Step

Interpretations p. 86

vii

viii Contents

4.5. Sensitivity Issues p. 91
4.6. Rollout and Policy Iteration p. 94
4.7. Truncated Rollout - Length of Lookahead Issues p. 97
4.8. Exceptional Behavior in Linear Quadratic Problems . . . p. 99
4.9. Notes and Sources p. 100

5. Adaptive and Model Predictive Control

5.1. Systems with Unknown Parameters - Robust and
PID Control p. 102

5.2. Approximation in Value Space, Rollout, and Adaptive . . .
Control . p. 105

5.3. Approximation in Value Space, Rollout, and Model
Predictive Control p. 109

5.4. Terminal Cost Approximation - Stability Issues p. 112
5.5. Notes and Sources p. 118

6. Finite Horizon Deterministic Problems - Discrete Optimiza-
tion

6.1. Deterministic Discrete Spaces Finite Horizon Problems p. 120
6.2. General Discrete Optimization Problems p. 125
6.3. Approximation in Value Space p. 128
6.4. Rollout Algorithms for Discrete Optimization p. 132
6.5. Rollout and Approximation in Value Space with Multistep . .

Lookahead . p. 149
6.6. Constrained Forms of Rollout Algorithms p. 158
6.7. Adaptive Control by Rollout with a POMDP Formulation p. 173
6.8. Rollout for Minimax Control p. 181
6.9. Small Stage Costs and Long Horizon - Continuous-Time . . .

Rollout . p. 190
6.10. Epilogue . p. 197

Appendix A: Newton’s Method and Error Bounds

A.1. Newton’s Method for Di↵erentiable Fixed
Point Problems p. 202

A.2. Newton’s Method Without Di↵erentiability of the
Bellman Operator p. 207

A.3. Local and Global Error Bounds for Approximation in . . .
Value Space p. 210

A.4. Local and Global Error Bounds for Approximate
Policy Iteration p. 212

References . p. 217

Preface

With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.†

John von Neumann

The purpose of this monograph is to propose and develop a new concep-
tual framework for approximate Dynamic Programming (DP) and Rein-
forcement Learning (RL). This framework centers around two algorithms,
which are designed largely independently of each other and operate in syn-
ergy through the powerful mechanism of Newton’s method. We call these
the o↵-line training and the on-line play algorithms; the names are bor-
rowed from some of the major successes of RL involving games. Primary
examples are the recent (2017) AlphaZero program (which plays chess), and
the similarly structured and earlier (1990s) TD-Gammon program (which
plays backgammon). In these game contexts, the o↵-line training algorithm
is the method used to teach the program how to evaluate positions and to
generate good moves at any given position, while the on-line play algo-
rithm is the method used to play in real time against human or computer
opponents.

† From the meeting of Freeman Dyson and Enrico Fermi (p. 273 of the Segre

and Hoerlin biography of Fermi, The Pope of Physics, Picador, 2017): “When

Dyson met with him in 1953, Fermi welcomed him politely, but he quickly put

aside the graphs he was being shown indicating agreement between theory and

experiment. His verdict, as Dyson remembered, was “There are two ways of doing

calculations in theoretical physics. One way, and this is the way I prefer, is to

have a clear physical picture of the process you are calculating. The other way is

to have a precise and self-consistent mathematical formalism. You have neither.”

When a stunned Dyson tried to counter by emphasizing the agreement between

experiment and the calculations, Fermi asked him how many free parameters he

had used to obtain the fit. Smiling after being told “Four,” Fermi remarked, “I

remember my old friend Johnny von Neumann used to say, with four parameters

I can fit an elephant, and with five I can make him wiggle his trunk.” See also

the paper by Mayer, Khairy, and Howard [MKH10], which provides a verification

of the von Neumann quotation.

ix

x Preface

Both AlphaZero and TD-Gammon were trained o↵-line extensively
using neural networks and an approximate version of the fundamental DP
algorithm of policy iteration. Yet the AlphaZero player that was obtained
o↵-line is not used directly during on-line play (it is too inaccurate due
to approximation errors that are inherent in o↵-line neural network train-
ing). Instead a separate on-line player is used to select moves, based on
multistep lookahead minimization and a terminal position evaluator that
was trained using experience with the o↵-line player. The on-line player
performs a form of policy improvement, which is not degraded by neural
network approximations. As a result, it greatly improves the performance
of the o↵-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end it uses an o↵-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator).

Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively
trained o↵-line player. This is due to the beneficial e↵ect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained o↵-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial ef-
fect of the rollout, which serves as a substitute for long lookahead
minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an o↵-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the o↵-line policy, or both), and terminal cost approximation
that is obtained o↵-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is the focal point of this work:

(a) Approximation in value space with one-step lookahead minimization

amounts to a step of Newton’s method for solving Bellman’s equation.

(b) The starting point for the Newton step is based on the results of o↵-

line training, and may be enhanced by longer lookahead minimization

and on-line rollout .

Indeed the major determinant of the quality of the on-line policy is the
Newton step that is performed on-line, while o↵-line training plays a sec-
ondary role by comparison.

Preface xi

Significantly, the synergy between o↵-line training and on-line play
also underlies Model Predictive Control (MPC), a major control system
design methodology that has been extensively developed since the 1980s.
This synergy can be understood in terms of abstract models of infinite
horizon DP and simple geometrical constructions, and helps to explain the
all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem param-
eters and on-line replanning, similar to indirect adaptive control. Here
the Bellman equation is perturbed due to the parameter changes, but ap-
proximation in value space still operates as a Newton step. An essential
requirement within this context is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process.

In this monograph we will aim to provide insights (often based on
visualization), which explain the beneficial e↵ects of on-line decision mak-
ing on top of o↵-line training. In the process, we will bring out the strong
connections between the artificial intelligence view of RL, and the control
theory views of MPC and adaptive control. Moreover, we will show that in
addition to MPC and adaptive control, our conceptual framework can be
e↵ectively integrated with other important methodologies such as multia-
gent systems and decentralized control, discrete and Bayesian optimization,
and heuristic algorithms for discrete optimization.

One of our principal aims is to show, through the algorithmic ideas
of Newton’s method and the unifying principles of abstract DP, that the
AlphaZero/TD-Gammon methodology of approximation in value space and
rollout applies very broadly to deterministic and stochastic optimal control
problems. Newton’s method here is used for the solution of Bellman’s equa-
tion, an operator equation that applies universally within DP with both dis-
crete and continuous state and control spaces, as well as finite and infinite
horizon. In this connection, we note that the mathematical complications
associated with the formalism of Newton’s method for nondi↵erentiable op-
erators have been dealt with in the literature, using sophisticated methods
of nonsmooth analysis. We have provided in an appendix a convergence
analysis for a finite-dimensional version of Newton’s method, which applies
to finite-state problems, but conveys clearly the underlying geometrical in-
tuition and points to infinite-state extensions. We have also provided an
analysis for the classical linear-quadratic optimal control problem, the as-
sociated Riccati equation, and the application of Newton’s method for its
solution.

While we will deemphasize mathematical proofs in this work, there is
considerable related analysis, which supports our conclusions, and can be
found in the author’s recent RL books [Ber19a], [Ber20a], and the abstract
DP monograph [Ber22a]. In particular, the present work may be viewed as

xii Preface

a more intuitive, less mathematical, visually oriented exposition of the core
material of the research monograph [Ber20a], which deals with approxima-
tion in value space, rollout, policy iteration, and multiagent systems. The
abstract DP monograph [Ber22a] develops the mathematics that support
the visualization framework of the present work, and is a primary resource
for followup mathematical research. The RL textbook [Ber19a] provides a
more general presentation of RL topics, and includes mathematical proof-
based accounts of some of the core material of exact infinite horizon DP, as
well as approximate DP. Much of this material is also contained, in greater
detail, in the author’s DP textbook [Ber12]. A mix of material contained
in these books forms the core of the author’s web-based RL course at ASU.

This monograph, as well as my earlier RL books, were developed
while teaching several versions of my course at ASU over the last four
years. Videolectures and slides from this course are available from my
website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the present
book. The hospitable and stimulating environment at ASU contributed
much to my productivity during this period, and for this I am very thankful
to my colleagues and students for useful interactions. My teaching assis-
tants, Sushmita Bhattacharya, Sahil Badyal, and Jamison Weber, during
my courses at ASU have been very supportive. I have also appreciated
fruitful discussions with colleagues and students outside ASU, particularly
Moritz Diehl, who provided very useful comments on MPC, and Yuchao Li,
who proofread carefully the entire book, collaborated with me on research
and implementation of various methods, and tested out several algorithmic
variants.

Dimitri P. Bertsekas, 2022

dimitrib@mit.edu

1

AlphaZero, Off-Line Training, and

On-Line Play

Contents

1.1. Off-Line Training and Policy Iteration p. 3
1.2. On-Line Play and Approximation in Value Space -

Truncated Rollout p. 6
1.3. The Lessons of AlphaZero p. 8
1.4. A New Conceptual Framework for Reinforcement

Learning . p. 11
1.5. Notes and Sources p. 14

1

2 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

In this work we will aim to provide a new conceptual framework for re-
inforcement learning and approximate dynamic programming. These two
fields, through the synergy of their ideas in the 1980s and 1990s, and in con-
junction of the emergence of machine learning, gave rise to a far-reaching
synthesis that would eventually have a major impact on the field of algo-
rithmic optimization.

In this chapter we provide an outline of the motivation and the al-
gorithmic justification of our framework, and its connection to AlphaZero
and related game programs, as well as Newton’s method for solving fixed
point problems. In subsequent chapters, we will flesh out our framework,
drawing on the theory of abstract DP, related visualizations, ideas of adap-
tive, model predictive, and linear quadratic control, as well as paradigms
from discrete and combinatorial optimization.

The development of the AlphaZero program by DeepMind Inc, as de-
scribed in the papers [SHS17], [SSS17], is perhaps the most impressive suc-
cess story in reinforcement learning (RL) todate. AlphaZero plays Chess,
Go, and other games, and is an improvement in terms of performance and
generality over the earlier AlphaGo program [SHM16], which plays the
game of Go only. AlphaZero, and other chess programs based on similar
principles, play as well or better than all competitor computer programs
available in 2021, and much better than all humans. These programs are
remarkable in several other ways. In particular, they have learned how to
play without human instruction, just data generated by playing against
themselves. Moreover, they learned how to play very quickly. In fact, Al-
phaZero learned how to play chess better than all humans and computer
programs within hours (with the help of awesome parallel computation
power, it must be said).

We should note also that the principles of the AlphaZero design have
much in common with the TD-Gammon programs of Tesauro [Tes94],
[Tes95], [TeG96] that play backgammon (a game of substantial compu-
tational and strategical complexity, which involves a number of states es-
timated to be in excess of 1020). Tesauro’s programs stimulated much
interest in RL in the middle 1990s, and one of these programs exhibits sim-
ilarly different and better play than human backgammon players. A related
program for the (one-player) game of Tetris, based on similar principles,
is described by Scherrer et al. [SGG15], together with several antecedents,
including algorithmic schemes dating to the 1990s, by Tsitsiklis and Van-
Roy [TsV96], and Bertsekas and Ioffe [BeI96]. The backgammon and Tetris
programs, while dealing with less complex games than chess, are of spe-
cial interest because they involve significant stochastic uncertainty, and are
thus unsuitable for the use of long lookahead minimization, which is widely
believed to be one of the major contributors to the success of AlphaZero,
and chess programs in general.

Still, for all of their brilliant implementations, these impressive game
programs are couched on well established methodology, from optimal and

Sec. 1.1 Off-Line Training and Policy Iteration 3

suboptimal control, which is portable to far broader domains of engineering,
economics, and other fields. This is the methodology of dynamic program-
ming (DP), policy iteration, limited lookahead minimization, rollout, and
related approximations in value space. The aim of this work is to propose
a conceptual, somewhat abstract framework, which allows insight into the
connections of AlphaZero and TD-Gammon with some of the core problems
in decision and control, and suggests potentially far-reaching extensions.

To understand the overall structure of AlphaZero and related pro-
grams, and their connections to the DP/RL methodology, it is useful to
divide their design into two parts:

(a) Off-line training, which is an algorithm that learns how to evaluate
chess positions, and how to steer itself towards good positions with a
default/base chess player.

(b) On-line play, which is an algorithm that generates good moves in
real time against a human or computer opponent, using the training
it went through off-line.

An important empirical fact is that the on-line player of AlphaZero plays
much better than its extensively trained off-line player . This supports a
conceptual idea that applies in great generality and is central in this book,
namely that the performance of an off-line trained policy can be greatly
improved by on-line play. We will next briefly describe the off-training and
on-line play algorithms, and relate them to DP concepts and principles,
focusing on AlphaZero for the most part.

1.1 OFF-LINE TRAINING AND POLICY ITERATION

An off-line training algorithm like the one used in AlphaZero is the part
of the program that learns how to play through self-training that takes
place before real-time play against any opponent. It is illustrated in Fig.
1.1.1, and it generates a sequence of chess players and position evaluators .
A chess player assigns “probabilities” to all possible moves at any given
chess position: these may be viewed as a measure of “effectiveness” of the
corresponding moves. A position evaluator assigns a numerical score to
any given chess position, and thus predicts quantitatively the performance
of a player starting from any position. The chess player and the position
evaluator are represented by neural networks, a policy network and a value
network , which accept as input a chess position and generate a set of move
probabilities and a position evaluation, respectively.†

† Here the neural networks play the role of function approximators. By

viewing a player as a function that assigns move probabilities to a position, and

a position evaluator as a function that assigns a numerical score to a position,
the policy and value networks provide approximations to these functions based

4 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

Policy Improvement
Policy Improvement

erent! Approximate Value Function Player Features Mappinerent! Approximate Value Function Player Features Mappin

Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “ImprovLearned from scratch ... with 4 hours of training! Current “Improved”
Policy Improvement

Policy Evaluation Improvement of Current Policy

Neural Network Neural Network

Value Policy Value Policy

Figure 1.1.1 Illustration of the AlphaZero off-line training algorithm. It gener-
ates a sequence of position evaluators and chess players. The position evaluator
and the chess player are represented by two neural networks, a value network and
a policy network, which accept a chess position and generate a position evaluation
and a set of move probabilities, respectively.

In the more conventional DP-oriented terms of this work, a position is
the state of the game, a position evaluator is a cost function that gives (an
estimate of) the optimal cost-to-go at a given state, and the chess player
is a randomized policy for selecting actions/controls at a given state.†

The overall training algorithm is a form of policy iteration, a DP
algorithm that will be of primary interest to us in this work. Starting from
a given player, it repeatedly generates (approximately) improved players,
and settles on a final player that is judged empirically to be “best” out of
all the players generated. Policy iteration may be separated conceptually
into two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single data
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

on training with data. Actually, AlphaZero uses the same neural network for

training both value and policy. Thus there are two outputs of the neural net:
value and policy. This is pretty much equivalent to having two separate neural

nets and for the purposes of this work, we prefer to explain the structure as

two separate networks. AlphaGo uses two separate value and policy networks.
Tesauro’s backgammon programs use a single value network, and generate moves

when needed by one-step or two-step lookahead minimization, using the value
network as terminal position evaluator.

† One more complication is that chess and Go are two-player games, while

most of our development will involve single-player optimization. While DP theory
and algorithms extend to two-player games, we will not discuss these extensions,

except in a very limited way in Chapter 6. Alternatively, a chess program can

be trained to play well against a fixed opponent, in which case the framework of
single-player optimization applies.

Sec. 1.1 Off-Line Training and Policy Iteration 5

(b) Policy improvement : Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results.

In AlphaZero (as well as AlphaGo Zero, the version that plays the
game of Go) the policy evaluation is done by using deep neural networks.
The policy improvement uses a complicated algorithm called Monte Carlo
Tree Search (MCTS for short), a form of randomized multistep lookahead
minimization that enhances the efficiency of the multistep lookahead oper-
ation, by pruning intelligently the multistep lookahead graph.

We note, however, that deep neural networks and MCTS, while lead-
ing to some performance gains, are not of fundamental importance. The
approximation quality that a deep neural network can achieve can also be
achieved with a shallow neural network, perhaps with reduced sample ef-
ficiency. Similarly MCTS cannot achieve better lookahead accuracy than
standard exhaustive search, although it may be more efficient computation-
ally. Indeed, policy improvement can be done more simply without MCTS,
as in Tesauro’s TD-Gammon program: we try all possible move sequences
from a given position, extend forward to some number of moves, and then
evaluate the terminal position with the current player’s position evaluator.
The move evaluations obtained in this way are used to nudge the move
probabilities of the current player towards more successful moves, thereby
obtaining data that is used to train a policy network that represents the
new player.†

Regardless of the use of deep neural networks and MCTS, it is impor-
tant to note that the final policy and the corresponding policy evaluation
produced by approximate policy iteration and neural network training in
AlphaZero involve serious inaccuracies, due to the approximations that are
inherent in neural network representations . The AlphaZero on-line player
to be discussed next uses approximation in value space with multistep
lookahead minimization, and does not involve any neural network, other
than the one that has been trained off-line, so it is not subject to such
inaccuracies. As a result, it plays much better than the off-line player.

† Quoting from the paper [SSS17] (p. 360): “The AlphaGo Zero selfplay
algorithm can similarly be understood as an approximate policy iteration scheme

in which MCTS is used for both policy improvement and policy evaluation. Policy
improvement starts with a neural network policy, executes a MCTS based on that

policy’s recommendations, and then projects the (much stronger) search policy

back into the function space of the neural network. Policy evaluation is applied
to the (much stronger) search policy: the outcomes of selfplay games are also

projected back into the function space of the neural network. These projection

steps are achieved by training the neural network parameters to match the search
probabilities and selfplay game outcome respectively.”

6 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

.x0

Current Position
Current Position

Current Position xk

Off-Line Obtained Player O

ON-LINE PLAY

ON-LINE PLAY

OFF-LINE TRAINING

OFF-LINE TRAINING

ON-LINE PLAY Lookahead Tree States

ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

-Line Obtained Player Off-Line Obtained Cost Approximation

Adaptive Reoptimization Position EvaluatorWithout the Newton Step Base Player

With the Newton Step Adaptive Rollout Cost Approximation

Figure 1.2.1 Illustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position,
it generates a lookahead graph of multiple moves up to some depth, then runs
the off-line obtained player for some more moves, and evaluates the effect of the
remaining moves by using the position evaluator of the off-line player.

1.2 ON-LINE PLAY AND APPROXIMATION IN VALUE SPACE
- TRUNCATED ROLLOUT

Consider the “final” player obtained through the AlphaZero off-line train-
ing process. It can play against any opponent by generating move proba-
bilities at any position using its off-line trained policy network, and then
simply play the move of highest probability. This player would play very
fast on-line, but it would not play good enough chess to beat strong human
opponents. The extraordinary strength of AlphaZero is attained only after
the player obtained from off-line training is embedded into another algo-
rithm, which we refer to as the “on-line player.”† In other words AlphaZero
plays on-line much better than the best player it has produced with sophis-
ticated off-line training. This phenomenon, policy improvement through
on-line play, is centrally important for our purposes in this work.

Given the policy network/player obtained off-line and its value net-
work/position evaluator, the on-line algorithm plays roughly as follows (see
Fig. 1.2.1). At a given position, it generates a lookahead graph of all possi-

† Quoting from the paper [SSS17] (p. 354): “The MCTS search outputs

probabilities of playing each move. These search probabilities usually select much

stronger moves than the raw move probabilities of the neural network.” To elabo-
rate, this statement refers to the MCTS algorithm that is used on line to generate

the move probabilities at each position encountered in the course of a given game.

The neural network referred to is trained off-line, also using in part the MCTS
algorithm.

Sec. 1.2 On-Line Play and Approximation in Value Space 7

ble multiple move and countermove sequences, up to a given depth. It then
runs the off-line obtained player for some more moves, and evaluates the
effect of the remaining moves by using the position evaluator of the value
network.

The middle portion, called “truncated rollout,” may be viewed as an
economical substitute for longer lookahead minimization. Actually trun-
cated rollout is not used in the published version of AlphaZero [SHS17];
the first portion (multistep lookahead minimization) is very long and im-
plemented efficiently (partly through the use of MCTS), so that the rollout
portion is not essential. Rollout has been used in AlphaGo, the AlphaZero
predecessor [SHM16]. Moreover, chess and Go programs (including Alp-
haZero) typically use a well-known limited form of rollout, called “quies-
cence search,” which aims to resolve imminent threats and highly dynamic
positions through simulated multi-move piece exchanges, before invoking
the position evaluator. Rollout is instrumental in achieving high perfor-
mance in Tesauro’s 1996 backgammon program [TeG96]. The reason is
that backgammon involves stochastic uncertainty, so long lookahead mini-
mization is not possible because of rapid expansion of the lookahead graph
with every move.†

In control system design, similar architectures to the ones of Alp-
haZero and TD-Gammon are employed in model predictive control (MPC).
There, the number of steps in lookahead minimization is called the control
interval , while the total number of steps in lookahead minimization and
truncated rollout is called the prediction interval ; see e.g., Magni et al.
[MDM01]. (The MATLAB toolbox for MPC design explicitly allows the
user to choose these two intervals.) The benefit of truncated rollout in pro-
viding an economical substitute for longer lookahead minimization is well
known within this context. We will discuss further the structure of MPC
and its similarities with the AlphaZero architecture in Chapter 5.

Dynamic programming frameworks with cost function approxima-
tions that are similar to the on-line player illustrated in Fig. 1.2.1, are
also known as approximate dynamic programming , or neuro-dynamic pro-

† Tesauro’s rollout-based backgammon program [TeG96] uses only a value

network, which was trained using an approximate policy iteration scheme devel-

oped several years earlier [Tes94]. This network is used to generate moves for the
truncated rollout via a one-step or two-step lookahead minimization. Thus the

value network also serves as a substitute for the policy network during the roll-
out operation. The position evaluation used at the end of the truncated rollout

is also provided by the value network. The middle portion of Tesauro’s scheme

(truncated rollout) is important for achieving a very high quality of play, as it
effectively extends the length of lookahead from the current position (the player

with rollout [TeG96] plays much better than the player without rollout [Tes94]).

In backgammon circles, Tesauro’s program with truncated rollout is viewed as
essentially “optimal.”

8 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

gramming , and will be central for our purposes. They will be generically
referred to as approximation in value space in this work.†

Note also that in general, off-line training and on-line policy imple-
mentation may be designed independently of each other. For example the
off-line training portion may be very simple, such as using a known heuristic
policy for rollout without truncation, or without terminal cost approxima-
tion. Conversely, a sophisticated process may be used for off-line training of
a terminal cost function approximation, which is used following the looka-
head minimization in a value space approximation scheme.

1.3 THE LESSONS OF ALPHAZERO

The AlphaZero and TD-Gammon experiences reinforce an important con-
clusion that applies more generally to decision and control problems: de-
spite the extensive off-line effort that may have gone into the design of
a policy, performance may be greatly improved by on-line approximation
in value space, with extra lookahead involving minimization and/or with
rollout using this policy, and terminal cost approximation.

In the following chapters, we will aim to amplify on this theme and
to focus on the principal characteristics of AlphaZero-like architectures,
within a broader context of optimal decision and control. We will make
use of intuitive visualization, and the central role of Newton’s method for
solving Bellman’s equation.‡ Briefly, our central point will be that on-line
approximation in value space amounts to a step of Newton’s method for
solving Bellman’s equation, while the starting point for the Newton step is
based on the results of off-line training; see Fig. 1.3.1. Moreover, this start-
ing point may be enhanced by several types of on-line operations, including
longer lookahead minimization, and on-line rollout with a policy obtained
through off-line training, or heuristic approximations.

† The names “approximate dynamic programming” and “neuro-dynamic pro-

gramming” are often used as synonyms to RL. However, RL is often thought to

also subsume the methodology of approximation in policy space, which involves
search for optimal parameters within a parametrized set of policies. The search is

done with methods that are largely unrelated to DP, such as for example stochas-

tic gradient or random search methods (see the author’s RL textbook [Ber19a]).
Approximation in policy space may be used off-line to design a policy that can

be used for on-line rollout. However, as a methodological subject, approximation
in policy space has little connection to the ideas of the present work.

‡ Bellman’s equation, the centerpiece of infinite horizon DP theory, is viewed

here as a functional equation, whose solution is the cost of operating the system
viewed as a function of the system’s initial state. We will give examples of

Bellman’s equation in Chapter 2 for discounted and other problems, and we will

also provide in Chapter 3 abstract forms of Bellman’s equation that apply more
generally.

Sec. 1.3 The Lessons of AlphaZero 9

Starting Point of
Newton Step

Optional On-Line
Enhancements to

Newton Starting Point, e.g.
Additional Lookahead

Minimization or Truncated
Rollout

Newton Step
to Solve

Bellman's Equation

ON-LINE PLAYOFF-LINE TRAINING O

NEWTON STEP INTERPRETATION

Cost Function Approximation
Cost Function Approximation

On-Line Player Cost Function

On-Line Player Cost Function

Figure 1.3.1 Illustration of the connections between off-line training, on-line play,
and Newton’s method for solving Bellman’s equation. On-line play is viewed as
a Newton step, while off-line training provides the starting point for the New-
ton step. The Newton step starts with a cost approximation J̃ , which may be
enhanced on-line by additional lookahead minimization and/or rollout, and pro-
duces the cost function of the on-line player.

This interpretation will be the basis for powerful insights into issues
of stability, performance, and robustness of the on-line generated policy.
In particular, we will aim to show that feedback control, based on approx-
imation in value space and the underlying off-line training/on-line play
structure, offers benefits that go well beyond the conventional wisdom that
“feedback corrects for uncertainty, and modeling errors.” The reason is that
by overlaying on-line play on top of off-line training, we gain significantly in
performance, by correcting (through the Newton step) for the errors that
are inherent in off-line training with approximation architectures such as
neural networks.

Our mathematical framework is couched on unifying principles of ab-
stract DP, including abstract forms of Bellman’s equation, and the value
and policy iteration algorithms (see the author’s books [Ber12], [Ber22a]).
However, in this work, we will deemphasize mathematical proofs. There is
considerable related analysis, which supports our conclusions and can be
found in the author’s recent RL books [Ber19a], [Ber20a].

In summary, our discussion will aim to highlight the following points:

Summary

(a) Approximation in value space, with one-step lookahead mini-
mization, is an exact step of Newton’s method for solving Bell-
man’s equation. This step may be preceded by on-line adjust-
ments and/or value iterations, which enhance its starting point.

(b) The starting point for the Newton step of (a) is obtained by some
unspecified off-line methodology, which may involve the solution
of a related but simpler problem, and/or training with data that
makes use of neural networks or feature-based architectures.

10 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

(c) The on-line play and off-line training parts of the AlphaZero/TD-
Gammon design structure correspond to (a) and (b) above, re-
spectively.

(d) The on-line player of AphaZero plays much better than its deep
neural network-trained player for the same reason that the New-
ton step (a) improves substantially on its starting point (b),
namely the underlying superlinear convergence property that is
typical of Newton’s method.

(e) !-step lookahead minimization can be viewed as one-step looka-
head minimization where ! − 1 value iterations are used to en-
hance the starting point of the Newton step of (a) above. It is
important to perform the first step of the lookahead exactly, but
for the last !− 1 steps, approximations may be tolerated.

(f) The algorithmic processes for (a) and (b) above can be designed
by a variety of methods, and independently of each other. For
example:

(1) The implementation of the Newton step (a) may or may
not involve any of the following: truncated rollout, on-
line Monte Carlo simulation, MCTS or other efficient graph
search techniques, forms of continuous space optimization,
on-line policy iteration, etc.

(2) The computation of the starting point (b) may or may
not involve any of the following: Q-learning, approximate
policy iteration based on temporal differences or aggrega-
tion, neural networks, feature-based function approxima-
tion, policies trained off-line by approximation in policy
space, including policy gradient methods or policy random
search, etc. Moreover, the details of this computation may
vary broadly without affecting significantly the effective-
ness of the overall scheme, which is primarily determined
by the Newton step (a).

(g) An efficient implementation of the Newton step (a) is often criti-
cal in order to meet real-time constraints for generating controls,
and to allow longer lookahead minimization, which enhances the
starting point of the Newton step and its performance. By con-
trast, off-line training algorithms used for (b) have much less
stringent real-time constraints, and the issues of sample efficiency
and fine tuned performance, while important, are not critical.

(h) The efficient implementation of the Newton step may benefit
from the use of distributed computation and other simplifica-
tions. A case in point is multiagent problems, which we will
discuss later (see Chapter 3).

Sec. 1.3 The Lessons of AlphaZero 11

(i) Approximation in value space addresses effectively issues of ro-
bustness and on-line replanning for problems with changing pa-
rameters. The mechanism is similar to the one of indirect adap-
tive control: changing problem parameters are estimated on-line
and a Newton step is used in place of an expensive full reoptimiza-
tion of the controller. In the presence of changing parameters,
the Bellman equation changes, but the Newton step itself remains
powerful and aims at the optimal solution that corresponds to
the estimated system parameters.

(j) Model predictive control (MPC) has a conceptually similar struc-
ture to the AlphaZero-like programs, and entails an on-line play
component involving multistep lookahead minimization, forms
of truncated rollout, and an off-line training component to con-
struct terminal cost approximations, and “safe” state space re-
gions or reachability tubes to deal with state constraints. The
success of MPC may be attributed to these similarities and to its
resilience to changing problem parameters as per (i) above.

(k) On-line rollout with a stable policy yields a good starting point
for the Newton step (a): it improves the stability properties of the
policy obtained by approximation in value space, and provides
an economical substitute for long lookahead minimization.

(l) Because the ideas outlined above are couched on principles of
DP that often hold for arbitrary state and control spaces, they
are valid within very general contexts: continuous-spaces con-
trol systems, discrete-spaces Markov decision problems, control
of hybrid systems, decision making in multiagent systems, and
discrete and combinatorial optimization.

The preceding points are meant to highlight the essence of the connec-
tions between AlphaZero and TD-Gammon, approximation in value space,
and decision and control. Naturally in practice there are exceptions and
modifications, which need to be worked out in the context of particular ap-
plications, under appropriate assumptions. Moreover, while some results
and elaborations are available through the research that has been done on
approximate DP and on MPC, several of the results suggested by the anal-
ysis and insights of the present work remain to be rigorously established
and enhanced within the context of specific problems.

1.4 A NEW CONCEPTUAL FRAMEWORK FOR
REINFORCEMENT LEARNING

In this work we will emphasize the distinct roles of off-line training and on-
line play algorithms within the structure of approximate sequential decision

12 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

making and approximation in value space schemes. In doing so, we will aim
for a new conceptual framework for RL, which is based on the synergism
and complementarity of off-line training and on-line play, and the analytical
framework of Newton’s method.

We will implicitly assume that the time available for off-line training
is very long (practically limitless), but that the problem at hand is such that
exact DP algorithms, like policy iteration and Q-learning, are impossible
for one (or both) of the following two reasons:

(a) There are too many states (either an infinite number as in continuous
space problems, or very large as in chess). As a result a lookup table
representation of policies, value functions, and/or Q-factors is impos-
sible, and the only practical alternative is a compact representation,
via a neural network or some other approximation architecture.

(b) The system model is changing over time as in adaptive control, so even
if an exactly optimal policy is computed off-line under some nominal
problem assumptions, it becomes suboptimal when the problem pa-
rameters change.

In this work, we will not discuss training algorithms and their associated
sample efficiency issues, and we will refer to the many available sources,
including the author’s RL books [Ber19a], [Ber20a].

On the other hand, we will assume that there is limited time for
on-line decision making, because of hard practical constraints on the real
time that is available between decisions. These constraints are highly prob-
lem dependent: for some problems, following the observation of the state,
we may need to produce the next decision within a fraction of a second,
whereas for others we may have hours at our disposal. We will assume
that whatever time is available, it will be used to provide quite accurate
(nearly exact) one-step or multistep lookahead minimization, and time per-
mitting, to extend as much as possible the combined length of the lookahead
minimization and the truncated rollout with an off-line computed policy.
We will thus implicitly take it as given that longer (as well as more accu-
rate) lookahead minimization is better for the performance of the policy
obtained,† although the division of effort between lookahead minimization
and truncated rollout with a policy is a design decision that may depend
on the circumstances. Note that parallel and distributed computation can
play an important role in mitigating practical on-line time constraints.

The central fact in our conceptual framework is that approximation
in value space with one-step lookahead minimization constitutes a single
Newton step for solving Bellman’s equation. Contrary to other Newton-
like steps that may have been part of the off-line training process, this

† It is possible to construct artificial problems, where longer lookahead results

in worse performance (see [Ber19a], Section 2.2), but such problems are rare in
practice.

Sec. 1.4 A New Conceptual Framework 13

single Newton step is accurate: all the approximation has been shifted to
its starting point . Moreover, the Newton step can be very powerful, and
its starting point can be enhanced by multistep lookahead minimization
or by truncated rollout. From an algorithmic point of view, the Newton
step converges superlinearly without the need for differentiability of the
Bellman operator T : it takes advantage of the monotonicity and concavity
structure of T (see the Appendix, where we will discuss Newton’s method
without differentiability assumptions).

To summarize, both off-line training and on-line play are subject to
fundamental limits: the former’s limit is the constrained power of the ap-
proximation architecture, while the latter’s limit is the constrained on-line
computation time. The former limit cannot be easily overcome, but the
latter limit can be stretched a lot thanks to the power of the Newton step,
supplemented by long lookahead minimization and truncated rollout, as
well as through the use of parallel and distributed computation.

Our design philosophy in a nutshell is the following:

(1) The major determinant of the quality of the controller obtained by
our schemes is the Newton step that is performed on-line. Stated
somewhat bluntly, off-line training is secondary by comparison, in
the sense that without on-line one-step or multistep lookahead mini-
mization, the quality of the policy obtained by off-line training alone
is often unacceptably poor. In particular, whether done by neural net-
works, feature-based linear architectures, temporal difference meth-
ods, aggregation, policy gradient, policy random search, or whatever
other reasonable approach, off-line training principally serves the pur-
pose of providing a good or reasonable starting point for the Newton
step. This is the principal lesson from AlphaZero and TD-Gammon in
our view. This philosophy also underlies MPC, where on-line looka-
head minimization has traditionally been the principal focus, perhaps
supplemented by truncated rollout, with off-line calculations playing
a limited subsidiary role.†

(2) The Newton step is often powerful enough to smooth out differences
in various off-line training methods. In particular, methods such as
TD(λ) with different values of λ, policy gradient, linear programming,
etc, all give different, but more or less equally good starting points
for the Newton step. The conclusion from this is that off-line train-
ing with a very large number of samples, and sophisticated ways to
improve sample efficiency may not be very useful, beyond a certain
point, because gains in efficiency and accuracy tend to be washed up
by the Newton step.

† Incidentally, this is a major reason why there is an apparent disconnect

between the MPC community, which is mostly focused on on-line play, and the
RL community, which is mostly focused on off-line training.

14 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

(3) The on-line Newton step also works well in the context of adaptive
control, as long as it is calculated on the basis of the currently correct
model parameters (so this requires an on-line parameter identification
algorithm). The reason is that when problem parameters change, the
Bellman operator changes, but the Newton step is executed on the
basis of the correct Bellman operator. This is also a principal reason
why MPC schemes have been used with success in adaptive control
contexts.

We will return to these points repeatedly in the course of our presentation.

1.5 NOTES AND SOURCES

The theory of DP dates to the late 40s and 50s, and provides the founda-
tion for our subject. Indeed RL may be viewed as an approximate form of
the exact DP methodology. The author’s DP textbook [Ber17a] provides
an extensive discussion of finite horizon DP, and its applications to discrete
and continuous spaces problems, using a notation and style that is consis-
tent with the present book. The books by Puterman [Put94] and by the
author [Ber12] provide detailed treatments of infinite horizon finite-state
Markovian decision problems.

Continuous spaces infinite horizon problems are covered in the au-
thor’s book [Ber12], while some of the more complex mathematical as-
pects of exact DP are discussed in the monograph by Bertsekas and Shreve
[BeS78] (particularly the probabilistic/measure-theoretic issues associated
with stochastic optimal control).†

† The rigorous mathematical theory of stochastic optimal control, including
the development of an appropriate measure-theoretic framework, dates to the
60s and 70s. It culminated in the monograph [BeS78], which provides the now
“standard” framework, based on the formalism of Borel spaces, lower semiana-
lytic functions, and universally measurable policies. This development involves
daunting mathematical complications, which stem, among others, from the fact
that when a Borel measurable function F (x, u), of the two variables x and u, is
minimized with respect to u, the resulting function

G(x) = min
u

F (x, u)

need not be Borel measurable (it is lower semianalytic). Moreover, even if the
minimum is attained by several functions/policies µ, i.e., G(x) = F

(

x,µ(x)
)

for
all x, it is possible that none of these µ is Borel measurable (however, there
does exist a minimizing policy that belongs to the broader class of universally
measurable policies). Thus, starting with a Borel measurability framework for
cost functions and policies, we quickly get outside that framework when executing
DP algorithms, such as value and policy iteration. The broader framework of
universal measurability is required to correct this deficiency, in the absence of
additional (fairly strong) assumptions.

Sec. 1.5 Notes and Sources 15

The third edition of the author’s abstract DP monograph [Ber22a],
expands on the original 2013 first edition, and aims at a unified development
of the core theory and algorithms of total cost sequential decision problems.
It addresses simultaneously stochastic, minimax, game, risk-sensitive, and
other DP problems, through the use of abstract DP operators (or Bellman
operators as they are often called in RL). The abstract framework is impor-
tant for some the visualization insights and the connections to Newton’s
method that are central for the purposes of this book.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late
1980s and early 1990s. In what follows, we will provide a list of textbooks,
research monographs, and broad surveys, which supplement our discus-
sions, express related viewpoints, and collectively provide a guide to the
literature.

RL Textbooks

Two books were written in the 1990s, setting the tone for subsequent de-
velopments in the field. One in 1996 by Bertsekas and Tsitsiklis [BeT96],
which reflects a decision, control, and optimization viewpoint, and another
in 1998 by Sutton and Barto, which reflects an artificial intelligence view-
point (a 2nd edition, [SuB18], was published in 2018). We refer to the
former book and also to the author’s DP textbooks [Ber12], [Ber17a] for a
broader discussion of some of the topics of this book, including algorithmic
convergence issues and additional DP models, such as those based on aver-
age cost and semi-Markov problem optimization. Note that both of these
books deal with finite-state Markov decision models and use a transition
probability notation, as they do not address continuous spaces problems,
which are also of major interest in this book.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-

The monograph [BeS78] provides an extensive treatment of these issues,

while Appendix A of the DP textbook [Ber12] provides a tutorial introduction.
The followup work by Huizhen Yu and the author [YuB15] resolves the special

measurability issues that relate to policy iteration, and provides additional anal-
ysis relating to value iteration. In the RL literature, the mathematical difficulties

around measurability are usually neglected (as they are in the present book), and

this is fine because they do not play an important role in applications. Moreover,
measurability issues do not arise for problems involving finite or countably infinite

state and control spaces. We note, however, that there are quite a few published

works in RL as well as exact DP, which purport to address measurability issues
with a mathematical narrative that is either confusing or plain incorrect.

16 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on func-
tion approximation methods for continuous space systems and includes a
discussion of random search methods, Szepesvari [Sze10], which is a short
monograph that selectively treats some of the major RL algorithms such as
temporal difference methods, armed bandit methods, and Q-learning, Pow-
ell [Pow11], which emphasizes resource allocation and operations research
applications, Powell and Ryzhov [PoR12], which focuses on specialized top-
ics in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP, and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical in-
formation patterns.

There are also several books that, while not exclusively focused on
DP and/or RL, touch upon several of the topics of this book. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book
by Krishnamurthy [Kri16] focuses on partial state information problems,
with discussion of both exact DP, and approximate DP/RL methods. The
textbooks by Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and
Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17] collectively
provide a comprehensive view of the MPC methodology. The book by Lat-
timore and Szepesvari [LaS20] is focused on multiarmed bandit methods.
The book by Brandimarte [Bra21] is a tutorial introduction to DP/RL that
emphasizes operations research applications and includes MATLAB codes.
The book by Hardt and Recht [HaR21] focuses on broader subjects of ma-
chine learning, but covers selectively approximate DP and RL topics as
well.

The present book is similar in style, terminology, and notation to the
author’s recent RL textbooks [Ber19a], [Ber20a], and the 3rd edition of
the abstract DP monograph [Ber22a], which collectively provide a fairly
comprehensive account of the subject. In particular, the 2019 RL text-
book includes a broader coverage of approximation in value space meth-
ods, including certainty equivalent control and aggregation methods. It

Sec. 1.5 Notes and Sources 17

also covers substantially policy gradient methods for approximation in pol-
icy space, which we will not address here. The 2020 book focuses more
closely on rollout, policy iteration, and multiagent problems. The abstract
DP monograph [Ber22a] is an advanced treatment of exact DP, which also
connects with intuitive visualizations of Bellman’s equation and related al-
gorithms. The present book is less mathematical and more conceptual in
character. It focuses on the connection of approximation in value space with
Newton’s method, relying on analysis first provided in the book [Ber20a]
and the paper [Ber22b], as well as on visualizations of abstract DP ideas
from the book [Ber22a].

Surveys and Short Research Monographs

In addition to textbooks, there are many surveys and short research mono-
graphs relating to our subject, which are rapidly multiplying in num-
ber. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markov decision problems from an
artificial intelligence viewpoint), Schmidhuber [Sch15], Arulkumaran et al.
[ADB17], Li [Li17], Busoniu et al. [BDT18], the author’s [Ber05] (which
focuses on rollout algorithms and model predictive control), [Ber11] (which
focuses on approximate policy iteration), and [Ber18b] (which focuses on
aggregation methods), and Recht [Rec18] (which focuses on continuous
spaces optimal control).

18 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

Research Content of this Book

The research focus of this book is to propose and develop a new conceptual
framework, which the author believes is fundamental within the context of
DP-based RL methodology. This framework centers around the division of
the design process of an RL scheme into the off-line training and the on-
line play algorithms, and shows that these algorithms operate in synergy
through the powerful mechanism of Newton’s method.

The style of the book is different than the style of the author’s more
mathematically oriented RL books [Ber19a] and [Ber20a], and abstract DP
book [Ber22a]. In particular, the present book emphasizes insights through
visualization rather than rigorous proofs. At the same time, the book
makes careful distinctions between provable and speculative claims. By
highlighting the exceptional behavior that may occur, the book also aims to
emphasize the need for serious mathematical research and experimentation
into broad classes of problems, beyond the relatively well-behaved finite
horizon and discounted/contractive problems.

Book Organization

The book is structured as follows. In Chapter 2, we review the theory of
classical infinite horizon optimal control problems, in order to provide some
orientation and an analytical platform for what follows in subsequent chap-
ters. In Chapter 3, we introduce an abstract DP framework that will set
the stage for the conceptual and visual interpretations of approximation in
value space in terms of Newton’s method. In this chapter, we also present
new research relating to on-line policy iteration, which aims to improve
the on-line approximation in value space algorithm by using training data
that is collected on-line. In Chapter 4, we illustrate our analysis within the
simple and intuitive framework of linear quadratic problems, which admit
visualizations through the Riccati equation operators. In Chapter 5, we
discuss various issues of changing problem parameters, adaptive control,
and MPC. In Chapter 6, we extend the ideas of earlier chapters to finite
horizon problems and discrete optimization, with a special focus on roll-
out algorithms and their variations. This chapter also includes a section on
approximation in value space schemes for deterministic continuous-time op-
timal control. Finally, in the Appendix, we outline the convergence theory
of Newton’s method, and explain how the theory applies to nondifferen-
tiable fixed point problems, such as the solution of Bellman’s equation in
DP. We also describe how the connection with Newton’s method can be
used to derive new and more realistic error bounds for approximation in
value space and approximate policy iteration.

2

Deterministic and Stochastic

Dynamic Programming

Contents

2.1. Optimal Control Over an Infinite Horizon p. 20
2.2. Approximation in Value Space p. 25
2.3. Notes and Sources p. 30

19

20 Deterministic and Stochastic Dynamic Programming Chap. 2

......) xk xk+1) x0

Random Transition

) Random Cost

xk+1 = f(xk, uk, wk)

) αkg(xk, uk, wk)

Termination State Infinite Horizon

Figure 2.1.1 Illustration of an infinite horizon problem. The system and cost
per stage are stationary, except for the use of a discount factor α. If α = 1, there
is typically a special cost-free termination state that we aim to reach.

In this chapter we will describe a classical framework of optimal control over
an infinite horizon. We will use it as a principal example for a more abstract
DP framework to be introduced in Chapter 3. This abstract framework
will be used in turn as the starting point for our analysis and visualization
of algorithmic issues, relating to approximation in value space, multistep
lookahead, controller stability, truncated rollout, and policy iteration. Note
that finite horizon problems can be converted to the infinite horizon format
of this chapter, as will be discussed in Chapter 6.

2.1 OPTIMAL CONTROL OVER AN INFINITE HORIZON

Let us consider a familiar class of stochastic optimal control problems over
an infinite horizon (see Fig. 2.1.1). We have a stationary system of the
form

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

where xk is an element of some state space X and the control uk is an
element of some control space U ; see Fig. 2.1.1. The system includes a ran-
dom “disturbance” wk, taking values in some space W , with a probability
distribution P (· | xk, uk) that may depend explicitly on xk and uk, but
not on values of prior disturbances wk−1, . . . , w0.† The control uk is con-
strained to take values in a given subset U(xk) ⊂ U , which depends on the
current state xk. We are interested in policies π = {µ0, µ1, . . .}, such that
each function µk maps states into controls, and satisfies µk(xk) ∈ U(xk)
for all k. A stationary policy of the form {µ, µ, . . .} will also be referred
to as “policy µ.” We make no assumptions on the state, control, and dis-
turbances, and indeed for most of the discussion of this work, these spaces
can be arbitrary.

We aim to minimize the expected total cost over an infinite number
of stages, given by

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

, (2.1)

† We assume an introductory probability background on the part of the
reader. For an account that is consistent with our use of probability in this

book, see the text by Bertsekas and Tsitsiklis [BeT08].

Sec. 2.1 Optimal Control Over an Infinite Horizon 21

where αkg(xk, uk, wk) is the cost of stage k, and α ∈ (0, 1] is a discount
factor. If α = 1 we refer to the problem as undiscounted. The expected
value in Eq. (2.1) is taken with respect to the random disturbances wk,
k = 0, 1, Here, Jπ(x0) denotes the cost associated with an initial state
x0 and a policy π = {µ0, µ1, . . .}. The cost function of a stationary policy
µ is denoted by Jµ. The optimal cost starting at state x, infπ Jπ(x), is
denoted by J*(x), and the function J* is referred to as the optimal cost
function.

Let us consider some special cases, which will be of primary interest
in this work:

(a) Stochastic shortest path problems (SSP for short). Here, α = 1 but
there is a special cost-free termination state, denoted by t; once the
system reaches t it remains there at no further cost. Usually, the
termination state t represents a goal state that we are trying to reach
at minimum cost; these are problems where the cost per stage is
nonnegative, and will be of primary interest in this work. In some
other types of problems, t may be a state that we are trying to avoid
for as long as possible; these are problems where the cost per stage is
nonpositive, and will not be specifically discussed in this work.

(b) Discounted stochastic problems . Here, α < 1 and there need not
be a termination state. However, there is a substantial connection
between SSP and discounted problems. Aside from the fact that
they are both infinite horizon total cost optimization problems, a
discounted problem can be readily converted to an SSP problem. This
can be done by introducing an artificial termination state to which
the system moves with probability 1−α at every state and stage, thus
making termination inevitable. Thus SSP and discounted problems
share qualitative similarities in their respective theories.

(c) Deterministic nonnegative cost problems . Here, the disturbance wk

takes a single known value. Equivalently, there is no disturbance in
the system equation and the cost expression, which now take the form

xk+1 = f(xk, uk), k = 0, 1, . . . , (2.2)

and

Jπ(x0) = lim
N→∞

N−1
∑

k=0

αkg
(

xk, µk(xk)
)

. (2.3)

We assume further that there is a cost-free and absorbing termination
state t, and we have

g(x, u) ≥ 0, for all x %= t, u ∈ U(x), (2.4)

and g(t, u) = 0 for all u ∈ U(t). This type of structure expresses the
objective to reach or approach t at minimum cost, a classical control

22 Deterministic and Stochastic Dynamic Programming Chap. 2

problem. An extensive analysis of the undiscounted version of this
problem was given in the author’s paper [Ber17b].
An important special case is finite-state deterministic problems . Fi-
nite horizon versions of these problems include challenging discrete
optimization problems, whose exact solution is practically impossi-
ble. It is possible to transform such problems to infinite horizon SSP
problems, so that the conceptual framework developed here applies
(see Chapter 6). The approximate solution of discrete optimization
problems by RL methods, and particularly by rollout, has been dis-
cussed at length in the books [Ber19a] and [Ber20a].
Another important deterministic nonnegative cost problem is the clas-
sical continuous spaces problem where the system is linear, with no
control constraints, and the cost function is quadratic; see the follow-
ing example. We will often refer to this problem and its extensions
in what follows.

Example 2.1.1 (Linear Quadratic Problems)

Assume that the system is linear of the form

xk+1 = Axk +Buk, (2.5)

where xk and uk are elements of the Euclidean spaces !n and !m, respec-
tively, A is an n×n matrix, and B is an n×m matrix. We assume that there
are no control constraints. The cost per stage is quadratic of the form

g(x, u) = x′Qx+ u′Ru, (2.6)

where Q and R are positive definite symmetric matrices of dimensions n× n
and m×m, respectively (all finite-dimensional vectors in this work are viewed
as column vectors, and a prime denotes transposition). It is well known that
this problem admits a nice analytical solution, which we will discuss shortly,
and we will use later for illustrations, examples, and counterexamples (see
also [Ber17a], Section 3.1).

Infinite Horizon Methodology

Many of the analytical and computational issues regarding infinite horizon
problems revolve around the relation between the optimal cost function
J* of the problem and the optimal cost function of the corresponding N -
stage problem. In particular, let JN (x) denote the optimal cost of the
problem involving N stages, initial state x, cost per stage g(x, u, w), and
zero terminal cost. This cost is generated at the Nth iteration of the value
iteration algorithm (VI for short)

Jk+1(x) = min
u∈U(x)

E

{

g(x, u, w)+αJk
(

f(x, u, w)
)

}

, k = 0, 1, . . . , (2.7)

Sec. 2.1 Optimal Control Over an Infinite Horizon 23

starting from J0(x) ≡ 0 (see Chapter 6). It is natural to speculate the
following three basic properties:†

(1) The optimal infinite horizon cost is the limit of the corresponding
N -stage optimal costs as N → ∞:

J*(x) = lim
N→∞

JN (x) (2.8)

for all states x.

(2) Bellman’s equation holds:

J*(x) = min
u∈U(x)

E

{

g(x, u, w)+αJ*
(

f(x, u, w)
)

}

, for all x. (2.9)

This equation can be viewed as the limit as k → ∞ of the VI algorithm
(2.7), assuming property (1) above holds and guarantees that Jk(x) →
J*(x) for all x. There is also a Bellman equation for each stationary
policy µ. It is given by

Jµ(x) = E

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x,

(2.10)
where Jµ is the cost function of µ. We can view this as just the
Bellman equation (2.9) for a different problem, where for each x, the
control constraint set U(x) consists of just one control, namely µ(x).

(3) If µ(x) attains the minimum in the right-hand side of the Bellman
equation (2.9) for each x, then the stationary policy µ should be
optimal.

All three of the preceding results hold for discounted problems, pro-
vided the expected cost per stage E

{

g(x, u, w)
}

is bounded over the set
of possible values of (x, u, w) (see the DP book [Ber12], Chapter 1). They
also hold for finite-state SSP problems under reasonable assumptions. For
deterministic problems with possibly infinite state and control spaces, there
is substantial analysis that provides assumptions under which the results
(1)-(3) above hold (see e.g., [Ber12]).

The VI algorithm is also typically valid, in the sense that Jk → J*,
even if the initial function J0 is nonzero. The motivation for a different
choice of J0 is faster convergence to J*; generally the convergence is faster
as J0 is chosen closer to J*. The intuitive interpretation of the Bellman
equation (2.9) is that it is the limit as k → ∞ of the VI algorithm (2.7)
assuming that Jk → J*. The optimality condition (3) indicates that op-
timal and near optimal policies can be obtained from within the class of

† Throughout this work, we will be using “min” instead of the more formal
“inf,” even if we are not sure that the minimum is attained.

24 Deterministic and Stochastic Dynamic Programming Chap. 2

stationary policies, something that is generally true for the problems that
we discuss in this work, and that we will implicitly assume in what follows.

Aside from the VI algorithm, another fundamental algorithm is pol-
icy iteration (PI for short), which will be discussed in Section 3.3. It is
much faster than VI, and in practice it often requires a handful of itera-
tions, independently of the problem size. An explanation is that PI can
be viewed as Newton’s method for solving Bellman’s equation, as we will
explain in Section 3.3. This connection with Newton’s method extends to
approximate forms of PI, and is central for our purposes in this book.

The author’s paper [Ber17b], and also the abstract DP book [Ber22a],
provide a detailed analysis of the undiscounted special case of the problem
(2.2)-(2.4), where there is a cost-free and absorbing termination state t,
the cost function is strictly positive for all other states, as in Eq. (2.4),
and the objective is to reach or asymptotically approach the termination
state. This analysis covers the preceding four properties, as well as the
issue of convergence of PI, for the case of general state and control spaces
(continuous or discrete or a mixture thereof). It delineates conditions under
which favorable properties can be guaranteed.

Example 2.1.1 (Linear Quadratic Problems - Continued)

Consider again the linear quadratic problem defined by Eqs. (2.5)-(2.6). The
Bellman equation is given by

J(x) = min
u∈#m

{

x′Qx+ u′Ru+ J(Ax+Bu)
}

, (2.11)

and turns out to have a unique solution within the space of quadratic functions
of the form

J(x) = x′Kx, (2.12)

where K is a positive semidefinite symmetric matrix [under our positive defi-
niteness assumption on Q and R, and an additional controllability assumption
on the system (2.5); see [Ber17a], Section 3.1]. This unique solution can be
shown to be the optimal cost function of the problem, and has the form

J∗(x) = x′K∗x. (2.13)

We can obtain K∗ by solving the matrix equation

K = F (K), (2.14)

with F (K) defined over symmetric matrices K by

F (K) = A′
(

K −KB(B′KB +R)−1B′K
)

A+Q. (2.15)

The optimal policy is obtained by minimization in the Bellman equation
(2.11) when J is replaced by the optimal cost function J∗ of Eq. (2.13). It
can be verified that it is linear of the form

µ∗(x) = Lx,

Sec. 2.2 Approximation in Value Space 25

where L is the matrix

L = −(B′K∗B +R)−1B′K∗A.

The VI and PI algorithms are known to have favorable properties for
our linear quadratic problem. In particular, the VI algorithm can be exe-
cuted within the space of positive semidefinite symmetric matrices. The VI
algorithm Jk+1 = TJk, when Jk has the form Jk(x) = x′Kkx, yields for all x,

Jk+1(x) = x′Kk+1x with Kk+1 = F (Kk), (2.16)

where F is given by Eq. (2.15). It can be shown that the sequence {Kk}
converges to the optimal matrix K∗ starting from any positive semidefinite
symmetric matrix K0 under the assumptions mentioned earlier. The PI algo-
rithm also has favorable convergence properties (under the same assumptions)
and its important connection with Newton’s method will be discussed later.

The preceding results are well known and they are given with proofs
in several control theory texts, including the author’s DP books [Ber17a],
Chapter 3, and [Ber12], Chapter 4.† The equation K = F (K) is known as
the Riccati equation.‡ It can be viewed as the Bellman equation restricted to
the subspace of quadratic functions of the form (2.12). Note that the Riccati
equation can be shown to have solutions other than K∗ (which necessarily
are not positive definite symmetric). Illustrative examples will be given later.

2.2 APPROXIMATION IN VALUE SPACE

A principal RL approach to deal with the often intractable exact compu-
tation of J* is approximation in value space. Here in place of J*, we use
an approximation J̃ , and generate at any state x, a control µ̃(x) by the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

; (2.17)

† Actually the preceding formulas also hold even when the positive definite-
ness assumption on Q is replaced by other weaker conditions (see [Ber17a], Sec-
tion 3.1). We will not go into the details of this, but we note that some condition
on Q is needed for the preceding results to hold, as we will show later by example
in Chapter 4.

‡ This is an algebraic form of the Riccati differential equation, which was in-
vented in its one-dimensional form by count Jacopo Riccati in the 1700s, and has
played an important role in control theory. It has been studied extensively in its
differential and difference matrix versions; see the book by Lancaster and Rod-
man [LaR95], and the paper collection by Bittanti, Laub, and Willems [BLW91],
which also includes a historical account by Bittanti [Bit91] of Riccati’s remarkable
life and accomplishments.

26 Deterministic and Stochastic Dynamic Programming Chap. 2

(we implicitly assume that the minimum above is attained for all x).† This
minimization yields a stationary policy {µ̃, µ̃, . . .}, with cost function de-
noted Jµ̃ [i.e., Jµ̃(x) is the total infinite horizon discounted cost obtained
when using µ̃ starting at state x]. In the next section, the change from J̃

to Jµ̃ will be interpreted as a step of Newton’s method for solving Bellman’s
equation. Among others, this will suggest that Jµ̃ is close to J* and obeys
a superlinear convergence relation

lim
J̃→J*

Jµ̃(x) − J*(x)

J̃(x)− J*(x)
= 0,

for all states x. For specific types of problems, this relation represents
a plausible result, which likely holds under appropriate conditions. This
is similar to the use of Newton’s method in numerical analysis, where its
global or local convergence is guaranteed only under some assumptions.
Within our context of approximate DP, however, there is an important un-
derlying structure, which is favorable and enhances the convergence proper-
ties of Newton’s method, namely the monotonicity and concavity properties
of Bellman’s equation, as we will discuss in what follows.

While it is desirable that Jµ̃ is close to J* in some sense, for classi-
cal control problems involving control to a goal state (e.g., problems with
a cost-free and absorbing terminal state, and positive cost for all other
states), stability of µ̃ may be a principal objective. For the purposes of this
work, we will focus on stability issues for just this one class of problems,
and we will consider the policy µ̃ to be stable if Jµ̃ is real-valued , i.e.,

Jµ̃(x) < ∞, for all x ∈ X.

Selecting J̃ so that µ̃ is stable is a question of major interest, and will be
addressed in Chapter 3.

#-Step Lookahead

An important extension of one-step lookahead minimization is #-step looka-
head , whereby at a state xk we minimize the cost of the first # > 1 stages
with the future costs approximated by a function J̃ (see Fig. 2.2.1). This
minimization yields a control ũk and a sequence µ̃k+1, . . . , µ̃k+"−1. The
control ũk is applied at xk, and defines the #-step lookahead policy µ̃ via
µ̃(xk) = ũk. The sequence µ̃k+1, . . . , µ̃k+"−1 is discarded. Actually, we
may view #-step lookahead minimization as the special case of its one-step
counterpart where the lookahead function is the optimal cost function of

† Note that the general theory of abstract DP is developed with the use of

extended real-valued functions, and without the attainment of minimum assump-
tion; see [Ber22a].

Sec. 2.2 Approximation in Value Space 27

) At x

At xk min
uk,µk+1,...,µk+!−1

E

{

g(xk, uk, wk) +
k+!−1
∑

i=k+1

α
i−kg

(

xi, µi(xi), wi

)

+ α
!J̃(xk+!)

}

One-Step Lookahead Multistep Lookahead

One-Step Lookahead Multistep Lookahead

First Step First

First Step First ! Steps “Future”Steps “Future”

Steps “Future”

minu∈U(x) E
{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

Figure 2.2.1 Schematic illustration of approximation in value space with one-
step and "-step lookahead minimization. In the former case, the minimization
yields at state x a control ũ, which defines the one-step lookahead policy µ̃ via
µ̃(x) = ũ. In the latter case, the minimization yields a control ũk and a se-
quence µ̃k+1, . . . , µ̃k+!−1. The control ũk is applied at xk, and defines the "-step
lookahead policy µ̃ via µ̃(xk) = ũk. The sequence µ̃k+1, . . . , µ̃k+!−1 is discarded.

an (#−1)-stage DP problem with a terminal cost J̃(xk+") on the state xk+"

obtained after #− 1 stages. In the next chapter, this will be interpreted as
a step of Newton’s method for solving Bellman’s equation, starting from a
function Ĵ , which is an “improvement” over J̃ . In particular, Ĵ is obtained
from J̃ by applying #− 1 successive value iterations.

The motivation for #-step lookahead minimization is that by increas-
ing the value of #, we may require a less accurate approximation J̃ to obtain
good performance. Otherwise expressed, for the same quality of cost func-
tion approximation, better performance may be obtained as # becomes
larger. This will be explained visually in the next section, and is also sup-
ported by error bounds, given for example in the books [Ber19a], [Ber20a].
In particular, for AlphaZero chess, long multistep lookahead is critical for
good on-line performance. Another motivation for multistep lookahead is
to enhance the stability properties of the generated on-line policy. On the
other hand, the multistep lookahead minimization problem is more time
consuming that the one-step lookahead counterpart of Eq. (2.17).

Constructing Terminal Cost Approximations

A major issue in value space approximation is the construction of suitable
approximate cost functions J̃ . This can be done in many different ways,
giving rise to some of the principal RL methods. For example, J̃ may be
constructed with a sophisticated off-line training method, as discussed in
Chapter 1, in connection with chess and backgammon. Alternatively, the
approximate values J̃(x) may be obtained on-line as needed with truncated
rollout, by running an off-line obtained policy for a suitably large number

28 Deterministic and Stochastic Dynamic Programming Chap. 2

of steps, starting from x, and supplementing it with a suitable terminal
cost approximation. While the method by which we obtain J̃ will not be
important for understanding the ideas of this work, for orientation purposes
we briefly describe four broad types of approximation, and refer to the RL
and approximate DP literature for further details:

(a) Problem approximation: Here the function J̃ is obtained as the opti-
mal or nearly optimal cost function of a simplified optimization prob-
lem, which is more convenient for computation. Simplifications may
include exploiting decomposable structure, reducing the size of the
state space, and ignoring various types of uncertainties. For example
we may consider using as J̃ the cost function of a related determinis-
tic problem, obtained through some form of “certainty equivalence,”
thus allowing computation of J̃ by gradient-based optimal control
methods or shortest path-type methods.
A major type of problem approximation method is aggregation, which
is described and analyzed in the books [Ber12], [Ber19a], and the pa-
pers [Ber18b], [Ber18c]. Aggregation provides a systematic procedure
to simplify a given problem by grouping states together into a rela-
tively small number of subsets, called aggregate states. The optimal
cost function of the simpler aggregate problem is computed by exact
DP methods, possibly involving the use of simulation. This cost func-
tion is then used to provide an approximation J̃ to the optimal cost
function J* of the original problem, using some form of interpolation.

(b) On-line simulation, as in rollout algorithms, where we use a subop-
timal policy µ to compute on-line when needed the values J̃(x) to
be exactly or approximately equal to Jµ(x). The policy µ may be
obtained by any method, e.g., one based on heuristic reasoning, or
off-line training based on a more principled approach, such as approx-
imate policy iteration or approximation in policy space. Note that
while simulation is time-consuming, it is uniquely well-suited for the
use of parallel computation. This may be an important consideration
for the practical implementation of rollout algorithms, particularly
for stochastic problems.

(c) On-line approximate optimization, such as model predictive control
(MPC), which will be discussed in more detail later. This approach
involves the solution of a suitably constructed #-step version of the
problem. It can be viewed as either approximation in value space
with #-step lookahead, or as a form of rollout algorithm.

(d) Parametric cost approximation, where J̃ is obtained from a given
parametric class of functions J(x, r), where r is a parameter vector,
selected by a suitable algorithm. The parametric class typically in-
volves prominent characteristics of x called features , which can be
obtained either through insight into the problem at hand, or by using

Sec. 2.2 Approximation in Value Space 29

training data and some form of neural network.

We refer to the neurodynamic programming book by Bertsekas and Tsitsik-
lis [BeT96], and the RL book by Sutton and Barto [SuB18], as well as the
large number of subsequent RL and approximate DP books, which provide
specific examples of cost function approximation methods and associated
training algorithms.

Let us also mention that for problems with special structure, the
terminal cost approximation may be chosen so that the one-step lookahead
minimization (2.17) is facilitated. In fact, in favorable circumstances, the
lookahead minimization may be carried out in closed form. An example is
when the control enters linearly the system equation and quadratically in
the cost function, while the terminal cost approximation is quadratic.

From Off-Line Training to On-Line Play

Generally off-line training will produce either just a cost approximation
(as in the case of TD-Gammon), or just a policy (as for example by some
approximation in policy space/policy gradient approach), or both (as in
the case of AlphaZero). We have already discussed in this section one-step
lookahead and multistep lookahead schemes to implement on-line approx-
imation in value space using J̃ ; cf. Fig. 2.2.1. Let us now consider some
additional possibilities, some of which involve the use of a policy µ that
has been obtained off-line (possibly in addition to a terminal cost approx-
imation). Here are some of the main possibilities:

(a) Given a policy µ that has been obtained off-line, we may use as termi-
nal cost approximation J̃ the cost function Jµ of the policy. For the
case of one-step lookahead, this requires a policy evaluation opera-
tion, and can be done on-line, by computing (possibly by simulation)
just the values of

E

{

Jµ
(

f(xk, uk, wk)
)

}

that are needed [cf. Eq. (2.17)]. For the case of #-step lookahead, the
values

E
{

Jµ(xk+")
}

for all states xk+" that are reachable in # steps starting from xk are
needed. This is the simplest form of rollout, and only requires the
off-line construction of the policy µ.

(b) Given a terminal cost approximation J̃ that has been obtained off-
line, we may use it on-line to compute a one-step or multistep looka-
head policy µ̃. In a more powerful version of this scheme, the policy
µ̃ can in turn be used for rollout as in (a) above. In a variation of this
scheme, we may also use J̃ for truncated rollout, to approximate the
tail end of the rollout process (an example of this is the rollout-based
TD-Gammon algorithm discussed in Section 1.2).

30 Deterministic and Stochastic Dynamic Programming Chap. 2

(c) Given a policy µ and a terminal cost approximation J̃ , we may use
them together in a truncated rollout scheme, whereby the tail end of
the rollout with µ is approximated using the cost approximation J̃ .
This is similar to the truncated rollout scheme noted in (b) above,
except that the policy µ is computed o↵-line rather than on-line using
J̃ and one-step or multistep lookahead as in (b).

The preceding three possibilities are the principal ones for using the
results of o↵-line training within on-line play schemes. Naturally, there are
variations where additional information is computed o↵-line to facilitate
and/or expedite the on-line play algorithm. As an example, in MPC, in
addition to a terminal cost approximation, a target tube may need to be
computed o↵-line in order to guarantee that some state constraints can be
satisfied on-line; see the discussion of MPC in Section 5.4. Other examples
of this type will be noted in the context of specific applications.

Finally, let us note that while we have emphasized approximation
in value space with cost function approximation, our discussion applies to
Q-factor approximation, involving functions

Q̃(x, u) ⇡ E
n
g(x, u, w) + ↵J*

�
f(x, u, w)

�o
.

The corresponding one-step lookahead scheme has the form

µ̃(x) 2 arg min
u2U(x)

E
n
g(x, u, w)+↵ min

u02U(f(x,u,w))
Q̃
�
f(x, u, w), u0

�o
; (2.18)

cf. Eq. (2.17). The second term on the right in the above equation repre-
sents the cost function approximation

J̃
�
f(x, u, w)

�
= min

u02U(f(x,u,w))
Q̃
�
f(x, u, w), u0

�
.

The use of Q-factors is common in the “model-free” case where a
computer simulator is used to generate samples of w, and corresponding
values of g and f . Then, having obtained Q̃ through o↵-line training, the
one-step lookahead minimization in Eq. (2.18) must be performed on-line
with the use of the simulator.

2.3 NOTES AND SOURCES

Our discussion of exact DP in this chapter has been brief since our focus
in this book will be on approximate DP and RL. The author’s DP text-
books [Ber12], [Ber17a] provide an extensive discussion of finite and infinite
horizon exact DP, and its applications to discrete and continuous spaces
problems, using a notation and style that is consistent with the present
book. The author’s paper [Ber17b] focuses on deterministic, nonnegative
cost infinite horizon problems, and provides a convergence analysis of the
value and policy iteration algorithms.

3

An Abstract View of

Reinforcement Learning

Contents

3.1. Bellman Operators p. 32
3.2. Approximation in Value Space and Newton’s Method . . p. 39
3.3. Region of Stability p. 46
3.4. Policy Iteration, Rollout, and Newton’s Method p. 50
3.5. How Sensitive is On-Line Play to the Off-Line

Training Process? p. 58
3.6. Why Not Just Train a Policy Network and Use it Without .

On-Line Play? p. 60
3.7. Multiagent Problems and Multiagent Rollout p. 61
3.8. On-Line Simplified Policy Iteration p. 66
3.9. Exceptional Cases p. 72
3.10. Notes and Sources p. 79

31

32 An Abstract View of Reinforcement Learning Chap. 3

In this chapter we will use geometric constructions to obtain insight into
Bellman’s equation, the value and policy iteration algorithms, approxima-
tion in value space, and some of the properties of the corresponding one-
step or multistep lookahead policy µ̃. To understand these constructions,
we need an abstract notational framework that is based on the operators
that are involved in the Bellman equations.

3.1 BELLMAN OPERATORS

We denote by TJ the function of x that appears in the right-hand side of
Bellman’s equation. Its value at state x is given by

(TJ)(x) = min
u∈U(x)

E

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x. (3.1)

Also for each policy µ, we introduce the corresponding function TµJ , which
has value at x given by

(TµJ)(x) = E

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x. (3.2)

Thus T and Tµ can be viewed as operators (broadly referred to as the
Bellman operators), which map functions J to other functions (TJ or TµJ ,
respectively).†

An important property of the operators T and Tµ is that they are
monotone, in the sense that if J and J ′ are two functions of x such that

J(x) ≥ J ′(x), for all x,

then we have

(TJ)(x) ≥ (TJ ′)(x), (TµJ)(x) ≥ (TµJ ′)(x), for all x and µ.
(3.3)

This monotonicity property is evident from Eqs. (3.1) and (3.2), where the
values of J are multiplied by nonnegative numbers.

† Within the context of this work, the functions J on which T and Tµ operate

will be real-valued functions of x, which we denote by J ∈ R(X). We will
assume throughout that the expected values in Eqs. (3.1) and (3.2) are well-

defined and finite when J is real-valued. This implies that TµJ will also be

real-valued functions of x. On the other hand (TJ)(x) may take the value −∞
because of the minimization in Eq. (3.1). We allow this possibility, although our

illustrations will primarily depict the case where TJ is real-valued. Note that the

general theory of abstract DP is developed with the use of extended real-valued
functions; see [Ber22a].

Sec. 3.1 Bellman Operators 33

Another important property is that the Bellman operator Tµ is linear ,
in the sense that it has the form TµJ = G+AµJ , where G ∈ R(X) is some
function and Aµ : R(X) #→ R(X) is an operator such that for any functions
J1, J2, and scalars γ1, γ2, we have†

Aµ(γ1J1 + γ2J2) = γ1AµJ1 + γ2AµJ2.

Moreover, from the definitions (3.1) and (3.2), we have

(TJ)(x) = min
µ∈M

(TµJ)(x), for all x,

where M is the set of stationary policies. This is true because for any pol-
icy µ, there is no coupling constraint between the controls µ(x) and µ(x′)
that correspond to two different states x and x′. It follows that (TJ)(x) is
a concave function of J for every x (the pointwise minimum of linear func-
tions is a concave function). This will be important for our interpretation
of one-step and multistep lookahead minimization as a Newton iteration
for solving the Bellman equation J = TJ .

Example 3.1.1 (A Two-State and Two-Control Example)

Assume that there are two states 1 and 2, and two controls u and v. Consider
the policy µ that applies control u at state 1 and control v at state 2. Then
the operator Tµ takes the form

(TµJ)(1) =

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

, (3.4)

(TµJ)(2) =

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

, (3.5)

where pxy(u) and pxy(v) are the probabilities that the next state will be y,
when the current state is x, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of the
Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

,

2
∑

y=1

p1y(v)
(

g(1, v, y) + αJ(y)
)

]

,

(3.6)

† An operator Tµ with this property is often called “affine,” but in this work

we just call it “linear.” Also we use abbreviated notation to express pointwise

equalities and inequalities, so that we write J = J ′ or J ≥ J ′ to express the fact
that J(x) = J ′(x) or J(x) ≥ J ′(x), for all x, respectively.

34 An Abstract View of Reinforcement Learning Chap. 3

(TJ)(2) = min

[

2
∑

y=1

p2y(u)
(

g(2, u, y) + αJ(y)
)

,

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

]

.

(3.7)

Thus, (TJ)(1) and (TJ)(2) are concave and piecewise linear as functions of
the two-dimensional vector J (with two pieces; more generally, as many linear
pieces as the number of controls). This concavity property holds in general
since (TJ)(x) is the minimum of a collection of linear functions of J , one for
each u ∈ U(x). Figure 3.1.1 illustrates (TµJ)(1) for the cases where µ(1) = u
and µ(1) = v, (TµJ)(2) for the cases where µ(2) = u and µ(2) = v, (TJ)(1),
and (TJ)(2), as functions of J =

(

J(1), J(2)
)

.

Critical properties from the DP point of view are whether T and Tµ

have fixed points; equivalently, whether the Bellman equations J = TJ

and J = TµJ have solutions within the class of real-valued functions, and
whether the set of solutions includes J* and Jµ, respectively. It may thus
be important to verify that T or Tµ are contraction mappings. This is true
for example in the benign case of discounted problems with bounded cost
per stage. However, for undiscounted problems, asserting the contraction
property of T or Tµ may be more complicated, and even impossible; the ab-
stract DP book [Ber22a] deals extensively with such questions, and related
issues regarding the solution sets of the Bellman equations.

Geometrical Interpretations

We will now interpret the Bellman operators geometrically, starting with
Tµ. Figure 3.1.2 illustrates its form. Note here that the functions J and
TµJ are multidimensional. They have as many scalar components J(x)
and (TµJ)(x), respectively, as there are states x, but they can only be
shown projected onto one dimension. The function TµJ for each policy µ

is linear. The cost function Jµ satisfies Jµ = TµJµ, so it is obtained from
the intersection of the graph of TµJ and the 45 degree line, when Jµ is
real-valued. Later we will interpret the case where Jµ is not real-valued as
the system being unstable under µ [we have Jµ(x) = ∞ for some initial
states x].

The form of the Bellman operator T is illustrated in Fig. 3.1.3. Again
the functions J , J∗, TJ , TµJ , etc, are multidimensional, but they are
shown projected onto one dimension (alternatively they are illustrated for a
system with a single state, plus possibly a termination state). The Bellman
equation J = TJ may have one or many real-valued solutions. It may also
have no real-valued solution in exceptional situations, as we will discuss
later (see Section 3.8). The figure assumes a unique real-valued solution
of the Bellman equations J = TJ and J = TµJ , which is true if T and
Tµ are contraction mappings, as is the case for discounted problems with

Sec. 3.1 Bellman Operators 35

State 1 State 2
State 1 State 2

One-step lookahead J∗

∗ J∗(1)

(2) (TJ∗)(1) = J∗(1) (

One-step lookahead J∗

(1) J∗(2)

(1) (TJ∗)(2) = J∗(2)

Figure 3.1.1 Geometric illustrations of the Bellman operators Tµ and T for
states 1 and 2 in Example 3.1.1; cf. Eqs. (3.4)-(3.7). The problem’s transition
probabilities are: p11(u) = 0.3, p12(u) = 0.7, p21(u) = 0.4, p22(u) = 0.6, p11(v) =
0.6, p12(v) = 0.4, p21(v) = 0.9, p22(v) = 0.1. The stage costs are g(1, u, 1) =
3, g(1, u, 2) = 10, g(2, u, 1) = 0, g(2, u, 2) = 6, g(1, v, 1) = 7, g(1, v, 2) = 5,
g(2, v, 1) = 3, g(2, v, 2) = 12. The discount factor is α = 0.9, and the optimal
costs are J∗(1) = 50.59 and J∗(2) = 47.41. The optimal policy is µ∗(1) = v and
µ∗(2) = u. The figure also shows two one-dimensional slices of T that are parallel
to the J(1) and J(2) axes and pass through J∗.

36 An Abstract View of Reinforcement Learning Chap. 3

1 J J

1 J J

45◦Line

TµJ

Cost of µ

Player/Policy Jµ = TµJµ

(1) = 0

Generic stable policy
Generic stable policy µJ Generic unstable policy

Generic unstable policy µ′

Tµ′J

Figure 3.1.2 Geometric interpretation of the linear Bellman operator Tµ and
the corresponding Bellman equation. The graph of Tµ is a plane in the space
R(X) × R(X), and when projected on a one-dimensional plane that corresponds
to a single state and passes through Jµ, it becomes a line. Then there are three
cases:

(a) The line has slope less than 45 degrees, so it intersects the 45-degree line at
a unique point, which is equal to Jµ, the solution of the Bellman equation
J = TµJ . This is true if Tµ is a contraction mapping, as is the case for
discounted problems with bounded cost per stage.

(b) The line has slope greater than 45 degrees. Then it intersects the 45-
degree line at a unique point, which is a solution of the Bellman equation
J = TµJ , but is not equal to Jµ. Then Jµ is not real-valued; we will call
such µ unstable in Section 3.2.

(c) The line has slope exactly equal to 45 degrees. This is an exceptional case
where the Bellman equation J = TµJ has an infinite number of real-valued
solutions or no real-valued solution at all; we will provide examples where
this occurs in Section 3.8.

bounded cost per stage. Otherwise, these equations may have no solution
or multiple solutions within the class of real-valued functions (see Section
3.8). The equation J = TJ typically has J∗ as a solution, but may have
more than one solution in cases where either α = 1, or α < 1 and the cost
per stage is unbounded.

Sec. 3.1 Bellman Operators 37

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

45◦Line

TµJ

Cost of µ

TJ = minµ TµJ

Final Features Optimal Policy
Final Features Optimal Policy

J̃

Position Evaluation Policy µ̃ withON-LINE PLAY Lookahead Tree States

Tµ̃J̃ = T J̃

One-step lookahead

One-step lookahead Generic policy µ

= 4 Model minµ TµJ̃

Player/Policy Jµ = TµJµ

(1) = 0

Tµ̃J

ective Cost Approximation Value Space Approximation
Cost of µ̃
Jµ̃ = Tµ̃Jµ̃

Figure 3.1.3 Geometric interpretation of the Bellman operator T , and the cor-
responding Bellman equation. For a fixed x, the function (TJ)(x) can be written
as minµ(TµJ)(x), so it is concave as a function of J . The optimal cost function
J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection of the graph of TJ

and the 45 degree line shown, assuming J∗ is real-valued.
Note that the graph of T lies below the graph of every operator Tµ, and is

in fact obtained as the lower envelope of the graphs of Tµ as µ ranges over the
set of policies M. In particular, for any given function J̃ , for every x, the value
(T J̃)(x) is obtained by finding a support hyperplane/subgradient of the graph of
the concave function (TJ)(x) at J = J̃, as shown in the figure. This support
hyperplane is defined by the control µ(x) of a policy µ̃ that attains the minimum
of (TµJ̃)(x) over µ:

µ̃(x) ∈ arg min
µ∈M

(TµJ̃)(x)

(there may be multiple policies attaining this minimum, defining multiple support
hyperplanes).

Example 3.1.2 (A Two-State and Infinite Controls Problem)

Let us consider the mapping T for a problem that involves two states, 1 and
2, but an infinite number of controls. In particular, the control space at both
states is the unit interval, U(1) = U(2) = [0, 1]. Here (TJ)(1) and (TJ)(2)
are given by

(TJ)(1) = min
u∈[0,1]

{

g1 + r11u
2 + r12(1− u)2 + αuJ(1) + α(1− u)J(2)

}

,

(TJ)(2) = min
u∈[0,1]

{

g2 + r21u
2 + r22(1− u)2 + αuJ(1) + α(1− u)J(2)

}

.

38 An Abstract View of Reinforcement Learning Chap. 3

State 1 State 2

One-step lookahead J∗ One-step lookahead J∗

∗ J∗(1) (1) J∗(2)

(2) (TJ∗)(1) = J∗(1) ((1) (TJ∗)(2) = J∗(2)

Figure 3.1.4 Illustration of the Bellman operator T for states 1 and 2 in Example
3.1.2. The parameter values are g1 = 5, g2 = 3, r11 = 3, r12 = 15, r21 = 9,
r22 = 1, and the discount factor is α = 0.9. The optimal costs are J∗(1) = 49.7
and J∗(2) = 40.0, and the optimal policy is µ∗(1) = 0.59 and µ∗(2) = 0. The
figure also shows the two one-dimensional slices of the operators at J(1) = 15 and
J(2) = 30 that are parallel to the J(1) and J(2) axes.

The control u at each state x = 1, 2 has the meaning of a probability that
we must select at that state. In particular, we control the probabilities u and
(1−u) of moving to states y = 1 and y = 2, at a control cost that is quadratic
in u and (1− u), respectively. For this problem (TJ)(1) and (TJ)(2) can be
calculated in closed form, so they are easy to plot and understand. They are
piecewise quadratic, unlike the corresponding plots of Fig. 3.1.1, which are
piecewise linear; see Fig. 3.1.4.

Visualization of Value Iteration

The operator notation simplifies algorithmic descriptions, derivations, and
proofs related to DP. For example, we can write the VI algorithm in the
compact form

Jk+1 = TJk, k = 0, 1, . . . ,

as illustrated in Fig. 3.1.5. Moreover, the VI algorithm for a given policy
µ can be written as

Jk+1 = TµJk, k = 0, 1, . . . ,

and it can be similarly interpreted, except that the graph of the function
TµJ is linear. Also we will see shortly that there is a similarly compact
description for the policy iteration algorithm.

To keep the presentation simple, we will focus our attention on the
abstract DP framework as it applies to the optimal control problems of Sec-
tion 2.1. In particular, we will assume without further mention that T and
Tµ have the monotonicity property (3.3), that TµJ is linear for all µ, and

Sec. 3.2 Approximation in Value Space and Newton’s Method 39

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1

J1

J2

J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

provement Bellman Equation Value Iterations

Stability Region 0

Figure 3.1.5 Geometric interpretation of the VI algorithm Jk+1 = TJk, start-
ing from some initial function J0. Successive iterates are obtained through the
staircase construction shown in the figure. The VI algorithm Jk+1 = TµJk for a
given policy µ can be similarly interpreted, except that the graph of the function
TµJ is linear.

that (as a consequence) the component (TJ)(x) is concave as a function of
J for every state x. We note, however, that the abstract notation facili-
tates the extension of the infinite horizon DP theory to models beyond the
ones that we discuss in this work. Such models include semi-Markov prob-
lems, minimax control problems, risk sensitive problems, Markov games,
and others (see the DP textbook [Ber12], and the abstract DP monograph
[Ber22a]).

3.2 APPROXIMATION IN VALUE SPACE AND NEWTON’S
METHOD

Let us now consider approximation in value space and an abstract geomet-
ric interpretation, first provided in the author’s book [Ber20a]. By using
the operators T and Tµ, for a given J̃ , a one-step lookahead policy µ̃ is
characterized by the equation Tµ̃J̃ = T J̃, or equivalently

µ̃(x) ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

, (3.8)

as in Fig. 3.2.1. Furthermore, this equation implies that the graph of Tµ̃J

just touches the graph of TJ at J̃ , as shown in the figure.

40 An Abstract View of Reinforcement Learning Chap. 3

In mathematical terms, for each state x ∈ X , the hyperplaneHµ̃(x) ∈
R(X)×'

Hµ̃(x) =
{

(J, ξ) | (Tµ̃J)(x) = ξ
}

, (3.9)

supports from above the hypograph of the concave function (TJ)(x), i.e.,
the convex set

{

(J, ξ) | (TJ)(x) ≥ ξ
}

.

The point of support is
(

J̃ , (Tµ̃J̃)(x)
)

, and relates the function J̃ with the
corresponding one-step lookahead minimization policy µ̃, the one that sat-
isfies Tµ̃J̃ = T J̃. The hyperplane Hµ̃(x) of Eq. (3.9) defines a subgradient
of (TJ)(x) at J̃ . Note that the one-step lookahead policy µ̃ need not be
unique, since T need not be differentiable, so there may be multiple hy-
perplanes of support at J̃ . Still this construction shows that the linear
operator Tµ̃ is a linearization of the operator T at the point J̃ (pointwise
for each x).

Equivalently, for every x ∈ X , the linear scalar equation J(x) =
(Tµ̃J)(x) is a linearization of the nonlinear equation J(x) = (TJ)(x) at the
point J̃ . Consequently, the linear operator equation J = Tµ̃J is a lineariza-
tion of the equation J = TJ at J̃ , and its solution, Jµ̃, can be viewed as
the result of a Newton iteration at the point J̃ (here we adopt an expanded
view of the Newton iteration that applies to possibly nondifferentiable fixed
point equations; see the Appendix). In summary, the Newton iterate at J̃
is Jµ̃, the solution of the linearized equation J = Tµ̃J .†

† The classical Newton’s method for solving a fixed point problem of the form
y = G(y), where y is an n-dimensional vector, operates as follows: At the current
iterate yk, we linearize G and find the solution yk+1 of the corresponding linear
fixed point problem. Assuming G is differentiable, the linearization is obtained
by using a first order Taylor expansion:

yk+1 = G(yk) +
∂G(yk)

∂y
(yk+1 − yk),

where ∂G(yk)/∂y is the n × n Jacobian matrix of G evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ ·‖ is the Euclidean norm, and holds assuming the Jacobian matrix exists,
is invertible, and is Lipschitz continuous (see the books by Ortega and Rheinboldt
[OrR70], and by the author [Ber16], Section 1.4).

There are well-studied extensions of Newton’s method that are based on
solving a linearized system at the current iterate, but relax the differentiabil-

ity requirement through alternative requirements of piecewise differentiability,

B-differentiability, and semi-smoothness, while maintaining the superlinear con-
vergence property of the method. In particular, the quadratic rate of convergence

Sec. 3.2 Approximation in Value Space and Newton’s Method 41

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l
One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost
One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0 J̃

Cost Approximation Value Space Approximation

Newton step from J̃

J̃ for solving J = TJ

Approximations Result of

also Newton Step

Off-Line Training On-Line Play
-Line Training On-Line Play

Figure 3.2.1 Geometric interpretation of approximation in value space and the
one-step lookahead policy µ̃ as a step of Newton’s method [cf. Eq. (3.8)]. Given
J̃ , we find a policy µ̃ that attains the minimum in the relation

T J̃ = min
µ

TµJ̃ .

This policy satisfies T J̃ = Tµ̃J̃ , so the graph of TJ and Tµ̃J touch at J̃ , as shown.
It may not be unique. Because TJ has concave components, the equation J = Tµ̃J

is the linearization of the equation J = TJ at J̃ [for each x, the hyperplane Hµ̃(x)
of Eq. (3.9) defines a subgradient of (TJ)(x) at J̃]. The linearized equation is
solved at the typical step of Newton’s method to provide the next iterate, which
is just Jµ̃.

The structure of the Bellman operators (3.1) and (3.2), with their
monotonicity and concavity properties, tends to enhance the convergence
and the rate of convergence properties of Newton’s method, even in the
absence of differentiability, as evidenced by the favorable Newton-related
convergence analysis of PI, and the extensive favorable experience with
rollout, PI, and MPC. In fact, the role of monotonicity and concavity in af-
fecting the convergence properties of Newton’s method has been addressed

result for differentiable G of Prop. 1.4.1 of the book [Ber16] admits a straight-

forward and intuitive extension to piecewise differentiable G, given in the paper
[KoS86]; see the Appendix, which contains references to the literature.

42 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0

Multistep Lookahead Policy Cost l

Multistep Lookahead Policy Cost

Cost Approximation Value Space Approximation

Cost Approximation Value Space Approximation
Multistep Lookahead Policy Cost T 2J̃

Effective Cost Approximation Value Space ApproximationJ̃ for solving J = TJ

Newton step from T !−1J̃

Approximations Result of

Linear policy parameter Optimal ! = 3

also Newton Step

-Line Training On-Line PlayOff-Line Training On-Line Play

Figure 3.2.2 Geometric interpretation of approximation in value space with "-
step lookahead (in this figure " = 3). It is the same as approximation in value
space with one-step lookahead using T !−1J̃ as cost approximation. It can be
viewed as a Newton step at the point T !−1J̃ , the result of " − 1 value iterations
applied to J̃. Note that as " increases the cost function Jµ̃ of the "-step lookahead
policy µ̃ approaches more closely the optimal J∗, and that lim!→∞ Jµ̃ = J∗.

in the mathematical literature.†
As noted earlier, approximation in value space with $-step lookahead

using J̃ is the same as approximation in value space with one-step lookahead
using the ($−1)-fold operation of T on J̃ , T !−1J̃ . Thus it can be interpreted
as a Newton step starting from T !−1J̃ , the result of $ − 1 value iterations
applied to J̃ . This is illustrated in Fig. 3.2.2.‡

† See the papers by Ortega and Rheinboldt [OrR67], and Vandergraft [Van67],

the books by Ortega and Rheinboldt [OrR70], and Argyros [Arg08], and the ref-
erences cited there. In this connection, it is worth noting that in the case of

Markov games, where the concavity property does not hold, the PI method may
oscillate, as shown by Pollatschek and Avi-Itzhak [PoA69], and needs to be mod-

ified to restore its global convergence; see the author’s paper [Ber21c], and the

references cited there.
‡ We note that several variants of Newton’s method that involve combina-

tions of first-order iterative methods, such as the Gauss-Seidel and Jacobi al-

gorithms, and Newton’s method, are well-known in numerical analysis. They
belong to the general family of Newton-SOR methods (SOR stands for “succes-

Sec. 3.2 Approximation in Value Space and Newton’s Method 43

Let us also note that $-step lookahead minimization involves $ succes-
sive VI iterations, but only the first of these iterations has a Newton step
interpretation. As an example, consider two-step lookahead minimization
with a terminal cost approximation J̃ . The second step minimization is a
VI that starts from J̃ to produce T J̃ . The first step minimization is a VI
that starts from T J̃ to produce T 2J̃ , but it also does something else that
is more significant: It produces a two-step lookahead minimization policy µ̃

through Tµ̃(T J̃) = T (T J̃), and the step from T J̃ to Jµ̃ (the cost function of
µ̃) is the Newton step. Thus, there is only one policy produced (i.e., µ̃) and
only one Newton step (from T J̃ to Jµ̃). In the case of one-step lookahead
minimization, the Newton step starts from J̃ and ends at Jµ̃. Similarly, in
the case of $-step lookahead minimization, the first step of the lookahead
is the Newton step (from T !−1J̃ to Jµ̃), and whatever follows the first step
of the lookahead is preparation for the Newton step.

Finally, it is worth mentioning that the approximation in value space
algorithm computes Jµ̃ differently than both the PI method and the clas-
sical form of Newton’s method. It does not explicitly compute any values
of Jµ̃; instead, the control is applied to the system and the cost is accu-
mulated accordingly. Thus the values of Jµ̃ are implicitly computed only
for those x that are encountered in the system trajectory that is generated
on-line.

Certainty Equivalent Approximations and the Newton Step

We noted earlier that for stochastic DP problems, $-step lookahead can
be computationally expensive, because the lookahead graph expands fast
as $ increases, due to the stochastic character of the problem. The cer-
tainty equivalence approach is an important approximation idea for dealing
with this difficulty. In the classical form of this approach, some or all of
the stochastic disturbances wk are replaced by some deterministic quanti-
ties, such as their expected values. Then a policy is computed off-line for
the resulting deterministic problem, and it is used on-line for the actual
stochastic problem.

The certainty equivalence approach can also be used to expedite the
computations of the $-step lookahead minimization. One way to do this is
to simply replace each of the uncertain $ quantities wk, wk+1, . . . , wk+!−1 by
a deterministic value w. Conceptually, this replaces the Bellman operators
T and Tµ,

(TJ)(x) = min
u∈U(x)

E

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

,

sive over-relaxation”); see the book by Ortega and Rheinboldt [OrR70] (Section

13.4). Their convergence rate is superlinear, similar to Newton’s method, as long
as they involve a pure Newton step, along with the first-order steps.

44 An Abstract View of Reinforcement Learning Chap. 3

(TµJ)(x) = E
n
g
�
x, µ(x), w

�
+ ↵J

�
f(x, µ(x), w)

�o
,

[cf. Eqs. (3.1) and (3.2)] with deterministic operators T and Tµ, given by

(TJ)(x) = min
u2U(x)

h
g(x, u, w) + ↵J

�
f(x, u, w)

�i
,

(TµJ)(x) = g
�
x, µ(x), w

�
+ ↵J

�
f(x, µ(x), w)

�
.

The resulting `-step lookahead minimization then becomes simpler; for
example, in the case of a finite control space problem, it is a deterministic
shortest path computation, involving an acyclic `-stage graph that expands
at each stage by a factor n, where n is the size of the control space. However,
this approach yields a policy µ such that

Tµ(T
`�1

J̃) = T (T
`�1

J̃),

and the cost function Jµ of this policy is generated by a Newton step,

which aims to find a fixed point of T (not T), starting from T
`�1

J̃ . Thus
the Newton step now aims at a fixed point of T , which is not equal to J*.
As a result the benefit of the Newton step is lost to a great extent.

Still, we may largely correct this di�culty, while retaining substantial
simplification, by using certainty equivalence for only the last `� 1 stages
of the `-step lookahead. This can be done with an `-step lookahead scheme
whereby only the uncertain quantities wk+1, . . . , wk+`�1 are replaced by a
deterministic value w, while wk is treated as a stochastic quantity, as first
proposed in the paper by Bertsekas and Castañon [BeC99]. In this way we
obtain a policy µ such that

Tµ(T
`�1

J̃) = T (T
`�1

J̃).

The cost function Jµ of this policy is then generated by a Newton step,

which aims to find a fixed point of T (not T), starting again from T
`�1

J̃ .
Thus the benefit of the fast convergence of Newton’s method is restored.
In fact based on insights derived from this Newton step interpretation, it
appears that the performance penalty for making the last `�1 stages of the

`-step lookahead deterministic is minimal when T
`�1

J̃ is “near” J*. At the

same time the `-step minimization T (T
`�1

J̃) involves only one stochastic
step, the first one, and hence potentially a much “thinner” lookahead graph,
than the one corresponding to the `-step minimization T `J̃ , which does not
involve any certainty equivalence-type approximations.

The preceding discussion also points to a more general approximation
idea for dealing with the onerous computational requirements of long mul-
tistep lookahead minimization. We may approximate the tail (` � 1)-step
portion T `�1J̃ of the `-step lookahead minimization with any simplified

Sec. 3.2 Approximation in Value Space and Newton’s Method 45

calculation that produces an approximation Ĵ ≈ T !−1J̃ , and then obtain
the lookahead policy µ̃ using the minimization

Tµ̃Ĵ = T Ĵ.

This type of simplification will still involve a Newton step (from Ĵ to Jµ̃),
and benefit from the corresponding fast convergence property.

Local and Global Performance Estimates Compared

The preceding Newton step interpretation of the move from J̃ (the terminal
cost function approximation) to Jµ̃ (the cost function of the lookahead
policy µ̃) suggests a superlinear performance estimate

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣ = o

(

max
x

∣

∣J̃(x) − J*(x)
∣

∣

)

.

However, this estimate is local in character. It is meaningful only when J̃ is
“close” to J*. When J̃ is far from J*, the difference maxx

∣

∣Jµ̃(x)− J*(x)
∣

∣

may be large and even infinite when µ̃ is unstable (see the discussion in the
next section).

There are global estimates for the difference

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣

for several types of problems, including the upper bound

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣ ≤
2α!

1− α
max
x

∣

∣J̃(x)− J*(x)
∣

∣

for $-step lookahead, and α-discounted problems where all the Bellman op-
erators Tµ are contraction mappings; see the neurodynamic programming
book [BeT96] (Section 6.1, Prop. 6.1), or the RL book [Ber20a] (Section
5.4, Prop. 5.4.1). These books also contain other related global estimates,
which hold for all J̃ , both close and far from J*. However, these global
estimates tend to be overly conservative and not representative of the per-
formance of approximation in value space schemes when J̃ is near J*. For
example, for finite spaces α-discounted MDP, µ̃ can be shown to be optimal
when maxx

∣

∣J̃(x) − J*(x)
∣

∣ is sufficiently small; this can also be seen from
the fact that the components (TJ)(x) of the Bellman operator are not only
concave but also piecewise linear, so Newton’s method converges finitely.
For a further comparative discussion of local and global error bounds, we
refer to Appendix A.

46 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ45◦Line

Instability Region Stability Region 0Instability Region

Tµ̃J

J̃ Jµ̃Without the Newton Step Base Player Threshold

Figure 3.3.1 Illustration of the regions of stability and instability for approxi-
mation in value space with one-step lookahead. The stability region is the set of
all J̃ such that the policy µ̃ obtained from the one-step lookahead minimization
Tµ̃J̃ = T J̃ satisfies Jµ̃(x) < ∞ for all x.

3.3 REGION OF STABILITY

For any control system design method, the stability of the policy obtained
is of paramount importance. It is thus essential to investigate and verify
the stability of controllers obtained through approximation in value space
schemes. Historically, there have been several proposed definitions of sta-
bility in control theory. Within the context of this work, our focus on
stability issues will be for problems with a termination state t, which is
cost-free, and with a cost per stage that is positive outside the termina-
tion state, such as the undiscounted positive cost deterministic problem
introduced earlier (cf. Section 2.1). Moreover, it is best for our purposes to
adopt an optimization-based definition. In particular, we say that a policy
µ is unstable if Jµ(x) = ∞ for some states x. Equivalently, we say that
the policy µ stable if Jµ(x) < ∞ for all states x. This definition has the
advantage that it applies to general state and control spaces. Naturally, it
can be made more specific in particular problem instances.†

† For the undiscounted positive cost deterministic problem introduced earlier

(cf. Section 2.1), it can be shown that if a policy µ is stable, then Jµ is the “small-

est” solution of the Bellman equation J = TµJ within the class of nonnegative
real-valued functions, and under mild assumptions it is the unique solution of

Sec. 3.3 Region of Stability 47

In the context of approximation in value space we are interested in
the region of stability, which is the set of cost function approximations
J̃ ∈ R(X) for which the corresponding one-step or multistep lookahead
policies µ̃ are stable. For discounted problems with bounded cost per stage,
all policies have real-valued cost functions, so questions of stability do not
arise. In general, however, the region of stability may be a strict subset
of the set of real-valued functions; this will be illustrated later for the
undiscounted deterministic case of the linear quadratic problem of Section
2.1 (cf. Example 2.1.1). Figure 3.3.1 illustrates the region of stability for
approximation in value space with one-step lookahead.

An interesting observation from Fig. 3.3.1 is that if J̃ does not be-
long to the region of stability and µ̃ is a corresponding one-step lookahead
unstable policy, the Bellman equation J = Tµ̃J may have real-valued so-
lutions. However, these solutions will not be equal to Jµ̃, as this would
violate the definition of region of stability. Generally, if Tµ is not a con-
traction mapping, Tµ may have real-valued fixed points, none of which is
equal to Jµ.

Figure 3.3.2 illustrates the region of stability for the case of multistep
lookahead minimization. The insights from this figure are similar to the
one-step lookahead case of Fig. 3.3.1. However, the figure indicates that
the region of stability of the $-step lookahead controller µ̃ depends on $, and
tends to become larger as $ increases . The reason is that $-step lookahead
with terminal cost J̃ is equivalent to one-step lookahead with terminal cost
T !−1J̃ , which tends to be closer to the optimal cost function J* than J̃

(assuming convergence of the VI method).

How Can We Obtain Function Approximations J̃ Within the
Region of Stability?

Naturally, identifying and obtaining cost function approximations J̃ that
lie within the region of stability with either one-step or multistep lookahead
is very important within our context. We will focus on this question for
the special case where the expected cost per stage is nonnegative

E
{

g(x, u, w)
}

≥ 0, for all x, u ∈ U(x),

and assume that J* is real-valued. This is the case of most interest in model
predictive control, but also arises in other problems of interest, including
stochastic shortest path problems that involve a termination state.

From Fig. 3.3.2 it can be conjectured that if the sequence {T kJ̃} gen-
erated by the VI algorithm converges to J* for all J̃ such that 0 ≤ J̃ ≤ J*

J = TµJ within the class of nonnegative real-valued functions J with J(t) = 0;

see the author’s paper [Ber17b]. Moreover, if µ is unstable, then the Bellman

equation J = TµJ has no solution within the class of nonnegative real-valued
functions.

48 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Instability Region Stability Region 0Instability Region

45◦Line

J̃ T J̃J̃

= 3 ! = 2

Without the Newton Step Base Player Threshold

Figure 3.3.2 Illustration of the regions of stability and instability for approxima-
tion in value space with "-step lookahead minimization. The stability region is the
set of all J̃ for which the policy µ̃ such that T !J̃ = Tµ̃T

!−1J̃ satisfies Jµ̃(x) < ∞

for all x (the figure shows the case " = 2). The region of instability tends to be
reduced as " increases.

(which is true under very general conditions; see [Ber12], [Ber22a]), then
T !−1J̃ belongs to the region of stability for sufficiently large $. Related
ideas have been discussed in the adaptive DP literature by Liu and his col-
laborators [HWL21], [LXZ21], [WLL16], and by Heydari [Hey17], [Hey18],
who provide extensive references; see also Winnicki et al. [WLL21]. We
will revisit this issue in the context of linear quadratic problems. This
conjecture is generally true, but requires that, in addition to J*, all func-
tions J̃ within a neighborhood of J* belong to the region of stability. Our
subsequent discussion will aim to address this difficulty.

An important fact for our nonnegative cost problem context is that
the region of stability includes all real-valued nonnegative functions J̃ such
that

T J̃ ≤ J̃ . (3.10)

Indeed if µ̃ is the corresponding one-step lookahead policy, we have

Tµ̃J̃ = T J̃ ≤ J̃ ,

and from a well-known result on nonnegative cost infinite horizon problems
[see [Ber12], Prop. 4.1.4(a)], it follows that

Jµ̃ ≤ J̃ ;

Sec. 3.3 Region of Stability 49

(the proof argument is that if Tµ̃J̃ ≤ J̃ then T
k+1

µ̃ J̃ ≤ T k
µ̃ J̃ for all k, so,

using also the fact 0 ≤ J̃ , the limit of T k
µ̃ J̃ , call it J∞, satisfies Jµ̃ ≤ J∞ ≤

J̃). Thus if J̃ is nonnegative and real-valued, Jµ̃ is also real-valued, so µ̃ is
stable. It follows that J̃ belongs to the region of stability. This is a known
result in specific contexts, such as MPC (see the book by Rawlings, Mayne,
and Diehl [RMD17], Section 2.4, which contains extensive references to
prior work on stability issues).

An important special case where the condition T J̃ ≤ J̃ is satisfied is
when J̃ is the cost function of a stable policy, i.e., J̃ = Jµ. Then we have
that Jµ is real-valued and satisfies TµJµ = Jµ, so it follows that TJµ ≤ Jµ.
This case relates to the rollout algorithm and shows that rollout with a
stable policy yields a stable lookahead policy . It also suggests that if µ is
stable, then Tm

µ J̃ belongs to the region of stability for sufficiently large m.
Besides Jµ, with stable µ, and J*, there are other interesting functions

J̃ satisfying the stability condition T J̃ ≤ J̃ . In particular, let β be a scalar
with β > 1, and for a stable policy µ, consider the β-amplified operator
Tµ,β defined by

(Tµ,βJ)(x) = E

{

βg
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x.

Then it can be seen that the function

Jµ,β = βJµ

is a fixed point of Tµ,β and satisfies TJµ,β ≤ Jµ,β . This follows by writing

Jµ,β = Tµ,βJµ,β ≥ TµJµ,β ≥ TJµ,β. (3.11)

Thus Jµ,β lies within the region of stability, and lies “further to the right” of
Jµ. Thus we may conjecture that it can be more reliably approximated by
Tm
µ,βJ̃ than Jµ is approximated by Tm

µ J̃ in the context of m-step truncated
rollout.

To illustrate this fact, consider a stable policy µ, and assume that the
expected cost per stage at states other than a termination state t (if one
exists) is bounded away from 0, i.e.,

C = min
x &=t

E

{

g
(

x, µ(x), w
)

}

> 0.

Then we claim that given a scalar β > 1, any function Ĵ ∈ R(X) with
Ĵ(t) = 0, that satisfies

max
x

∣

∣Ĵ(x) − Jµ,β(x)
∣

∣ ≤ δ, for all x, (3.12)

where

δ =
(β − 1)C

1 + α
,

50 An Abstract View of Reinforcement Learning Chap. 3

also satisfies the stability condition T Ĵ ≤ Ĵ . From this it follows that for
a given nonnegative and real-valued J̃ , and for sufficiently large m, so that
the function Ĵ = Tm

µ,βJ̃ satisfies Eq. (3.12), we have that Ĵ lies within the
region of stability.

To see this, note that for all x += t, we have

Jµ,β(x) = βE

{

g
(

x, µ(x), w
)

}

+ αE

{

Jµ,β
(

f(x, µ(x), w)
)

}

,

so that by using Eq. (3.12), we have

Ĵ(x) + δ ≥ βE

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

− αδ.

It follows that

Ĵ(x) ≥ E

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)E
{

g
(

x, µ(x), w
)

}

− (1 + α)δ

≥ E

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)C − (1 + α)δ

= (TµĴ)(x)

≥ (T Ĵ)(x),

so the stability condition T Ĵ ≤ Ĵ is satisfied.
Similarly the function

J*
β = βJ*

is a fixed point of the operator Tβ defined by

(TβJ)(x) = min
u∈U(x)

E

{

βg(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x.

It can be seen, using an argument similar to Eq. (3.11), that J*
β satisfies

TJ*
β ≤ J*

β , so it lies within the region of stability. Furthermore, similar to

the case of truncated rollout discussed earlier, we may conjecture that J*
β

can be more reliably approximated by T
!−1

β J̃ than J* is approximated by

T !−1J̃ in the context of $-step lookahead.

3.4 POLICY ITERATION, ROLLOUT, AND NEWTON’SMETHOD

Another major class of infinite horizon algorithms is based on policy itera-
tion (PI for short), which involves the repeated use of policy improvement,
in analogy with the AlphaZero/TD-Gammon off-line training algorithms,

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 51

Rollout Policy µ̃

Jµ

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

Jµ instead of J*

Bellman Eq. with

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

x µ

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Figure 3.4.1 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy µ in the sequence being the base policy that
generates the next policy µ̃ in the sequence as the corresponding rollout policy.

described in Chapter 1. Each iteration of the PI algorithm starts with a
stable policy (which we call current or base policy), and generates another
stable policy (which we call new or rollout policy, respectively). For the in-
finite horizon problem of Section 2.1, given the base policy µ, the iteration
consists of two phases (see Fig. 3.4.1):

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = E

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(3.13)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated trajec-
tories the cost of the policy starting from x. Other, more sophisticated
possibilities include the use of specialized simulation-based methods,
such as temporal difference methods , for which there is extensive lit-
erature (see e.g., the books [BeT96], [SuB98], [Ber12]).

(b) Policy improvement , which computes the rollout policy µ̃ using the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(3.14)
It is generally expected (and can be proved under mild conditions)
that the rollout policy is improved in the sense that

Jµ̃(x) ≤ Jµ(x), for all x.

Proofs of this fact in a variety of contexts can be found in most DP
books, including the author’s [Ber12], [Ber18a], [Ber19a], [Ber20a],
[Ber22a].

Thus PI generates a sequence of stable policies {µk}, by obtaining
µk+1 through a policy improvement operation using Jµk in place of Jµ

52 An Abstract View of Reinforcement Learning Chap. 3

in Eq. (3.14), which is obtained through policy evaluation of the preced-
ing policy µk using Eq. (3.13). It is well known that (exact) PI has solid
convergence properties; see the DP textbooks cited earlier, as well as the
author’s RL book [Ber19a]. These properties hold even when the method
is implemented (with appropriate modifications) in unconventional com-
puting environments, involving asynchronous distributed computation, as
shown in a series of papers by Bertsekas and Yu [BeY10], [BeY12], [YuB13].

In terms of our abstract notation, the PI algorithm can be written
in a compact form. For the generated policy sequence {µk}, the policy
evaluation phase obtains Jµk from the equation

Jµk = TµkJµk , (3.15)

while the policy improvement phase obtains µk+1 through the equation

Tµk+1Jµk = TJµk . (3.16)

As Fig. 3.4.2 illustrates, PI can be viewed as Newton’s method for solv-
ing the Bellman equation in the function space of cost functions J . In
particular, the policy improvement Eq. (3.16) is the Newton step starting
from Jµk , and yields µk+1 as the corresponding one-step lookahead/rollout
policy. Figure 3.4.3 illustrates the rollout algorithm, which is just the first
iteration of PI.

In contrast to approximation in value space, the interpretation of PI
in terms of Newton’s method has a long history. We refer to the original
works for linear quadratic problems by Kleinman [Klei68],† and for finite-
state infinite horizon discounted and Markov game problems by Pollatschek
and Avi-Itzhak [PoA69] (who also showed that the method may oscillate
in the game case). Subsequent works, which discuss algorithmic varia-
tions and approximations, include Hewer [Hew71], Puterman and Brumelle
[PuB78], [PuB79], Santos and Rust [SaR04], Bokanowski, Maroso, and Zi-
dani [BMZ09], Hylla [Hyl11], Magirou, Vassalos, and Barakitis [MVB20],
Bertsekas [Ber21c], and Kundu and Kunitsch [KuK21]. Some of these
papers address broader classes of problems (such as continuous-time opti-
mal control, minimax problems, and Markov games), and include superlin-
ear convergence rate results under various (often restrictive) assumptions,
as well as PI variants. Early related works for control system design in-
clude Saridis and Lee [SaL79], Beard [Bea95], and Beard, Saridis, and Wen
[BSW99].

† This was part of Kleinman’s Ph.D. thesis [Kle67] at M.I.T., supervised by
M. Athans. Kleinman gives credit for the one-dimensional version of his results to

Bellman and Kalaba [BeK65]. Note also that the first proposal of the PI method

was given by Bellman in his classic book [Bel57], under the name “approximation
in policy space.”

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 53

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Optimal cost Cost of rollout policy ˜

Policy Evaluation for
Policy Evaluation for µk

and for µk+1

Cost of µkCost of µk+1

J
µk = T

µkJµkJ
µk+1 = T

µk+1Jµk+1

Linearized Bellman Eq. at
Linearized Bellman Eq. at J

µk

also Newton Step

Figure 3.4.2 Geometric interpretation of a policy iteration. Starting from the
stable current policy µk, it evaluates the corresponding cost function J

µ
k , and

computes the next policy µk+1 according to

T
µ
k+1J

µ
k = TJ

µ
k .

The corresponding cost function J
µ
k+1 is obtained as the solution of the linearized

equation J = T
µ
k+1J , so it is the result of a Newton step for solving the Bellman

equation J = TJ , starting from J
µ
k . Note that in policy iteration, the Newton

step always starts at a function Jµ, which satisfies Jµ ≥ J∗ as well as TJµ ≤ Jµ

(cf. our discussion on stability in Section 3.3).

Rollout

Generally, rollout with a stable base policy µ can be viewed as a single
iteration of Newton’s method starting from Jµ, as applied to the solution
of the Bellman equation (see Fig. 3.4.3). Note that rollout/policy improve-
ment is applied just at the current state during real-time operation of the
system. This makes the on-line implementation possible, even for prob-
lems with very large state space, provided that the policy evaluation of the
base policy can be done on-line as needed. For this we often need on-line
deterministic or stochastic simulation from each of the states xk generated
by the system in real time.

As Fig. 3.4.3 illustrates, the cost function of the rollout policy Jµ̃ is
obtained by constructing a linearized version of Bellman’s equation at Jµ
(its linear approximation at Jµ), and then solving it. If the function TJ

is nearly linear (i.e., has small “curvature”) the rollout policy performance

54 An Abstract View of Reinforcement Learning Chap. 3

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1
1 J J

Cost-to-go approximation Expected value approximation TµJ

Cost-to-go approximation Expected value approximation
Jµ = TµJµJµ̃ = Tµ̃Jµ̃

Policy Improvement with Base Policy
Policy Improvement with Base Policy µ

Linearized Bellman Eq. at Jµ
Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Optimal cost Cost of rollout policy ˜

Optimal cost Cost of rollout policy µ̃Optimal cost Cost of rollout policy ˜ Cost of base policy µ

Policy Evaluation for
Policy Evaluation for µ and for ˜

µ and for µ̃

also Newton Step

Figure 3.4.3 Geometric interpretation of rollout. Each policy µ defines the linear
function TµJ of J , given by Eq. (3.2), and TJ is the function given by Eq. (3.1),
which can also be written as TJ = minµ TµJ . The figure shows a policy iteration
starting from a base policy µ. It computes Jµ by policy evaluation (by solving the
linear equation J = TµJ as shown). It then performs a policy improvement using
µ as the base policy to produce the rollout policy µ̃ as shown: the cost function
of the rollout policy, Jµ̃, is obtained by solving the version of Bellman’s equation
that is linearized at the point Jµ, as in Newton’s method.

Jµ̃(x) is very close to the optimal J*(x), even if the base policy µ is far
from optimal. This explains the large cost improvements that are typically
observed in practice with the rollout algorithm.

An interesting question is how to compare the rollout performance
Jµ̃(x) for a given initial state x, with the base policy performance Jµ(x).
Clearly, we would like Jµ(x) − Jµ̃(x) to be large, but this is not the right
way to look at cost improvement. The reason is that Jµ(x)− Jµ̃(x) will be
small if its upper bound, Jµ(x) − J*(x), is small, i.e., if the base policy is
close to optimal. What is important is that the error ratio

Jµ̃(x)− J*(x)

Jµ(x)− J*(x)
(3.17)

is small. Indeed, this ratio becomes smaller as Jµ(x)− J*(x) approaches 0
because of the superlinear convergence rate of Newton’s method that un-
derlies the rollout algorithm (cf. Fig. 3.4.3). Unfortunately, it is hard to
evaluate this ratio, since we do not know J*(x). On the other hand, we

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 55

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Cost-to-go approximation Expected value approximation TµJ

Optimal cost Cost of rollout policy ˜

J̃

Cost of Truncated Rollout Policy ˜
Cost of Truncated Rollout Policy µ̃

Stability Region 0 Tm
µ J̃J̃ Jµ̃

Yields Truncated Rollout Policy µ̃

Yields Truncated Rollout Policy ˜ Defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy ˜

1 J J
= 2 m = 4

also Newton Step

Figure 3.4.4 Geometric interpretation of truncated rollout with one-step looka-
head minimization, m value iterations with the base policy µ, and a terminal cost
function approximation J̃ (here m = 4).

should not be underwhelmed if we observe a small performance improve-
ment Jµ(x) − Jµ̃(x): the reason may be that the base policy is already
near-optimal, and in fact we are likely doing very well in terms of the ratio
(3.17).

Truncated Rollout and Optimistic Policy Iteration

Variants of rollout may involve multistep lookahead, truncation, and termi-
nal cost function approximation, as in the case of AlphaZero/TD-Gammon,
cf. Chapter 1. These variants admit geometric interpretations that are sim-
ilar to the ones given earlier; see Fig. 3.4.4. Truncated rollout uses m VIs
with the base policy µ and a terminal cost function approximation J̃ to
approximate the cost function Jµ.

In the case of one-step lookahead, the truncated rollout policy µ̃ is
defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃), (3.18)

i.e., µ̃ attains the minimum when the Bellman operator T is applied to the
function Tm

µ J̃ (the cost obtained by using the base policy µ for m steps
followed by terminal cost approximation J̃); see Fig. 3.4.4. In the case of
$-step lookahead, the truncated rollout policy µ̃ is defined by

Tµ̃(T !−1Tm
µ J̃) = T (T !−1Tm

µ J̃). (3.19)

56 An Abstract View of Reinforcement Learning Chap. 3

Truncated rollout is related to a variant of PI called optimistic. This
variant approximates the policy evaluation step by using m value iterations
using the base policy µ; see [BeT96], [Ber12], [Ber19a] for a more detailed
discussion of this relation. A method that is related to optimistic PI is
the λ-PI method, which is related to the proximal algorithm of convex
analysis, and is discussed in several of the author’s books ([BeT96], [Ber12],
[Ber20a], [Ber22a]), and papers (BeI96], [Ber15], [Ber18d]), and can also
be used to define the one-step lookahead policy in place of Eq. (3.18). In
particular, Section 6 of the paper [Ber18d] is focused on λ-PI methods,
which serve as approximations to the ordinary PI/Newton methods for
finite-state discounted and SSP problems.

As noted earlier, variants of Newton’s method that involve multi-
ple fixed point iterations, before and after each Newton step, but without
truncated rollout, i.e.,

Tµ̃(T !−1J̃) = T (T !−1J̃), (3.20)

are well-known. The classical numerical analysis book by Ortega and
Rheinboldt [OrR70] (Sections 13.3 and 13.4) provides various convergence
results, under assumptions that include differentiability and convexity of
the components of T , and nonnegativity of the inverse Jacobian of T . These
assumptions, particularly differentiability, may not be satisfied within our
DP context. Moreover, for methods of the form (3.20), the initial point
must satisfy an additional assumption, which ensures that the convergence
to J* is monotonic from above (in this case, if in addition the Jacobian of
T is isotone, an auxiliary sequence can be constructed that converges to J*

monotonically from below; see [OrR70], 13.3.4, 13.4.2). This is similar to
existing convergence results for the optimistic PI method in DP; see e.g.,
[BeT96], [Ber12].

Geometrical interpretations such as the ones of Fig. 3.4.4 suggest,
among others, that:

(a) The cost improvement Jµ − Jµ̃, from base to rollout policy, tends to
become larger as the length $ of the lookahead increases.

(b) Truncated rollout with $-step lookahead minimization, followed by m

steps of a base policy µ, and then followed by terminal cost function
approximation J̃ may be viewed, under certain conditions, as an eco-
nomic alternative to ($+m)-step lookahead minimization using J̃ as
terminal cost function approximation.

Figure 3.4.5 illustrates in summary the approximation in value space
scheme with $-step lookahead minimization and m-step truncated rollout
[cf. Eq. (3.19)], and its connection to Newton’s method. This figure indi-
cates the parts that are ordinarily associated with on-line play and off-line
training, and parallels our earlier Fig. 1.2.1, which applies to AlphaZero,
TD-Gammon, and related on-line schemes.

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 57

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

. . .Current Position xk

ON-LINE PLAY

ON-LINE PLAY

OFF-LINE TRAINING

OFF-LINE TRAININGON-LINE PLAY Lookahead Tree States xk+1

Current Position

States xk+2

NEWTON STEP

NEWTON STEP

NEWTON STEP for Bellman Eq.

2-Step Lookahead Minimization

Off-Line Obtained Player O
6 13 14 24 27 by Rollout by Simulation Base Policy Cost Function

Cost Function Approximation
Cost Function Approximation J̃

Enhancements to the Starting Point of Newton Step
Enhancements to the Starting Point of Newton Step

e.g., !− 1 Lookahead Minimization Steps
1 Lookahead Minimization Steps m Steps of Rollout

Multistep Lookahead Policy Cost !-Step Lookahead

Steps m Steps

Figure 3.4.5 Illustration of the approximation in value space scheme with "-
step lookahead minimization (" = 2 in the figure) and m-step truncated rollout
[cf. Eq. (3.19)], and its connection to Newton’s method. The Newton step for
solving the Bellman equation J∗ = TJ∗ corresponds to the first (out of " steps
of) lookahead minimization. The remaining "−1 steps of lookahead minimization
(VI iterations), and the m truncated rollout steps (VI iterations with the base
policy), improve the starting point of the Newton step, from its off-line-obtained
cost function approximation J̃ .

Lookahead Length Issues in Truncated Rollout

A question of practical interest is how to choose the lookahead lengths $ and
m in truncated rollout schemes. It is clear that large values $ for lookahead
minimization are beneficial (in the sense of producing improved lookahead
policy cost functions Jµ̃), since additional VI iterations bring closer to J*

the starting point T !−1J̃ of the Newton step. Note, however, that while
long lookahead minimization is computationally expensive (its complexity
increases exponentially with $), it is only the first stage of the multistep
lookahead that contributes to the Newton step, while the remaining $ − 1
steps are far less effective first order/VI iterations.

Regarding the value of m, long truncated rollout brings the starting
point for the Newton step closer to Jµ, but not necessarily closer to J*,
as indicated by Fig. 3.4.4. Indeed computational experiments suggest that
increasing values for m may be counterproductive beyond some threshold,
and that this threshold generally depends on the problem and the ter-
minal cost approximation J̃ ; see also our subsequent discussion for linear
quadratic problems in Section 4.6. This is also consistent with long stand-

58 An Abstract View of Reinforcement Learning Chap. 3

ing experience with optimistic policy iteration, which is closely connected
with truncated rollout, as noted earlier. Unfortunately, however, there is
no analysis that can illuminate this issue, and the available error bounds
for truncated rollout (see [Ber19a], [Ber20a]) are conservative and provide
limited guidance in this regard.

Another important fact to keep in mind is that the truncated roll-
out steps are much less demanding computationally than the lookahead
minimization steps. Thus, with other concerns weighing equally, it is com-
putationally preferable to use large values of m rather than large values
of $ (this was the underlying motivation for truncated rollout in Tesauro’s
TD-Gammon [TeG96]). On the other hand, while large values of m may be
computationally tolerable in some cases, it is possible that even relatively
small values of m can be computationally prohibitive. This is especially
true for stochastic problems where the width of the lookahead graph tends
to grow quickly.

An interesting property, which holds in some generality, is that trun-
cated rollout with a stable policy has a beneficial effect on the stability prop-
erties of the lookahead policy. The reason is that the cost function Jµ of
the base policy µ lies well inside the region of stability, as noted in Section
3.2. Moreover value iterations with µ (i.e., truncated rollout) tend to push
the starting point of the Newton step towards Jµ. Thus a sufficient number
of these value iterations will bring the starting point of the Newton step
within the region of stability.

The preceding discussion suggests the following qualitative question:
is lookahead by rollout an economic substitute for lookahead by minimiza-
tion? The answer to this seems to be a qualified yes: for a given compu-
tational budget, judiciously balancing the values of m and $ tends to give
better lookahead policy performance than simply increasing $ as much as
possible, while setting m = 0 (which corresponds to no rollout). This is
consistent with intuition obtained through geometric constructions such as
Fig. 3.4.4, but it is difficult to establish conclusively. We discuss this issue
further in Section 4.6 for the case of linear quadratic problems.

3.5 HOW SENSITIVE IS ON-LINE PLAY TO THE OFF-LINE
TRAINING PROCESS?

An important issue to consider in approximation in value space is errors
in the one-step or multistep minimization, or in the choice of terminal cost
approximation J̃ . Such errors are often unavoidable because the control
constraint set U(x) is infinite, or because the minimization is simplified
for reasons of computational expediency (see our subsequent discussion of
multiagent problems). Moreover, to these errors, we may add the effect
of errors due to rollout truncation, and errors due to changes in problem
parameters, which are reflected in changes in Bellman’s equation (see our
subsequent discussion of robust and adaptive control).

Sec. 3.5 How Sensitive is On-Line Play? 59

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Base Policy Rollout Policy Approximation in Value SpaceBase Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value SpaceApproximation in Policy Space

Cost Data Policy Data System:

x µ

Rollout Policy µ̃

Value Network Policy Network Value Data

-Step Value Network Policy Network-Step Value Network Policy Network

Figure 3.5.1 Schematic illustration of approximate PI. Either the policy evalu-
ation and policy improvement phases (or both) are approximated with a value or
a policy network, respectively. These could be neural networks, which are trained
with (state, cost function value) data that is generated using the current base
policy µ, and with (state, rollout policy control) data that is generated using the
rollout policy µ̃.

Note that there are three different types of approximate implementation
involving: 1) a value network but no policy network (here the value network
defines a policy via one-step or multistep lookahead), or 2) a policy network but
no value network (here the policy network has a corresponding value function
that can be computed by rollout), or 3) both a policy and a value network (the
approximation architecture of AlphaZero is a case in point).

Under these circumstances the linearization of the Bellman equation
at the point J̃ in Fig. 3.4.4 is perturbed, and the corresponding point Tm

µ J̃

in Fig. 3.4.4 is also perturbed. However, the effect of these perturbations
tends to be mitigated by the Newton step that produces the policy µ̃ and
the corresponding cost function Jµ̃. The Newton step has a superlinear con-
vergence property, so for an O(ε)-order error [i.e., O(ε)/ε stays bounded as
ε → 0] in the calculation of Tm

µ J̃ , the error in Jµ̃ will be of the much smaller
order o(ε) [i.e., o(ε)/ε → 0 as ε → 0], when Jµ̃ is near J*.† This is a sig-
nificant insight, as it suggests that extreme accuracy and fine-tuning of the
choice of J̃ may not produce significant effects in the resulting performance
of the one-step and particularly a multistep lookahead policy; see also the
quantitative analysis for linear quadratic problems in Section 4.5.

Approximate Policy Iteration and Implementation Errors

Both policy evaluation and policy improvement can be approximated, pos-
sibly by using training with data and approximation architectures, such as
neural networks; see Fig. 3.5.1. Other approximations include simulation-
based methods such as truncated rollout, and temporal difference methods

† A rigorous proof of this requires differentiability of T at J̃ . Since T is
differentiable at almost all points J , the sensitivity property just stated, will

likely hold in practice even if T is not differentiable. See the appendix, which

also compares global and local error bounds for approximation in value space,
and for approximate PI (cf. Sections A.3 and A.4)

60 An Abstract View of Reinforcement Learning Chap. 3

for policy evaluation, which involve the use of basis functions. Moreover,
multistep lookahead may be used in place of one-step lookahead, and sim-
plified minimization, based for example on multiagent rollout, may also be
used. Let us also mention the possibility of a combined rollout and PI algo-
rithm, whereby we use PI for on-line policy improvement of the base policy,
by using data collected during the rollout process. This idea is relatively
new and has not been tested extensively; see the subsequent discussion in
Section 3.8 and the author’s paper [Ber21a].

Long-standing practical experience with approximate PI is consistent
with the view of the effect of implementation errors outlined above, and
suggests that substantial changes in the policy evaluation and policy im-
provement operations often have small but largely unpredictable effects on
the performance of the policies generated. For example, when TD(λ)-type
methods are used for policy evaluation, the choice of λ has a large effect
on the corresponding policy cost function approximations, but often has
little and unpredictable effect on the performance of the generated policies
through on-line play. A plausible conjecture here is that the superlinear
convergence property of the exact Newton step “smooths out” the effect of
off-line approximation errors.

3.6 WHY NOT JUST TRAIN A POLICY NETWORK AND USE
IT WITHOUT ON-LINE PLAY?

This is a sensible and common question, which stems from the mindset that
neural networks have extraordinary function approximation properties. In
other words, why go through the arduous on-line process of lookahead min-
imization, if we can do the same thing off-line and represent the lookahead
policy with a trained policy network? More generally, it is possible to use
approximation in policy space, a major alternative approach to approxima-
tion in value space, whereby we select the policy from a suitably restricted
class of policies, such as a parametric class of the form µ(x, r), where r is
a parameter vector. We may then estimate r using some type of off-line
training process. There are quite a few methods for performing this type of
training, such as policy gradient and random search methods (see the books
[SuB18] and [Ber19a] for an overview). Alternatively, some approximate
DP or classical control system design method may be used.

An important advantage of approximation in policy space is that once
the parametrized policy is obtained, the on-line computation of controls
µ(x, r) is often much faster compared with on-line lookahead minimiza-
tion. For this reason, approximation in policy space can be used to provide
an approximate implementation of a known policy (no matter how ob-
tained) for the purpose of convenient use. On the negative side, because
parametrized approximations often involve substantial calculations, they
are not well suited for on-line replanning.

Sec. 3.7 Multiagent Problems and Multiagent Rollout 61

-1 -0.8 -0.6 -0.4 -0.2 0
0

2

4

6

8

10

12

Linear policy parameter

Without the Newton Step

With the Newton Step

Linear policy parameter Optimal

Figure 3.6.1 Illustration of the performance enhancement obtained by rollout
with an off-line trained base policy for the linear quadratic problem. Here the
system equation is xk+1 = xk +2uk, and the cost function parameters are q = 1,
r = 0.5. The optimal policy is µ∗(x) = L∗x with L∗ ≈ −0.4, and the optimal
cost function is J∗(x) = K∗x2, where K∗ ≈ 1.1. We consider policies of the form
µ(x) = Lx, where L is the parameter, with cost function of the form Jµ(x) =
KLx

2. The figure shows the quadratic cost coefficient differences KL − K∗ and
K

L̃
−K∗ as a function of L, where KL and K

L̃
are the quadratic cost coefficients

of µ (without one-step lookahead/Newton step) and the corresponding one-step
lookahead policy µ̃ (with one-step lookahead/Newton step).

From our point of view in this book, there is another important reason
why approximation in value space is needed on top of approximation in
policy space: the off-line trained policy may not perform nearly as well as
the corresponding one-step or multistep lookahead/rollout policy, because it
lacks the extra power of the associated exact Newton step (cf. our discussion
of AlphaZero and TD-Gammon in Chapter 1). Figure 3.6.1 illustrates this
fact with a one-dimensional linear-quadratic example, and compares the
performance of a linear policy, defined by a scalar parameter, with its
corresponding one-step lookahead policy.

3.7 MULTIAGENT PROBLEMS AND MULTIAGENT ROLLOUT

A major difficulty in the implementation of value space approximation with
one-step lookahead is the minimization operation over U(x) at a state x.
When U(x) is infinite, or even when it is finite but has a very large number
of elements, the minimization may become prohibitively time consuming.
In the case of multistep lookahead the computational difficulty becomes
even more acute. In this section we discuss how to deal with this difficulty
when the control u consists of m components, u = (u1, . . . , um), with a
separable control constraint for each component, u! ∈ U!(x), $ = 1, . . . ,m.

62 An Abstract View of Reinforcement Learning Chap. 3

2 Agent 1 Agent

State InfoState Info State Info

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud
Environment Computing Cloud

+1u1

u2

u3

u4

u5

Single policy Info

Single policy Info Single policy Info

Single policy InfoSingle policy Info

Single policy Info

Single policy InfoSingle policy Info

Figure 3.7.1 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent " = 1, . . . ,m, controls its own decision variable u!. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

Thus the control constraint set is the Cartesian product

U(x) = U1(x)× · · ·× Um(x), (3.21)

where the sets U!(x) are given. This structure is inspired by applications
involving distributed decision making by multiple agents with communica-
tion and coordination between the agents; see Fig. 3.7.1.

To illustrate our approach, let us consider the discounted infinite hori-
zon problem, and for the sake of the following discussion, assume that each
set U!(x) is finite. Then the one-step lookahead minimization of the stan-
dard rollout scheme with base policy µ is given by

ũ ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, (3.22)

and involves as many as nm terms, where n is the maximum number of
elements of the sets U!(x) [so that nm is an upper bound to the num-
ber of controls in U(x), in view of its Cartesian product structure (3.21)].
Thus the standard rollout algorithm requires an exponential [order O(nm)]
number of computations per stage, which can be overwhelming even for
moderate values of m.

This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead
minimization (3.22) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, at state x we perform the sequence of

Sec. 3.7 Multiagent Problems and Multiagent Rollout 63

minimizations

µ̃1(x) ∈ arg min
u1∈U1(x)

Ew

{

g
(

x, u1, µ2(x), . . . , µm(x), w
)

+ αJµ
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

µ̃2(x) ∈ arg min
u2∈U2(x)

Ew

{

g
(

x, µ̃1(x), u2, µ3(x) . . . , µm(x), w
)

+ αJµ
(

f(x, µ̃1(x), u2, µ3(x), . . . , µm(x), w)
)

}

,

.

µ̃m(x) ∈ arg min
um∈Um(x)

Ew

{

g
(

x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w
)

+ αJµ
(

f(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)
)

}

.

Thus each agent component u! is obtained by a minimization with the pre-
ceding agent components u1, . . . , u!−1 fixed at the previously computed val-
ues of the rollout policy, and the following agent components u!+1, . . . , um

fixed at the values given by the base policy. This algorithm requires order
O(nm) computations per stage, a potentially huge computational saving
over the order O(nm) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (3.22) are proportional to the number of controls in
the set U(x) and are independent of the size of the state space. This moti-
vates a reformulation of the problem, first suggested in the book [BeT96],
Section 6.1.4, whereby control space complexity is traded off with state
space complexity, by “unfolding” the control uk into its m components,
which are applied one-agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uk into m sequential component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL
algorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At the generic state x, we break
down the control u into the sequence of the m controls u1, u2, . . . , um, and
between x and the next state x̄ = f(x, u, w), we introduce artificial inter-
mediate “states” (x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1), and correspond-
ing transitions. The choice of the last control component um at “state”
(x, u1, . . . , um−1) marks the transition to the next state x̄ = f(x, u, w) ac-
cording to the system equation, while incurring cost g(x, u, w); see Fig.
3.7.2.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible

64 An Abstract View of Reinforcement Learning Chap. 3

3 Cost 0 Cost

3 Cost 0 Cost

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Agent 1 Agent 2 Agent 3

Agent 1 Agent 2 Agent 3

Agent 1 Agent 2 Agent 3

u1

1 u2

2 u3

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

Cost 0 Cost g(x, u, y)

Figure 3.7.2 Equivalent formulation of the stochastic optimal control problem
for the case where the control u consists of m components u1, u2, . . . , um:

u = (u1, . . . , um) ∈ U1(xk)× · · ·× Um(xk).

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x, u1), (xk, u1, u2), . . . , (x, u1, . . . , um−1),

using the respective controls u1, . . . , um−1. The final control um leads from
(x, u1, . . . , um−1) to x̄ = f(x, u,w), and the random cost g(x, u,w) is incurred.

in the other problem, while the cost structure of the two problems is the
same. In particular, every policy

(

µ1(x), . . . , µm(x)
)

of the original prob-
lem, is admissible for the reformulated problem, and has the same cost
function for the original as well as the reformulated problem. Reversely,
every policy for the reformulated problem can be converted into a policy for
the original problem that produces the same state and control trajectories
and has the same cost function.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m−1 additional layers of states,
and the corresponding m− 1 cost functions

J1(x, u1), J2(x, u1, u2), . . . , Jm−1(x, u1, . . . , um−1).

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the minimization (3.22) is performed for just one state
at each stage.

A major fact that follows from the preceding reformulation is that
despite the dramatic reduction in computational cost, multiagent rollout
still achieves cost improvement :

Jµ̃(x) ≤ Jµ(x), for all x,

where Jµ(x) is the cost function of the base policy µ = (µ1, . . . , µm), and
Jµ̃(x) is the cost function of the rollout policy µ̃ = (µ̃1, . . . , µ̃m), starting

Sec. 3.7 Multiagent Problems and Multiagent Rollout 65

from state x. Furthermore, this cost improvement property can be ex-
tended to multiagent PI schemes that involve one-agent-at-a-time policy
improvement operations, and have sound convergence properties (see the
book [Ber20a], Chapters 3 and 5, as well as the author’s papers [Ber19b],
[Ber19c], [Ber20b], [Ber21b], and the paper by Bhatacharya et al. [BKB20]).

Another fact that follows from the preceding reformulation is that
multiagent rollout may be viewed as a Newton step applied to the Bellman
equation that corresponds to the reformulated problem, with starting point
Jµ. This is very important for our purposes in the context of this book.
In particular, the superlinear cost improvement of the Newton step can still
be obtained through multiagent rollout , even though the amount of com-
putation for the lookahead minimization is dramatically reduced through
one-agent-at-a-time minimization. This explains experimental results given
in the paper [BKB20], which have shown comparable performance for mul-
tiagent and standard rollout in the context of a large-scale multi-robot
POMDP application.

Let us also mention that multiagent rollout can become the starting
point for various related PI schemes that are well suited for distributed op-
eration in important practical contexts involving multiple autonomous deci-
sion makers (see the book [Ber20a], Section 5.3.4, and the papers [Ber21b]).

Multiagent Approximation in Value Space

Let us now consider the reformulated problem of Fig. 3.7.2 and see how we
can apply approximation in value space with one-step lookahead minimiza-
tion, truncated rollout with a base policy µ = (µ1, . . . , µm), and terminal
cost function approximation J̃ .

In one such scheme that involves one-agent-at-a-time minimization,
at state x we perform the sequence of minimizations

ũ1 ∈ arg min
u1∈U1(x)

Ew

{

g
(

x, u1, µ2(x), . . . , µm(x), w
)

+ αJ̃
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

ũ2 ∈ arg min
u2∈U2(x)

Ew

{

g
(

x, ũ1, u2, µ3(x) . . . , µm(x), w
)

+ αJ̃
(

f(x, ũ1, u2, µ3(x), . . . , µm(x), w)
)

}

,

.

ũm ∈ arg min
um∈Um(x)

Ew

{

g
(

x, ũ1, ũ2, . . . , ũm−1, um, w
)

+ αJ̃
(

f(x, ũ1, ũ2, . . . , ũm−1, um, w)
)

}

.

In the context of the reformulated problem, this is a sequence of one-step
lookahead minimizations at the states x, (x, ũ0), . . . , (x, ũ0, . . . , ũm−1) of

66 An Abstract View of Reinforcement Learning Chap. 3

the reformulated problem, using truncated rollout with base policy µ of
corresponding length m− 1,m− 2, . . . , 0. The Newton step interpretation
of Section 3.4 and Fig. 3.4.4 still applies, with its superlinear convergence
rate. At the same time, the computational requirements are dramatically
reduced, similar to the multiagent rollout method discussed earlier.

Let us finally note that there are variations of the multiagent schemes
of this section, which involve multistep lookahead minimization as well as
truncated rollout. They likely result in better performance at the expense
of greater computational cost.

3.8 ON-LINE SIMPLIFIED POLICY ITERATION

In this section, we describe some variants of the PI algorithm, introduced
in the author’s recent paper [Ber21a], which are consistent with the ap-
proximation in value space theme of this work. The salient feature of these
variants is that they involve an exact Newton step and are suitable for on-
line implementation, while still maintaining the principal character of PI,
which we have viewed so far as an off-line algorithm.

Thus the algorithms of this section involve training and self-improve-
ment through on-line experience. They are also simplified relative to stan-
dard PI in two ways:

(a) They perform policy improvement operations only for the states that
are encountered during the on-line operation of the system.

(b) The policy improvement operation is simplified in that it uses approx-
imate minimization in the Bellman equation of the current policy at
the current state.

Despite these simplifications, we show that our algorithms generate a se-
quence of improved policies, which converge to a policy with a local optimal-
ity property. Moreover, with an enhancement of the policy improvement
operation, which involves a form of exploration, they converge to a globally
optimal policy.

The motivation comes from the rollout algorithm, which starts from
some available base policy and implements on-line an improved rollout
policy. In the algorithm of the present section, the data accumulated from
the rollout implementation are used to improve on-line the base policy, and
to asymptotically obtain a policy that is either locally or globally optimal.

We focus on a finite-state discounted Markov decision problem, with
states 1, . . . , n, and we use a transition probability notation. We denote
states by the symbol x and successor states by the symbol y. The con-
trol/action is denoted by u, and is constrained to take values in a given
finite constraint set U(x), which may depend on the current state x. The
use of a control u at state x specifies the transition probability pxy(u) to
the next state y, at a cost g(x, u, y).

Sec. 3.8 On-Line Simplified Policy Iteration 67

The cost of a policy µ starting from state x0 is given by

Jµ(x0) = lim
N→∞

E

{

N−1
∑

k=0

αkg
(

xk, µ(xk), xk+1

)

∣

∣

∣
x0, µ

}

, x0 = 1, . . . , n,

where α < 1 is the discount factor. As earlier, Jµ is viewed as the vector in
the n-dimensional Euclidean space 'n, with components Jµ(1), . . . , Jµ(n).

In terms of our abstract notation, for each policy µ, the Bellman
operator Tµ maps a vector J ∈ 'n to the vector TµJ ∈ 'n that has
components

(TµJ)(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g(x, µ(x), y) + αJ(y)
)

, x = 1, . . . , n.

(3.23)
The Bellman operator T : 'n #→ 'n is given by

(TJ)(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJ(y)
)

, x = 1, . . . , n. (3.24)

For the discounted problem that we consider, the operators Tµ and T

are sup-norm contractions (generally this is true for discounted problems
with bounded cost per stage [Ber22a]; in our context, the number of states
is finite, so the cost per stage is bounded). Thus Jµ is the unique solution
of Bellman’s equation J = TµJ , or equivalently

Jµ(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g
(

x, µ(x), y
)

+ αJµ(y)
)

, x = 1, . . . , n. (3.25)

Moreover, J* is the unique solution of Bellman’s equation J = TJ , so that

J∗(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJ∗(y)
)

, x = 1, . . . , n. (3.26)

Furthermore, the following optimality conditions hold

TµJ* = TJ* if and only if µ is optimal, (3.27)

TµJµ = TJµ if and only if µ is optimal. (3.28)

The contraction property also implies that the VI algorithms

Jk+1 = TµJk, Jk+1 = TJk

generate sequences {Jk} that converge to Jµ and J∗, respectively, from any
starting vector J0 ∈ 'n.

68 An Abstract View of Reinforcement Learning Chap. 3

As discussed earlier, in the PI algorithm, the current policy µ is im-
proved by finding µ̃ that satisfies

Tµ̃Jµ = TJµ

[i.e., by minimizing for all x in the right-hand side of Eq. (3.24) with Jµ

in place of J]. The improved policy µ̃ is evaluated by solving the linear
n × n system of equations Jµ̃ = Tµ̃Jµ̃, and then (Jµ̃, µ̃) becomes the new
cost vector-policy pair, which is used to start a new iteration. Thus the PI
algorithm starts with a policy µ0 and generates a sequence {µk} according
to

Jµk = TµkJµk , Tµk+1Jµk = TJµk . (3.29)

We now introduce an on-line variant of PI, which starts at time 0 with
a state-policy pair (x0, µ0) and generates on-line a sequence of state-policy
pairs (xk, µ

k). We view xk as the current state of a system operating online
under the influence of the policies µ1, µ2, In our algorithm, µk+1 may
differ from µk only at state xk. The control µk+1(xk) and the state xk+1

are generated as follows:
We consider the right-hand sides of Bellman’s equation for µk (also

known as Q-factors of µk)

Qµk(xk, u) =
n
∑

y=1

px
k
y(u)

(

g(xk, u, y) + αJµk (y)
)

, (3.30)

and we select the control µk+1(xk) from within the constraint set U(xk)
with sufficient accuracy to satisfy the following condition

Qµk

(

xk, µ
k+1(xk)

)

≤ Jµk(xk), (3.31)

with strict inequality whenever this is possible.† For x += xk the policy
controls are not changed:

µk+1(x) = µk(x) for all x += xk.

The next state xk+1 is generated randomly according to the transition
probabilities px

k
x
k+1

(

µk+1(xk)
)

.

† By this we mean that if minu∈U(x
k
) Qµ

k (xk, u) < J
µ
k (xk) we select a con-

trol uk that satisfies
Q

µ
k (xk, uk) < J

µ
k (xk), (3.32)

and set µk+1(xk) = uk, and otherwise we set µk+1(xk) = µk(xk) [so Eq. (3.31)
is satisfied]. Such a control selection may be obtained by a number of schemes,

including brute force calculation and random search based on Bayesian optimiza-
tion. The needed values of the Q-factor Q

µ
k and cost J

µ
k may be obtained in

several ways, depending on the problem at hand, including by on-line simulation.

Sec. 3.8 On-Line Simplified Policy Iteration 69

We first show that the current policy is monotonically improved, i.e.,
that

Jµk+1(x) ≤ Jµk(x), for all x and k,

with strict inequality for x = xk (and possibly other values of x) if

min
u∈U(x

k
)

Qµk(xk, u) < Jµk (xk).

To prove this, we note that the policy update is done under the con-
dition (3.31). By using the monotonicity of Tµk+1 , we have for all $ ≥ 1,

T
!+1

µk+1Jµk ≤ T !
µk+1Jµk ≤ Jµk , (3.33)

so by taking the limit as $ → ∞ and by using the convergence property of
VI (T !

µk+1J → Jµk+1 for any J), we obtain Jµk+1 ≤ Jµk . Moreover, the

algorithm selects µk+1(xk) so that

(Tµk+1Jµk)(xk) = Qµk(xk, uk) < Jµk (xk)

if
min

u∈U(x
k
)

Qµk(xk, u) < Jµk (xk),

[cf. Eq. (3.32)], and then by using Eq. (3.33), we have Jµk+1(xk) < Jµk (xk).

Local Optimality

We next discuss the convergence and optimality properties of the algorithm.
We introduce a definition of local optimality of a policy, whereby the policy
selects controls optimally only within a subset of states.

Given a subset of states S and a policy µ, we say that µ is locally
optimal over S if µ is optimal for the problem where the control is restricted
to take the value µ(x) at the states x /∈ S, and is allowed to take any value
u ∈ U(x) at the states x ∈ S.

Roughly speaking, µ is locally optimal over S, if µ is acting optimally
within S, but under the (incorrect) assumption that once the state of the
system gets to a state x outside S, there will be no option to select control
other than µ(x). Thus if the choices of µ outside of S are poor, its choices
within S may also be poor.

Mathematically, µ is locally optimal over S if

Jµ(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJµ(y)
)

, for all x ∈ S,

Jµ(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g
(

x, µ(x), y
)

+ αJµ(y)
)

, for all x /∈ S,

70 An Abstract View of Reinforcement Learning Chap. 3

which can be written compactly as

(TµJµ)(x) = (TJµ)(x), for all x ∈ S. (3.34)

Note that this is different than (global) optimality of µ, which holds if and
only if the above condition holds for all x = 1, . . . , n, rather than just for
x ∈ S [cf. Eq. (3.28)]. However, it can be seen that a (globally) optimal
policy is also locally optimal within any subset of states.

Our main convergence result is the following.

Proposition 3.8.1: Let S be the subset of states that are repeated
infinitely often within the sequence {xk}. Then the corresponding
sequence {µk} converges finitely to some policy µ in the sense that
µk = µ for all k after some index k. Moreover µ is locally optimal
within S, while S is invariant under µ, in the sense that

pxy
(

µ(x)
)

= 0 for all x ∈ S and y /∈ S.

Proof: The cost function sequence {Jµk} is monotonically nonincreasing,
as shown earlier. Moreover, the number of policies µ is finite in view
of the finiteness of the state and control spaces. Therefore, the number
of corresponding functions Jµ is also finite, so Jµk converges in a finite

number of steps to some J̄ , which in view of the algorithm’s construction
[selecting uk = µk(xk) if minu∈U(x

k
) Qµk(xk, u) = Jµk (xk); cf. Eq. (3.32)],

implies that µk will remain unchanged at some µ with Jµ = J̄ after some
sufficiently large k.

We will show that the local optimality condition (3.34) holds for S =
S and µ = µ. In particular, we have xk ∈ S and µk = µ for all k greater
than some index, while for every x ∈ S, we have xk = x for infinitely many
k. It follows that for all x ∈ S,

Qµ

(

x, µ(x)
)

= Jµ(x), (3.35)

while by the construction of the algorithm,

Qµ

(

x, u
)

≥ Jµ(x), for all u ∈ U(x), (3.36)

since the reverse would imply that µk+1(x) += µk(x) for infinitely many k

[cf. Eq. (3.32)]. Condition (3.35) can be written as Jµ(x) = (TµJµ)(x) for
all x ∈ S, and combined with Eq. (3.36), implies that

(TµJµ)(x) = (TJµ)(x), for all x ∈ S.

Sec. 3.8 On-Line Simplified Policy Iteration 71

This is the local optimality condition (3.34) with S = S and µ = µ.
To show that S is invariant under µ, we argue by contradiction: if

this were not so, there would exist a state x ∈ S and a state y /∈ S such
that pxy

(

µ(x)
)

> 0, implying that y would be generated following the
occurrence of x infinitely often within the sequence {xk}, and hence would
have to belong to S (by the definition of S). Q.E.D.

Note an implication of the invariance property of the set S shown in
the preceding proposition. We have that µ is (globally) optimal under the
assumption that for every policy there does not exist any strict subset of
states that is invariant.

A Counterexample to Global Optimality

The following deterministic example (given to us by Yuchao Li) shows that
the policy µ obtained by the algorithm need not be (globally) optimal.
Here there are three states 1, 2, and 3. From state 1 we can go to state 2
at cost 1, and to state 3 at cost 0, from state 2 we can go to states 1 and 3
at cost 0, and from state 3 we can go to state 2 at cost 0 or stay in 3 at a
high cost (say 10). The discount factor is α = 0.9. Then it can be verified
that the optimal policy is

µ∗(1) : Go to 3, µ∗(2) : Go to 3, µ∗(3) : Go to 2,

with optimal costs
J∗(1) = J∗(2) = J∗(3) = 0,

while the policy

µ(1) : Go to 2, µ(2) : Go to 1, µ(3) : Stay at 3,

is strictly suboptimal, but is locally optimal over the set of states S =
{1, 2}. Moreover our on-line PI algorithm, starting from state 1 and the
policy µ0 = µ, oscillates between the states 1 and 2, and leaves the policy
µ0 unchanged. Note also that S is invariant under µ, consistent with Prop.
3.8.1.

On-Line Variants of Policy Iteration with Global Optimality
Properties

To address the local versus global convergence issue illustrated by the pre-
ceding example, we consider an alternative scheme, whereby in addition to
uk, we generate an additional control at a randomly chosen state xk += xk.†
In particular, assume that at each time k, in addition to uk and xk+1 that

† It is also possible to choose multiple additional states at time k for a policy
improvement operation, and this is well-suited for the use of parallel computation.

72 An Abstract View of Reinforcement Learning Chap. 3

are generated according to Eq. (3.32), the algorithm generates randomly
another state xk (all states are selected with positive probability), performs
a policy improvement operation at that state as well, and modifies accord-
ingly µk+1(xk). Thus, in addition to a policy improvement operation at
each state within the generated sequence {xk}, there is an additional pol-
icy improvement operation at each state within the randomly generated
sequence {xk}.

Because of the random mechanism of selecting xk, it follows that at
every state there will be a policy improvement operation infinitely often,
which implies that the policy µ ultimately obtained is (globally) optimal.
Note also that we may view the random generation of the sequence {xk}
as a form of exploration. The probabilistic mechanism for generating the
random sequence {xk} may be guided by some heuristic reasoning, which
aims to explore states with high cost improvement potential.

Let us also note the possibility of approximate implementations of
the algorithms described above. In particular, one may start with some
base policy, which may be periodically updated using some approximation
in policy space scheme, while incorporating the policy improvement data
generated so far. As long as the most recent policy improvement results
are maintained for the states that have been encountered in the past, the
convergence results described above will be maintained.

Finally, let us mention that the idea of on-line PI of the present section
can be extended to a broader algorithmic context of on-line improvement
of the approximation in value space process . In particular, we may consider
starting the on-line play algorithm with a cost function approximation J̃ ,
obtained through some off-line training process. We may then try to grad-
ually enhance the quality of J̃ through on-line experience. For example,
J̃ may be constructed through some form of machine learning or Bayesian
optimization method that is capable of improving the approximation using
data obtained in the process of on-line play. There are many possibili-
ties along these lines, and they are a fruitful area of research, particularly
within the context of specific applications.

3.9 EXCEPTIONAL CASES

Let us now consider situations where exceptional behavior occurs. One
such situation is when the Bellman equation J = TJ has multiple solu-
tions. Then the VI algorithm, when started at one of these solutions will
stay at that solution. More generally, it may be unclear whether the VI
algorithm will converge to J*, even when started at seemingly favorable
initial conditions. Other types of exceptional behavior may also occur, in-
cluding cases where the Bellman equation has no solution within the set
of real-valued functions. The most unusual case of all is when J* is real-
valued but does not satisfy the Bellman equation J = TJ , which in turn has
other real-valued solutions; see [BeY16] and [Ber22a], Section 3.1. This is a

Sec. 3.9 Exceptional Cases 73

a 1 2 1 2 t b

Prob. u2

u Destination

2 Prob. 1− u
2

2

2 Control u ∈ (0, 1] Cost
1] Cost −u

Figure 3.9.1. Transition diagram for the blackmailer problem. At state 1, the
blackmailer may demand any amount u ∈ (0, 1]. The victim will comply with
probability 1 − u2 and will not comply with probability u2, in which case the
process will terminate.

highly unusual phenomenon, which will not be discussed here. It need not
be of practical concern, as it arises only in artificial examples; see [BeY16].
Still it illustrates the surprising range of exceptional situations that should
be taken into account in theoretical analyses and computational studies.

In this section we provide some examples that illustrate the mecha-
nism by which exceptional behavior in infinite horizon DP can occur, and
we highlight the need for rigorous analysis of RL methods when used in con-
texts that are beyond the well-behaved discounted case, where the Bellman
operator is a contraction mapping. For further discussion and analysis that
address exceptional behavior, including the frameworks of semicontractive
and noncontractive DP, we refer to the author’s abstract DP monograph
[Ber22a].

The Blackmailer’s Dilemma

This is a classical example involving a profit maximizing blackmailer. We
formulate it as an SSP problem involving cost minimization, with a single
state x = 1, in addition to the termination state t. We are in state 1 when
the victim is compliant, and we are in state t when the victim refuses to
yield to the blackmailer’s demand (a refusal is permanent, in the sense
that once the blackmailer’s demand is refused, all subsequent demands are
assumed to be refused, so t is a termination state). At state 1 we can
choose a control u ∈ (0, 1], which we regard as the demand made by the
blackmailer. The problem is to find the blackmailer’s policy that maximizes
his expected total gain.

To formulate this problem as a minimization problem, we will use
(−u) as the cost per stage. In particular, upon choosing u ∈ (0, 1], we
move to state t with probability u2, and stay in state 1 with probability
1 − u2; see Fig. 3.9.1. The idea is to optimally balance the blackmailer’s

74 An Abstract View of Reinforcement Learning Chap. 3

45◦Line

−

1

2

µ −1

J 0

J

−µ

Interval I Interval II Interval III Interval IV

0 Jµ = −

1

µ

Region of Instability Region of Stability TµJ = −µ+ (1− µ2)J

Interval I Interval II Interval III Interval IV Ks K∗ K

J TJ = minµ∈(0,1] TµJ

Figure 3.9.2. The Bellman operators and the Bellman equation for the black-
mailer problem.

desire for increased demands (large u) with keeping his victim compliant
(small u).

For notational simplicity, let us abbreviate J(1) and µ(1) with just
the scalars J and µ, respectively. Then in terms of abstract DP we have
X = {1}, U = (0, 1], and for every stationary policy µ, the corresponding
Bellman operator Tµ, restricted to state 1 is given by

TµJ = −µ+ (1− µ2)J ; (3.37)

[at the state t, Jµ(t) = 0]. Clearly Tµ is linear, maps the real line ' to
itself, and is a contraction with modulus 1 − µ2. Its unique fixed point
within ', Jµ, is the solution of

Jµ = TµJµ = −µ+ (1− µ2)Jµ,

which yields

Jµ = −
1

µ
;

see Fig. 3.9.2. Here all policies are stable and lead asymptotically to t with
probability 1, and the infimum of Jµ over µ ∈ (0, 1] is −∞, implying also
that J* = −∞. However, there is no optimal policy.

The Bellman operator T is given by

TJ = min
0<u≤1

{

− u+ (1 − u2)J
}

,

which after some calculation can be shown to have the form

TJ =

{

−1 for − 1

2
≤ J ,

J + 1

4J
for J ≤ − 1

2
.

Sec. 3.9 Exceptional Cases 75

J∗(1) = 0

Cost of Truncated Rollout Policy µ̃ 1

Cost of Truncated Rollout Policy µ̃ 1

Optimal cost Cost of rollout policy ˜

TJ (TJ)(1)

(1) = 0 J(1) (

45◦Line

Figure 3.9.3 Illustration of the Bellman equation for a shortest path problem in
the exceptional case where there is a cycle of zero length. Restricted within the
set of J with J(t) = 0, the Bellman operator has the form

(TJ)(1) = min
{

J(1), 1
}

.

The set of solutions of Bellman’s equation, J(1) = (TJ)(1) is the interval (−∞, 1]
and contains J∗(1) = 0 in its interior.

The form of T is illustrated in Fig. 3.9.2. It can be seen from this figure that
the Bellman equation J = TJ has no real-valued solution (the optimal cost
J∗ = −∞ is a solution within the set of extended real numbers [−∞,∞]).
Moreover the VI algorithm will converge to J* starting from any J ∈ '.
It can be verified also that the PI algorithm, starting from any policy
µ0 ∈ (0, 1], produces the ever improving sequence of policies {µk} with
µk+1 = µk/2. Thus µk converges to 0, which is not a feasible policy. Also
Jµk = −1/µk, and we have Jµk ↓ −∞ = J*, so the PI algorithm gives
in the limit the infinite optimal cost. For additional related examples and
discussion relating to the blackmailer problem, see [Ber22a], Section 3.1.

A Shortest Path Problem

Another exceptional type of example is provided by shortest path problems
that contain cycles of zero length; see the monograph [Ber22a], Section 3.1.
In this case there are infinitely many solutions to Bellman’s equation, and
the VI and PI algorithms, as well as the approximation in value space
process exhibit unusual behavior. We demonstrate this with a shortest
path problem involving a single state, denoted 1, in addition to the cost-
free destination state t.

In particular, let X = {t, 1}, and assume that at state 1 there are
two options: we can stay at 1 at cost 0, or move to t at cost 1. Here

76 An Abstract View of Reinforcement Learning Chap. 3

J*(t) = J*(1) = 0, and there are just two policies, which correspond to the
two options at state 1 and are stable. The optimal policy starting at state
1 is to stay at 1. If we restrict attention to cost functions J with J(t) = 0,
the Bellman operator is

(TJ)(1) = min
{

J(1), 1
}

,

and Bellman’s equation, written as an equation in J(1), has the form

J(1) = min
{

J(1), 1
}

.

The set of solutions of this equation is the interval (−∞, 1] and it is infinite;
see Fig. 3.9.3. The optimal value J*(1) = 0 lies in the interior of this set,
and cannot be obtained by the VI algorithm, unless the algorithm is started
at the optimal value.

Let us consider approximation in value space with cost approximation
J̃(1). Then it can be seen that if J̃(1) < 1, the one-step lookahead policy
is to stay at state 1, which is optimal. If J̃(1) > 1, the one-step lookahead
policy is to move from state 1 to state t, which is suboptimal. If J̃(1) = 1,
either one of the two policies can be the one-step lookahead policy.

Consider also the PI algorithm, starting from the suboptimal policy
µ that moves from state 1 to state t. Then Jµ(t) = 0, Jµ(1) = 1, and it
can be seen that µ satisfies the policy improvement equation

µ(1) ∈ argmin
{

Jµ(1), 1 + Jµ(t)
}

(the same is true for the optimal policy that stays at state 1). Thus the PI
algorithm may stop with the suboptimal policy µ.

Problems where exceptional behavior occurs arise often in Markov de-
cision problems, once one departs from the most commonly discussed and
best behaved paradigm of discounted cost with bounded cost per stage,
where the mappings Tµ of all policies µ have favorable contraction prop-
erties. Moreover, problems arising in decision and control, such as those
that have been addressed with MPC, often give rise to exceptional behav-
ior. Further research and computational experimentation is expected to
provide improved guidelines for the solution of such problems.

What HappensWhen the Bellman Operator is Neither Concave
nor Convex? - Markov Games

We have discussed so far DP models where the Bellman operator has a
concavity property. On the other hand there are interesting DP models
where this is not so. An important case in point is discounted Markov
games , a form of zero-sum games with a dynamic Markov chain structure.

Let us consider two players that play repeated matrix games at each
of an infinite number of stages, using mixed strategies. The game played

Sec. 3.9 Exceptional Cases 77

at a given stage is defined by a state x that takes values in a finite set
X , and changes from one stage to the next according to a Markov chain
whose transition probabilities are influenced by the players’ choices. At
each stage and state x ∈ X , the minimizer selects a probability distribution
u = (u1, . . . , un) over n possible choices i = 1, . . . , n, and the maximizer
selects a probability distribution v = (v1, . . . , vm) over m possible choices
j = 1, . . . ,m. If the minimizer chooses i and the maximizer chooses j, the
payoff of the stage is aij(x) and depends on the state x. Thus the expected
payoff of the stage is

∑

i,j aij(x)uivj or u′A(x)v, where A(x) is the n×m

matrix with components aij(x) (u and v are viewed as column vectors,
and a prime denotes transposition). The two players choose u and v with
knowledge of the state x, so they are viewed as using policies µ and ν,
where µ(x) and ν(x) are the choices of the minimizer and the maximizer,
respectively, at a state x.

The state evolves according to transition probabilities qxy(i, j), where
i and j are the moves selected by the minimizer and the maximizer, respec-
tively (here y represents the next state and game to be played after moves
i and j are chosen at the game represented by x). When the state is x,
under u and v, the state transition probabilities are

pxy(u, v) =
n
∑

i=1

m
∑

j=1

uivjqxy(i, j) = u′Qxyv,

where Qxy is the n × m matrix that has components qxy(i, j). Payoffs
are discounted by α ∈ (0, 1), and the objectives of the minimizer and
maximizer, are to minimize and to maximize the total discounted expected
payoff, respectively.

It was shown by Shapley [Sha53] that the problem can be formulated
as a fixed point problem involving the mapping H given by

H(x, u, v, J) = u′A(x)v + α
∑

y∈X

pxy(u, v)J(y)

= u′

A(x) + α
∑

y∈X

QxyJ(y)

 v,

(3.38)

with the corresponding Bellman operator given by

(TJ)(x) = min
u∈U

max
v∈V

H(x, u, v, J), for all x ∈ X. (3.39)

It can be verified that T is an unweighted sup-norm contraction, and its
unique fixed point J* satisfies the Bellman equation J* = TJ*.

Note that since the matrix defining the mapping H of Eq. (3.38),

A(x) + α
∑

y∈X

QxyJ(y),

78 An Abstract View of Reinforcement Learning Chap. 3

1 J J

TJ

TJ

Single policy Minimax Current policy pair (µ, ν) Next policy pair (˜

) Info Tµ,νJ T

) Next policy pair (µ̃, ν̃) Info

J Tµ̃,ν̃J

Single policy Minimax J∗ = TJ∗
Jµ,ν = Tµ,νJµ,νJµ̃,ν̃ = Tµ̃,ν̃Jµ̃,ν̃

Cost of (µ, ν) Cost of (˜) Cost of (µ̃, ν̃)

Optimal Cost Approximation Minimax- optimal cost
Optimal Cost Approximation Minimax- optimal cost MinimaxMinimax

] 45◦ line

max
{

!11(J), !12(J)
}

}

max
{

!21(J), !22(J)
}

Figure 3.9.4 Schematic illustration of the PI algorithm/Newton’s method in the
case of a Markov game involving a single state, in addition to a termination state
t. We have J∗(t) = 0 and (TJ)(t) = 0 for all J with J(t) = 0, so that the
operator T can be graphically represented in just one dimension (denoted by J)
that corresponds to the nontermination state. This makes it easy to visualize T

and geometrically interpret why Newton’s method does not converge. Because the
operator T may be neither convex nor concave for a Markov game, the algorithm
may cycle between pairs (µ, ν) and (µ̃, ν̃), as shown in the figure. By contrast in
a (single-player) finite-state Markov decision problem, (TJ)(x) is piecewise linear
and concave, and the PI algorithm converges in a finite number of iterations.

The figure illustrates an operator T of the form

TJ = min
{

max
{

"11(J), "12(J)
}

, max
{

"21(J), "22(J)
}

}

,

where "ij(J), are linear functions of J , corresponding to the choices i = 1, 2 of the
minimizer and j = 1, 2 of the maximizer. Thus TJ is the minimum of the convex
functions

max
{

"11(J), "12(J)
}

and max
{

"21(J), "22(J)
}

,

as shown in the figure. Newton’s method linearizes TJ at the current iterate [i.e.,
replaces TJ with one of the four linear functions "ij(J), i = 1, 2, j = 1, 2 (the
one attaining the min-max at the current iterate)] and solves the corresponding
linear fixed point problem to obtain the next iterate. The figure illustrates a case
where the PI algorithm/Newton’s method oscillates between two pairs of policies
(µ, ν) and (µ̃, ν̃).

is independent of u and v, we may view J*(x) as the value of a static

Sec. 3.10 Notes and Sources 79

(nonsequential) matrix game that depends on x. In particular, from a
fundamental saddle point theorem for matrix games, we have

min
u2U

max
v2V

H(x, u, v, J⇤) = max
v2V

min
u2U

H(x, u, v, J*), for all x 2 X.

(3.40)
The paper by Shapley [Sha53] also showed that the strategies obtained by
solving the static saddle point problem (3.40) correspond to a saddle point
of the sequential game in the space of mixed strategies. Thus once we
find J* as the fixed point of the mapping T [cf. Eq. (3.39)], we can obtain
equilibrium policies for the minimizer and maximizer by solving the matrix
game (3.40). Moreover, T can be defined via the operator Tµ,⌫ defined for
a pair of minimizer-maximizer policies (µ, ⌫) by

(Tµ,⌫J)(x) = H
�
x, µ(x), ⌫(x), J

�
, for all x 2 X, (3.41)

In particular, T can be defined via a minimax operation applied to the
operator Tµ,⌫ as follows:

(TJ)(x) = min
µ2M

max
⌫2N

(Tµ,⌫J)(x), for all x 2 X,

whereM andN are the sets of policies of the minimizer and the maximizer,
respectively.

On the other hand the Bellman operator components (TJ)(x) may
be neither convex nor concave. In particular, the maximization makes the
function

max
v2V

H(x, u, v, J)

convex as a function of J for each fixed x and u 2 U , while the subse-
quent minimization over u 2 U tends to introduce concave “pieces” into
(TJ)(x). It is possible to apply PI ideas and the corresponding Newton’s
method to compute the fixed point of T , and in fact this has been proposed
by Pollatschek and Avi-Itzhak [PoA69]. However, this algorithm need not
converge to the optimal and may not yield J*, the fixed point of T (unless
the starting point is su�ciently close to J⇤, as has been recognized in the
paper [PoA69]). The mechanism by which this phenomenon may occur is
illustrated in Fig. 3.9.4. In fact a two-state example where the PI algo-
rithm/Newton’s method does not converge to J* was given by van der Wal
[Van78]. The preceding Markov chain discussion is part of a broader in-
vestigation of abstract minimax problems and Markov games, given in the
author’s recent paper [Ber21c] (and replicated in the monograph [Ber22a],
Ch. 5). In particular, this paper develops exact and approximate PI meth-
ods, which correct the exceptional behavior illustrated in Fig. 3.9.4.

3.10 NOTES AND SOURCES

The author’s abstract DP monograph [Ber22a] (originally published in
2013, with a second edition appearing in 2018, and a third edition appearing

80 An Abstract View of Reinforcement Learning Chap. 3

in 2022) has provided the framework for the Newton step interpretations
and visualizations that we have used to gain insight into approximation in
value space, rollout, and policy iteration. The abstract framework aims at a
unified development of the core theory and algorithms of total cost sequen-
tial decision problems, and addresses simultaneously stochastic, minimax,
game, risk-sensitive, and other DP problems, through the use of the ab-
stract DP operator (or Bellman operator as it is often called in RL). The
idea here is to gain insight through abstraction. In particular, the structure
of a DP model is encoded in its abstract Bellman operator, which serves as
the “mathematical signature” of the model. Characteristics of this opera-
tor (such as monotonicity and contraction) largely determine the analytical
results and computational algorithms that can be applied to that model.

Abstraction also captures the generality of the DP methodology. In
particular, our conceptual framework based on Newton’s method is ap-
plicable to problems with general state and control spaces, ranging from
the continuous spaces control problems, traditionally the focus of MPC, to
Markov decision problems, traditionally the focus of operations research as
well as RL, and to discrete optimization problems, traditionally the focus of
integer programming and combinatorial optimization. A key mathematical
fact in this respect is that while the state and control spaces may be contin-
uous or discrete, the Bellman operators and equations are always defined
over continuous function spaces, and are thus amenable to solution through
the use of continuous spaces algorithms, including Newton’s method.

4

The Linear Quadratic Case -

Illustrations

Contents

4.1. Optimal Solution p. 82
4.2. Cost Functions of Stable Linear Policies p. 83
4.3. Value Iteration p. 86
4.4. One-Step and Multistep Lookahead - Newton Step

Interpretations p. 86
4.5. Sensitivity Issues p. 91
4.6. Rollout and Policy Iteration p. 94
4.7. Truncated Rollout - Length of Lookahead Issues p. 97
4.8. Exceptional Behavior in Linear Quadratic Problems . . . p. 99
4.9. Notes and Sources p. 100

81

82 The Linear Quadratic Case - Illustrations Chap. 4

In this chapter, we will use linear quadratic problems as a vehicle for graph-
ical illustrations and insight into the suboptimal control ideas developed
so far. This is possible because linear quadratic problems admit closed
form solutions. Our discussion applies to multidimensional linear quadratic
problems (cf. Example 2.1.1), but we will focus on the one-dimensional case
to demonstrate graphically our approximation in value space ideas and their
connection to Newton’s method.

In particular, throughout this chapter we will consider the system

xk+1 = axk + buk,

and the cost function
∞
∑

k=0

(qx2
k + ru2

k),

where a, b, q, r are scalars with b != 0, q > 0, r > 0. It can be verified
computationally (and also with some analysis) that the insights obtained
from the one-dimensional case are generally correct for the multidimen-
sional case of the linear quadratic problem, where the state cost weighting
matrix Q is positive definite. In Section 4.8 we will obtain related insights
about what happens in the exceptional case where q = 0.

4.1 OPTIMAL SOLUTION

The optimal solution was given for the multidimensional case of the linear
quadratic problem in Example 2.1.1. For the one-dimensional case consid-
ered here, the optimal cost function has the form

J*(x) = K∗x2, (4.1)

where the scalar K∗ solves a fixed point equation of the form

K = F (K), (4.2)

with F defined by

F (K) =
a2rK

r + b2K
+ q. (4.3)

This is the Riccati equation, which is equivalent to the Bellman equation
J = TJ , restricted to the subspace of quadratic functions of the form
J(x) = Kx2; see Fig. 4.1.1. Essentially, by replacing the Bellman operator
T with the Riccati equation operator F of Eq. (4.3), we can analyze the
action of T on this subspace. This allows a different type of visualization
than the one we have been using so far.

The scalar K∗ that corresponds to the optimal cost function J* [cf.
Eq. (4.1)] is the unique solution of the Riccati equation (4.2) within the

Sec. 4.2 Cost Functions of Stable Linear Policies 83

0

K K

K K

45◦Line

q q F

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

State 1 State 2 K∗K̄

Cost of µ̃ −

r

b2

Figure 4.1.1 Graphical construction of the solutions of the Riccati equation
(4.2)-(4.3) for the linear quadratic problem. The optimal cost function is J∗(x) =
K∗x2, where the scalar K∗ solves the fixed point equation K = F (K), with F
being the function given by

F (K) =
a2rK

r + b2K
+ q.

Because F is concave and monotonically increasing in the interval (−r/b2,∞) and
“flattens out” as K → ∞, as shown in the figure, the quadratic Riccati equation
K = F (K) has one positive solution K∗ and one negative solution, denoted K̄.

nonnegative real line. This equation has another solution, denoted by K̄
in Fig. 4.1.1, which lies within the negative real line and is of no interest.
The optimal policy is a linear function of the state and has the form

µ∗(x) = L∗x,

where L∗ is the scalar given by

L∗ = −
abK∗

r + b2K∗
. (4.4)

4.2 COST FUNCTIONS OF STABLE LINEAR POLICIES

Suppose that we are given a linear policy of the form

µ(x) = Lx,

where L is a scalar. The corresponding closed loop system is

xk+1 = (a+ bL)xk = (a+ bL)k+1x0,

84 The Linear Quadratic Case - Illustrations Chap. 4

0

K K

K Kq q F

KL

FL(K) = (a+ bL)2K + q + rL2

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

State 1 State 2 K∗

Figure 4.1.2 Illustration of the construction of the cost function of a linear
policy µ(x) = Lx, which is stable, i.e., |a+ bL| < 1. The cost function Jµ(x) has
the form Jµ(x) = KLx

2, where KL is the unique solution of the linear equation
K = FL(K), where

FL(K) = (a + bL)2K + q + rL
2
,

is the Riccati equation operator corresponding to L (i.e., the analog of Tµ). If µ
is unstable, we have Jµ(x) = ∞ for all x "= 0.

and the cost Jµ(x0) is calculated as

∞
∑

k=0

(

q(a+ bL)2kx2
0
+ rL2(a+ bL)2kx2

0

)

= lim
N→∞

N−1
∑

k=0

(q + rL2)(a+ bL)2kx2
0
.

Assuming |a+ bL| < 1, i.e., that the closed loop system is stable, the above
summation yields

Jµ(x) = KLx
2,

for every initial state x, where

KL =
q + rL2

1− (a+ bL)2
. (4.5)

If on the other hand, |a+ bL| ≥ 1, i.e., the closed loop system is unstable,
the summation yields Jµ(x0) = ∞ for all x0 != 0.

It can be seen with a straightforward calculation thatKL is the unique
solution of the linear equation

K = FL(K), (4.6)

where
FL(K) = (a+ bL)2K + q + rL2; (4.7)

Sec. 4.2 Cost Functions of Stable Linear Policies 85

see Fig. 4.1.2. Again, by replacing the Bellman operator Tµ of the stable
policy µ(x) = Lx with the Riccati equation operator FL, we can analyze
the action of Tµ on the subspace of quadratic functions J(x) = Kx2. Note
that when |a + bL| > 1, so that µ is unstable, we have Jµ(x) = ∞ for all
x != 0, and the graph of FL intersects the 45-degree line at a negative K.
Then the equation K = FL(K) has the negative solution

q + rL2

1− (a+ bL)2
,

but this solution is unrelated to the cost function Jµ(·), which has infinite
value for all x != 0.

We summarize the Riccati equation formulas and the relation between
linear policies of the form µ(x) = Lx and their quadratic cost functions in
the following table.

Riccati Equation Formulas for One-Dimensional Problems

Riccati equation for minimization [cf. Eqs. (4.2) and (4.3)]

K = F (K), F (K) =
a2rK

r + b2K
+ q.

Riccati equation for a stable linear policy µ(x) = Lx [cf. Eqs.
(4.6) and (4.7)]

K = FL(K), FL(K) = (a+ bL)2K + q + rL2.

Gain LK of lookahead linear policy associated with K [cf. Eq.
(4.4)]

LK = −
abK

r + b2K
.

Cost coefficient KL of linear policy µ(x) = Lx [cf. Eq. (4.5)]

KL =
q + rL2

1− (a+ bL)2
.

The one-dimensional problem of this chapter is well suited for geo-
metric interpretations such as the ones we gave earlier in the preceding
chapter, because approximation in value space, and the VI, rollout, and
PI algorithms, involve quadratic cost functions J(x) = Kx2, which can
be represented by one-dimensional graphs as functions of just the num-
ber K. In particular, Bellman’s equation can be replaced by the Riccati

86 The Linear Quadratic Case - Illustrations Chap. 4

equation (4.3). Similarly, the figures in Chapter 3 for approximation in
value space with one-step and multistep lookahead, the region of stability,
rollout, and PI can be represented by one-dimensional graphs. We will
next present these graphs and obtain corresponding geometrical insights.
Note that our discussion applies qualitatively to multidimensional linear
quadratic problems, and can be verified to a great extent by analysis, but
an effective geometrical illustration is only possible when the system is
one-dimensional.

4.3 VALUE ITERATION

The VI algorithm for the one-dimensional linear quadratic problem is il-
lustrated in Fig. 4.3.1. It has the form

Kk+1 = F (Kk);

cf. Example 2.1.1. As can be seen from the figure, the algorithm converges
to K∗ starting from anywhere in the interval (K̄,∞), where K̄ is the neg-
ative solution. In particular, the algorithm converges to K∗ starting from
any nonnegative value of K.

It is interesting to note that, starting from values K0 with K0 ≤ K̄,

the algorithm does not converge to the optimal K∗. From Fig. 4.3.1, it
can be seen that if

−
r

b2
< K0 ≤ K̄,

it converges to the negative solution K̄. The threshold −r/b2 is the asymp-
totic value to the left of which F (K) drops to −∞. When

K0 ≤ −
r

b2
,

for the corresponding function J0(x) = K0x2 we have (TJ0)(x) = −∞
for all x, and the algorithm is not well defined. The literature on linear
quadratic problems universally assumes that the iterative solution of the
Riccati equation is started with nonnegative K0, since to select a negative
starting K0 makes little sense. Note, however, that the nice behavior of VI
just described depends on the positivity of the state cost coefficient q. In
Section 4.8, we will discuss the exceptional case where q = 0.

4.4 ONE-STEP AND MULTISTEP LOOKAHEAD - NEWTON
STEP INTERPRETATIONS

In this section, we consider approximation in value space with a quadratic
terminal cost function J̃(x) = K̃x2; cf. Fig. 4.4.1. We will express the cost
function Jµ̃ of the corresponding one-step lookahead policy µ̃ in terms of

Sec. 4.4 One-Step and Multistep Lookahead - Newton Step 87

0

K K

K K

Kk Kk+1

45◦Line

q q F

Cost of µ̃ −

r

b2

State 1 State 2 K∗K̄

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

Figure 4.3.1 Graphical illustration of value iteration for the linear quadratic
problem. It has the form Kk+1 = F (Kk) where

F (K) =
a2rK

r + b2K
+ q.

It is essentially equivalent to the VI algorithm with a quadratic starting function

J0(x) = K0x
2
.

The algorithm converges to K∗ starting from anywhere in the interval (K̄,∞),
where K̄ is the negative solution, as shown in the figure. Starting from values K0

with
−

r

b2
< K0 ≤ K̄,

the algorithm converges to the negative solution K̄. When

K0 ≤ −
r

b2
,

we have (TJ0)(x) = −∞ for all x, and the algorithm is undefined.

K̃ (assuming that K̃ belongs to the region of stability), and we will prove
that the transformation from J̃ to Jµ̃ is equivalent to a Newton step for
solving the Riccati equation starting from K̃.

In particular, for a linear quadratic problem, the one-step lookahead
policy is given by

µ̃(x) ∈ argmin
u

[

qx2 + ru2 + K̃(ax+ bu)2
]

,

which after a straightforward calculation, yields

µ̃(x) = L̃x,

88 The Linear Quadratic Case - Illustrations Chap. 4

0

K K

K K

q q F

q K̃

F
L̃
(K)

K K
L̃

L̃ = −

abK̃

r + b2K̃

State 1 State 2 K∗

also Newton Step

F (K)

Figure 4.4.1 Illustration of approximation in value space with one-step lookahead
for the linear quadratic problem. Given a terminal cost approximation J̃ = K̃x2,
we compute the corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK̃

r + b2K̃
,

and the corresponding cost function K
L̃
x2, using the Newton step shown.

with the linear policy coefficient given by

L̃ = −
abK̃

r + b2K̃
.

Note, however, that this policy will not be stable if |a+ bL̃| ≥ 1, or equiv-
alently if

∣

∣

∣

∣

∣

a−
ab2K̃

r + b2K̃

∣

∣

∣

∣

∣

≥ 1.

We may also construct the linearization of the function F at K̃,
and solve the corresponding linearized problem with a Newton step, as
illustrated in Fig. 4.4.1. The case of !-step lookahead minimization can
be similarly interpreted. Instead of linearizing F at K̃, we linearize at
K!−1 = F !−1(K̃), i.e., at the result of ! − 1 successive applications of F
starting with K̃. Figure 4.4.2 depicts the case ! = 2.

An important consequence of the Newton step interpretation is a
classical quadratic convergence rate result: there exists an open interval
containing K∗ and a constant c > 0 such that for all K̃ within the open
interval we have

|KL̃ −K∗| ≤ c |K̃ −K∗|2, (4.8)

Sec. 4.4 One-Step and Multistep Lookahead - Newton Step 89

K K

F
L̃
(K)

K K
L̃

K1

1 L̃ = −

abK1

r + b2K1

State 1 State 2 K∗

also Newton Step

F (K)

q K̃

Figure 4.4.2 Illustration of approximation in value space with two-step looka-
head for the linear quadratic problem. Starting with a terminal cost approxima-
tion J̃ = K̃x2, we obtain K1 using a single value iteration. We then compute the
corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK1

r + b2K1

and the corresponding cost function K
L̃
x2, using the Newton step shown.

where L̃ corresponds to the policy obtained by approximation in value space
with one-step lookahead and terminal cost approximation J̃(x) = K̃x2, so
that

L̃ = −
abK̃

r + b2K̃
, (4.9)

and

KL̃ =
q + rL̃2

1− (a+ bL̃)2
. (4.10)

Figure 4.4.2 also suggests another result that stems from the concavity
property of the Riccati equation, namely that if K̂ is a scalar that lies
strictly within the region of stability, i.e.,

∣

∣

∣

∣

∣

a−
ab2K̂

r + b2K̂

∣

∣

∣

∣

∣

< 1,

then there exists a constant c > 0 such that all K̃ ≥ K̂ satisfy Eq. (4.8).
This result will not be proved here, but follows from the line of convergence
analysis of Newton’s method, which is given in the Appendix.

We will next show the quadratic convergence rate estimate (4.8) by
verifying that KL̃ is the result of a Newton step for solving the Riccati

equation K = F (K) starting from K̃.

90 The Linear Quadratic Case - Illustrations Chap. 4

Cost Function of the Lookahead Policy - A View from Newton’s
Method

We will apply Newton’s method to the solution of the Riccati Eq. (4.3),
which we write in the form

H(K) = 0,

where

H(K) = K −
a2rK

r + b2K
− q. (4.11)

The classical form of Newton’s method takes the form

Kk+1 = Kk −

(

∂H(Kk)

∂K

)−1

H(Kk), (4.12)

where ∂H(K
k
)

∂K
is the derivative of H , evaluated at the current iterate Kk.

We will show analytically that the operation that generates KL start-
ing from K is a Newton iteration of the form (4.12) (an alternative is to
argue graphically, as in Fig. 3.2.1). In particular, we will show (simplifying
notation by skipping tilde) that for all K that lead to a stable one-step
lookahead policy, we have

KL = K −

(

∂H(K)

∂K

)−1

H(K), (4.13)

where we denote by

KL =
q + rL2

1− (a+ bL)2
(4.14)

the quadratic cost coefficient of the one-step lookahead linear policy µ(x) =
Lx corresponding to the cost function approximation J(x) = Kx2:

L = −
abK

r + b2K
(4.15)

[cf. Eqs. (4.9) and (4.10)].
Our approach for showing the Newton step formula (4.13) is to express

each term in this formula in terms of L, and then show that the formula
holds as an identity for all L. To this end, we first note from Eq. (4.15)
that K can be expressed in terms of L as

K = −
rL

b(a+ bL)
. (4.16)

Furthermore, by using Eqs. (4.15) and (4.16), H(K) as given in Eq. (4.11)
can be expressed in terms of L as follows:

H(K) = −
rL

b(a+ bL)
+

arL

b
− q. (4.17)

Sec. 4.5 Sensitivity Issues 91

Moreover, by differentiating the function H of Eq. (4.11), we obtain after
a straightforward calculation

∂H(K)

∂K
= 1−

a2r2

(r + b2K)2
= 1− (a+ bL)2, (4.18)

where the second equation follows from Eq. (4.15). Having expressed all
the terms in the Newton step formula (4.13) in terms of L through Eqs.
(4.14), (4.16), (4.17), and (4.18), we can write this formula in terms of L
only as

q + rL2

1− (a+ bL)2
= −

rL

b(a+ bL)
−

1

1− (a+ bL)2

(

−
rL

b(a+ bL)
+

arL

b
− q

)

,

or equivalently as

q + rL2 = −
rL
(

1− (a+ bL)2
)

b(a+ bL)
+

rL

b(a+ bL)
−

arL

b
+ q.

A straightforward calculation now shows that this equation holds as an
identity for all L.

We have thus shown that KL is related to K by the Newton step
formula (4.13) for all K. Consequently, from classical calculus results on
Newton’s method, the quadratic convergence rate estimate (4.8) follows.

In the case of !-step lookahead this result takes a stronger form,
whereby the analog of the quadratic convergence rate estimate (4.8) has
the form

|KL̃ −K∗| ≤ c
∣

∣F !−1(K̃)−K∗
∣

∣

2
,

where F !−1(K̃) is the result of the (!− 1)-fold application of the mapping
F to K̃. Thus a stronger bound for |KL̃ −K∗| is obtained.

4.5 SENSITIVITY ISSUES

An interesting consequence of the Newton step relation (4.13) between K

and KL relates to sensitivity to changes in K. In particular, we will show
that asymptotically, near K∗, small changes in K induce much smaller
changes in KL. Mathematically, given K1 and K2 that lie within the
region of stability, so they lead to stable corresponding one-step lookahead
policies µ1(x) = L1x and µ2(x) = L2x, we have

|KL1
−KL2

|

|K1 −K2|
→ 0 as |K1 −K2| → 0 and H(K2) → 0, (4.19)

as we will show next.

92 The Linear Quadratic Case - Illustrations Chap. 4

This result also holds for multidimensional linear quadratic problems,
and also holds in various forms, under appropriate conditions, for more gen-
eral problems. The practical significance of this result (and its extension
to the case of a general differentiable Bellman operator T) is that near
K∗ (or J*, in the general case), small off-line training changes (i.e., small
changes in K, or J̃ , respectively) are rendered by the Newton step rela-
tively insignificant as far as their effect on-line play performance is con-
cerned (i.e., changes in KL, or Jµ̃, respectively). Small off-line training
changes may result from applying alternative cost function approximation
methods, which rely on similarly powerful feature-based or neural network-
based architectures (e.g., different forms of temporal difference methods,
aggregation methods, approximate linear programming, etc).

To see why the sensitivity Eq. (4.19) holds, we rewrite the Newton
iteration formula

KL1
= K1 −

(

∂H(K1)

∂K

)−1

H(K1),

[cf. Eq. (4.13)] by using the first order Taylor approximations†

(

∂H(K1)

∂K

)−1

=

(

∂H(K2)

∂K

)−1

+O
(

|K1 −K2|
)

,

H(K1) = H(K2) +
∂H(K2)

∂K
(K1 −K2) + o

(

|K1 −K2|
)

.

We obtain

KL1
= K1−

(

(

∂H(K2)

∂K

)−1

+O
(

|K1 −K2|
)

)

(

H(K2) +
∂H(K2)

∂K
(K1 −K2) + o

(

|K1 −K2|
)

)

,

which yields

KL1
= K1 −

(

∂H(K2)

∂K

)−1

H(K2)− (K1 −K2) +O
(

|K1 −K2|
)

H(K2)

+ o
(

|K1 −K2|
)

.

† We are using here the standard calculus notation whereby O
(

|K1 − K2|
)

denotes a function of (K1,K2) such that O
(

|K1−K2|
)

→ 0 as |K1−K2| → 0, and

o
(

|K1−K2|
)

denotes a function of (K1,K2) such that o
(

|K1−K2|
)

/|K1−K2| → 0

as |K1 −K2| → 0.

Sec. 4.5 Sensitivity Issues 93

The preceding equation, together with the Newton iteration formula [cf.
Eq. (4.13)]

KL2
= K2 −

(

∂H(K2)

∂K

)−1

H(K2),

yields

KL1
= KL2

+O
(

|K1 −K2|
)

H(K2) + o
(

|K1 −K2|
)

, (4.20)

or
KL1

−KL2

|K1 −K2|
=

O
(

|K1 −K2|
)

|K1 −K2|
H(K2) +

o
(

|K1 −K2|
)

|K1 −K2|
. (4.21)

The first term of the right hand side above tends to 0 as H(K2) → 0, while
the second term tends to 0 as |K1 − K2| → 0. This proves the desired
sensitivity Eq. (4.19). Also by tracing through the preceding calculations,
it can be seen that the term O

(

|K1−K2|
)

multiplying H(K2) in Eq. (4.20)
is equal to

(

∂H(K1)

∂K

)−1

−

(

∂H(K2)

∂K

)−1

, (4.22)

and is close to 0 if H(K) is nearly linear. Figure 4.5.1 illustrates the
sensitivity estimate (4.21).

Note that from Eq. (4.21), the ratio (KL1
−KL2

)/|K1−K2| depends
on how close K2 is to K∗, i.e., on the size of H(K2). In particular, if
K2 = K∗, we recover the superlinear convergence rate

|KL1
−K∗|

|K1 −K∗|
=

o
(

|K1 −K∗|
)

|K1 −K∗|
.

On the other hand, if H(K2) is far from 0 and H has large second deriva-
tives near K1 and K2 [so that the difference of inverse derivatives (4.22) is
large], the ratio (KL1

−KL2
)/|K1−K2| can be quite large even if |K1−K2|

is rather small. This sometimes tends to happen when K1 and K2 are close
to the boundary of the region of stability, in which case it is important to
bring the effective start of the Newton step closer to K∗, possibly by using
multistep lookahead and/or truncated rollout with a stable policy.

The preceding derivation can be extended to hold for a general case
of a mapping T as long as T is differentiable. If T is nondifferentiable at J*

the derivation breaks down and a sensitivity result such as the one of Eq.
(4.19) may not hold in exceptional cases. Note, however, that in the case
of a discounted problem with finite numbers of states and controls, where
(TJ)(x) is a piecewise linear function of J for every x, a stronger result
can be proved: there is a sphere centered at J* such that if J̃ lies within
this sphere, the one-step lookahead policy corresponding to J̃ is optimal
(see the book [Ber20a], Prop. 5.5.2).

94 The Linear Quadratic Case - Illustrations Chap. 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.25

Figure 4.5.1 Illustration of the sensitivity estimate (4.21) for the case a = 1,
b = 2, q = 1, r = 0.5. The difference K1 −K2 is denoted by ε. The figure shows
the expected value of |KL1

−KL2
| as the distance K1 −K∗ varies, and as K2 is

selected randomly according to a uniform probability distribution in the interval
[K1 − ε, K1 + ε], for three different values of ε (0.15, 0.2, and 0.3). Note that for
K1 > K∗, the change |KL1

− KL2
| is much smaller than for K1 < K∗, because

the difference of inverse derivatives (4.22) is small for K1 > K∗, even for large
values of ε (H is nearly linear).

4.6 ROLLOUT AND POLICY ITERATION

The rollout algorithm with a stable base policy µ is illustrated in Fig.
4.6.1. The PI algorithm is simply the repeated application of rollout. Let
us derive the algorithm starting from a linear base policy of the form

µ0(x) = L0x,

where L0 is a scalar. We require that L0 is such that the closed loop system

xk+1 = (a+ bL0)xk, (4.23)

is stable, i.e., |a+ bL0| < 1. This is necessary for the policy µ0 to keep the
state bounded and the corresponding costs Jµ0(x) finite. We will see that
the PI algorithm generates a sequence of linear stable policies.

To describe the policy evaluation and policy improvement phases for
the starting policy µ0, we first calculate Jµ0 by noting that it involves
the uncontrolled closed loop system (4.23) and a quadratic cost function.
Similar to our earlier calculations, it has the form

Jµ0(x) = K0x2, (4.24)

Sec. 4.6 Rollout and Policy Iteration 95

Value iterations Policy evaluations

Policy Improvement with Base Policy
Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

Optimal cost Cost of rollout policy µ̃Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

45◦Line

K K

Optimal cost Cost of rollout policy ˜
State 1 State 2 K∗

also Newton Step

Figure 4.6.1 Illustration of rollout and policy iteration for the linear quadratic
problem.

where

K0 =
q + rL2

0

1− (a+ bL0)2
. (4.25)

Thus, the policy evaluation phase of PI for the starting linear policy
µ0(x) = L0x yields Jµ0 in the form (4.24)-(4.25). The policy improvement
phase involves the quadratic minimization

µ1(x) ∈ argmin
u

[

qx2 + ru2 +K0(ax+ bu)2
]

,

and after a straightforward calculation yields µ1 as the linear policy µ1(x) =
L1x, where

L1 = −
abK0

r + b2K0

.

It can also be verified that µ1 is a stable policy. An intuitive way to
get a sense of this is via the cost improvement property of PI: we have
Jµ1(x) ≤ Jµ0(x) for all x, so Jµ1(x) must be finite, which implies stability
of µ1.

The preceding calculation can be continued, so the PI algorithm yields
the sequence of stable linear policies

µk(x) = Lkx, k = 0, 1, . . . ,

where Lk+1 is generated by the iteration

Lk+1 = −
abKk

r + b2Kk
,

96 The Linear Quadratic Case - Illustrations Chap. 4

Optimal cost Cost of rollout policy ˜

Cost of Truncated Rollout Policy ˜
Cost of Truncated Rollout Policy µ̃

K Kq K̃

K K

State 1 State 2 K∗

also Newton Step

FL(K)

Region of Stability KL

Cost Function Approximation Position Evaluator Cost of Base Policy
µ(x) = Lx

Figure 4.6.2 Illustration of truncated rollout with a stable base policy µ(x) = Lx
and terminal cost approximation K̃ for the linear quadratic problem. In this figure
the number of rollout steps is m = 4, and we use one-step lookahead minimization.

with Kk given by

Kk =
q + rL2

k

1− (a+ bLk)2
,

[cf. Eq. (4.25)].
The corresponding cost function sequence has the form Jµk (x) =

Kkx2. Part of the classical linear quadratic theory is that Jµk converges
to the optimal cost function J*, while the generated sequence of linear
policies {µk}, where µk(x) = Lkx, converges to the optimal policy. The
convergence rate of the sequence {Kk} is quadratic, as shown earlier, i.e.,
there exists a constant c such that

|Kk+1 −K∗| ≤ c |Kk −K∗|2,

for all k, assuming that the initial policy is linear and stable. This result was
proved by Kleinman [Kle68] for the continuous time version of the linear
quadratic problem, and it was extended later to more general problems; see
the references given in Section 3.3 and the book [Ber20a], Chapter 1. For a
recent proof of the quadratic convergence for linear discrete-time quadratic
problems, see Lopez, Alsalti, and Muller [LAM21].

Sec. 4.7 Truncated Rollout - Length of Lookahead Issues 97

4.7 TRUNCATED ROLLOUT - LENGTH OF LOOKAHEAD ISSUES

Truncated rollout with a stable linear base policy µ(x) = Lx and terminal
cost approximation J̃(x) = K̃x2 is illustrated in Fig. 4.6.2. The rollout
policy µ̃ is obtained from the equation

Tµ̃T !−1Tm
µ J̃ = T !Tm

µ J̃ ,

where ! ≥ 1 is the length of the lookahead minimization and m ≥ 0 is the
length of the rollout lookahead, with m = 0 corresponding to no lookahead
by rollout (in Fig. 4.6.2, we have ! = 1 and m = 4).

We mentioned some interesting performance issues in our discussion
of truncated rollout in Section 3.4, and we will now revisit these issues
within the context of our linear quadratic problem. In particular we noted
that:

(a) Lookahead by rollout with a stable policy has a beneficial effect on
the stability properties of the lookahead policy.

(b) Lookahead by rollout may be an economic substitute for lookahead by
minimization, in the sense that it may achieve a similar performance
for the truncated rollout policy at significantly reduced computational
cost.

These statements are difficult to establish analytically in some generality.
However, they can be intuitively understood in the context with our one-
dimensional linear quadratic problem, using geometrical constructions like
the one of Fig. 4.6.2.

In particular, let us consider our one-dimensional linear quadratic
problem, the corresponding value K∗ (the optimal cost coefficient), and the
value Ks, which demarcates the region of stability, i.e., one-step lookahead
yields a stable policy if and only if K̃ > Ks. Consider also two parameters
of the truncated rollout method: Kµ (the cost coefficient of the base policy),
and K̃ (the terminal cost approximation coefficient).

We have Ks ≤ K∗ ≤ Kµ, so the three parameters Ks,K∗,Kµ divide
the real line in the four intervals I through IV, depicted in Fig. 4.7.1. Then
by examining Fig. 4.6.2, we see that the behavior of truncated rollout
depends on the interval in which the terminal cost coefficient K̃ lies. In
particular:

(a) For K̃ in interval I : Long total (!+m)-step lookahead is needed to get
the starting point of the Newton step within the region of stability.
Best and computationally economical results are obtained by taking
! = 1 and m large enough to bring the starting point of the Newton
step within the region of stability, and hopefully close to K∗.

(b) For K̃ in interval II : ! = 1 and m ≥ 0 are sufficient for stability. Best
results are obtained when ! = 1 and m is the (generally unknown)
value that brings the starting point of the Newton step close to K∗.

98 The Linear Quadratic Case - Illustrations Chap. 4

Interval I Interval II Interval III Interval IVInterval I Interval II Interval III Interval IVInterval I Interval II Interval III Interval IVInterval I Interval II Interval III Interval IV

µ K

Interval I Interval II Interval III Interval IV Ks s K∗ ∗ Kµ

Region of InstabilityRegion of Instability Region of Stability

Figure 4.7.1 Illustration of the behavior of truncated rollout for the linear
quadratic problem. We consider the four intervals I, II, III, and IV, defined by the
boundary of the region of stability Ks, the optimal cost coefficient K∗, and the
cost coefficient Kµ of the base policy µ. Using rollout with base policy µ, number
of rollout steps m > 0, and a terminal cost coefficient K̃ in intervals I, II, and IV
improves the stability guarantee and/or the performance of the lookahead policy
µ̃ over the case of no rollout, i.e., m = 0. In the case where K̃ lies in interval
III, using m > 0 rather m = 0 deteriorates somewhat the performance of the
lookahead policy µ̃, but still maintains the cost improvement property Kµ̃ ≤ Kµ.

(c) For K̃ in interval III : ! = 1 and m ≥ 0 are sufficient for stability.
Best results are obtained when ! = 1 and m = 0 (since the rollout
lookahead is counterproductive and takes the starting point of the
Newton step away from K∗ and towards Kµ). Still, however, even
with m > 0, we have the cost improvement property Kµ̃ ≤ Kµ.

(d) For K̃ in interval IV : ! = 1 and m ≥ 0 are sufficient for stability.
Best results are obtained for values of m and !, which depend on
how far K̃ is from Kµ. Here, values that likely work well are the
ones for which m is fairly large, and ! is close to 1 (large enough m

will bring the starting point of the Newton step close to Kµ; ! = 1
corresponds to the Newton step, ! > 1 improves the starting point of
the Newton step by value iteration, but is likely not worth the extra
computational cost).

Of course, a practical difficulty here is that we don’t know the inter-
val in which K̃ lies. However, it is clear that by using rollout with m ≥ 1
works well in most cases as an economical substitute for long lookahead
minimization. In particular, when K̃ lies in intervals I, II, and IV, using
m > 0 provides a stronger stability guarantee and improved performance
through a better starting point for the Newton step. Even in the case where
K̃ lies in interval III, using m > 0 is not very damaging: we still obtain
performance that is no worse than the base policy, i.e., Kµ̃ ≤ Kµ. An
interesting research question is to investigate analytically as well as com-
putationally, the multidimensional analogs of the intervals I-IV (which will
now become subsets of the set of symmetric matrices). While it seems that
the preceding discussion should generalize broadly, an investigation of the
multidimensional case promises to be both challenging and illuminating.
It may also reveal exceptional behaviors, particularly when extensions to
problems more general than linear quadratic are considered.

Sec. 4.8 Exceptional Behavior in Linear Quadratic Problems 99

K K

K K

F (K) =
a2rK

r + b2K

Kk Kk+1

a
2
r

b2

K∗ = 0 K̂

Figure 4.8.1 Illustration of the Bellman equation and the VI algorithm Kk+1 =
F (Kk) for the linear quadratic problem in the exceptional case where q = 0.

4.8 EXCEPTIONAL BEHAVIOR IN LINEAR QUADRATIC
PROBLEMS

It turns out that exceptional behavior can occur even for one-dimensional
linear quadratic problems, when the positive definiteness assumption on
the matrix Q is violated. In particular, let us consider the system

xk+1 = axk + buk, (4.26)

and the cost function
∞
∑

k=0

ru2
k, (4.27)

where a, b, r are scalars with |a| > 1, b != 0, r > 0. In this case there is
no penalty for the state being nonzero (i.e., q = 0), while the system is
unstable when left uncontrolled.

Here, since the cost per stage does not depend on the state, it is
optimal to apply control u = 0 at any state x, i.e., µ∗(x) ≡ 0, and the
optimal cost function is J*(x) ≡ 0. The Riccati equation is given by

K = F (K),

where F defined by

F (K) =
a2rK

r + b2K
.

As shown in Fig. 4.8.1, it has two nonnegative solutions:

K∗ = 0 and K̂ =
r(a2 − 1)

b2
.

100 The Linear Quadratic Case - Illustrations Chap. 4

The solution K∗ corresponds to the optimal cost function. It turns out
that the solution K̂ is also interesting: it can be shown to be the optimal
cost function within the subclass of linear policies that are stable. A proof
of this is given in the author’s paper [Ber17c] and abstract DP monograph
[Ber22a], Section 3.1.

Consider also the VI algorithm

Kk+1 = F (Kk),

starting from some K0 > 0. As shown from Fig. 4.8.1, it generates a
positive scalar sequence that converges to K̂. If the VI algorithm is started
at the optimal K∗ = 0, it stays at K∗. It can also be verified that the
PI algorithm generates a sequence of linear stable policies starting from a
linear stable policy. The sequence converges to the optimal stable policy
that corresponds to K̂.

In summary, the PI algorithm starting from a linear stable policy
yields Ĵ , the optimal cost function over the linear stable policies, but not
the optimal cost function J*. At the same time, the PI algorithm yields a
a policy that is optimal over the linear stable policies, but not the optimal
policy µ∗(x) ≡ 0.

4.9 NOTES AND SOURCES

Linear quadratic problems are central in control theory, and have been the
subject of extensive research. There are detailed accounts in most control
theory textbooks, including Vol. I of the author’s DP book [Ber17a].

The exceptional linear quadratic example of Section 4.8 provides an
instance of a DP problem that exhibits a so-called “semicontractive behav-
ior.” By this we mean that some policies are “well-behaved” (stabilize the
system in this case, or have Bellman operators that are contractive in other
cases), while some other policies are not, and the VI algorithm tends to be
attracted to the optimal cost function over the well-behaved policies only.
Semicontractive models and their analysis are a major focal point of the
abstract DP monograph [Ber22a], Chapters 3 and 4. They arise commonly
in the context of stochastic shortest path problems, where some policies
(called proper) are “well-behaved” in the sense that they guarantee that
the termination state will be reached from every initial state, while other
policies (called improper) are not.

5

Adaptive and Model Predictive

Control

Contents

5.1. Systems with Unknown Parameters - Robust and PID . . .
Control . p. 102

5.2. Approximation in Value Space, Rollout, and Adaptive . . .
Control . p. 105

5.3. Approximation in Value Space, Rollout, and Model
Predictive Control p. 109

5.4. Terminal Cost Approximation - Stability Issues p. 112
5.5. Notes and Sources p. 118

101

102 Adaptive and Model Predictive Control Chap. 5

In this chapter, we discuss some of the core control system design method-
ologies within the context of our approximation in value space framework.
In particular, in the next two sections, we will discuss problems with un-
known or changing problem parameters, and briefly review some of the
principal types of adaptive control methods. We will then focus on schemes
that are based on on-line replanning, including the use of rollout. The idea
here is to use an approximation in value space scheme/Newton step in place
of a full reoptimization of the controller, in response to the changed system
parameters; we have noted this possibility in Chapter 1. Subsequently, in
Sections 5.3 and 5.4, we will discuss the model predictive control method-
ology, and its connections with approximation in value space, Newton’s
method, adaptive control, and the attendant stability issues.

5.1 SYSTEMS WITH UNKNOWN PARAMETERS - ROBUST
AND PID CONTROL

Our discussion so far dealt with problems with a known and unchanging
mathematical model, i.e., one where the system equation, cost function,
control constraints, and probability distributions of disturbances are per-
fectly known. The mathematical model may be available through explicit
mathematical formulas and assumptions, or through a computer program
that can emulate all of the mathematical operations involved in the model,
including Monte Carlo simulation for the calculation of expected values.
From our point of view, it makes no difference whether the mathemat-
ical model is available through closed form mathematical expressions or
through a computer simulator: the methods that we discuss are valid ei-
ther way, only their suitability for a given problem may be affected by the
availability of mathematical formulas.

In practice, however, it is common that the system involves parame-
ters that are either not known exactly or may change over time. In such
cases it is important to design controllers that take the parameter changes
into account. The methodology for doing so is generally known as adap-
tive control , an intricate and multifaceted subject, with many and diverse
applications, and a long history.†

We should note also that unknown problem environments are an in-
tegral part of the artificial intelligence view of RL. In particular, to quote

† The difficulties of designing adaptive controllers are often underestimated.

Among others, they complicate the balance between off-line training and on-line

play, which we discussed in Chapter 1 in connection to AlphaZero. It is worth
keeping in mind that as much as learning to play high quality chess is a great

challenge, the rules of play are stable and do not change unpredictably in the

middle of a game! Problems with changing system parameters can be far more
challenging!

Sec. 5.1 Systems with Unknown Parameters - Robust and PID Control 103

from the book by Sutton and Barto [SuB18], “learning from interaction
with the environment is a foundational idea underlying nearly all theories
of learning and intelligence.” The idea of interaction with the environment
is typically connected with the idea of exploring the environment to iden-
tify its characteristics. In control theory this is often viewed as part of
the system identification methodology, which aims to construct mathemat-
ical models of dynamic systems by using data. The system identification
process is often combined with the control process to deal with unknown
or changing problem parameters. This is one of the most challenging ar-
eas of stochastic optimal and suboptimal control, and has been studied
extensively since the early 1960s.

Robust and PID Control

Given a controller design that has been obtained assuming a nominal DP
problem model, one possibility is to simply ignore changes in problem pa-
rameters. We may then try to design a controller that is adequate for the
entire range of the changing parameters. This is sometimes called a robust
controller . A robust controller makes no effort to keep track of changing
problem parameters. It is just designed so that it is resilient to parameter
changes, and in practice, it often tends to be biased towards addressing the
worst case.

An important and time-honored robust control approach for continu-
ous-state problems is the PID (Proportional-Integral-Derivative) controller ;
see e.g., the books by Aström and Hagglund [AsH95], [AsH06]. In particu-
lar, PID control aims to maintain the output of a single-input single-output
dynamic system around a set point or to follow a given trajectory, as the
system parameters change within a relatively broad range. In its sim-
plest form, the PID controller is parametrized by three scalar parameters,
which may be determined by a variety of methods, some of them man-
ual/heuristic. PID control is used widely and with success, although its
range of application is mainly restricted to relatively simple, single-input
and single-output continuous-state control systems.

Combined System Identification and Control

In robust control schemes, such as PID control, no attempt is made to main-
tain a mathematical model and to track unknown model parameters as they
change. Alternatively we may introduce into the controller a mechanism
for measuring or estimating the unknown or changing system parameters,
and make suitable control adaptations in response.†

† In the adaptive control literature, schemes that involve parameter estima-

tion are sometimes called indirect , while schemes that do not involve parameter
estimation (like PID control) are called direct . To quote from the book by Aström

104 Adaptive and Model Predictive Control Chap. 5

k Controller

) System Data Control Parameter Estimation

System Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation
System State Data Control Parameter Estimation

Adaptive

Figure 5.1.1 Schematic illustration of concurrent parameter estimation and sys-
tem control. The system parameters are estimated on-line and the estimates are
passed on to the controller whenever this is desirable (e.g., after the estimates
change substantially). This structure is also known as indirect adaptive control.

Let us note here that updating problem parameters need not require
an elaborate algorithm. In many cases the set of problem parameters may
take a known finite set of values (for example each set of parameter values
may correspond to a distinct maneuver of a vehicle, motion of a robotic
arm, flying regime of an aircraft, etc). Once the control scheme detects
a change in problem parameters, it can incorporate the change into the
approximation in value space scheme, and in the case of policy rollout, it
may switch to a corresponding predesigned base policy.

In what follows in this chapter (including our discussion of MPC in
Section 5.3), we will assume that there is a mechanism to learn (perhaps
imperfectly and by some unspecified procedure) the model of the system
as it evolves over time. We will loosely refer to this learning process with
the classical name system identification, but we will not go into specific
identification methods, keeping in mind that such methods could be im-
precise and challenging, but could also be fast and simple, depending on
the problem at hand.

An apparently reasonable scheme is to separate the control process
into two phases, a system identification phase and a control phase. In
the first phase the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The final parameter

and Wittenmark [AsW08], “indirect methods are those in which the estimated
parameters are used to calculate required controller parameters” (see Fig. 5.1.1).

The methods subsequently described in this section, and the rollout-based adap-

tive control methods discussed in the next section should be viewed as indirect.

Sec. 5.2 Approximation in Value Space, Rollout, and Adaptive Control 105

estimates from the first phase are then used to implement an optimal or
suboptimal policy in the second phase.

This alternation of estimation and control phases may be repeated
several times during the system’s operation in order to take into account
subsequent changes of the parameters. Note that it is not necessary to in-
troduce a hard separation between the identification and the control phases.
They may be going on simultaneously, with new parameter estimates be-
ing generated in the background, and introduced into the control process,
whenever this is thought to be desirable; see Fig. 5.1.1.

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the control process may make some of
the unknown parameters invisible to the estimation process. This is known
as the problem of parameter identifiability , which is discussed in the context
of adaptive control in several sources. On-line parameter estimation algo-
rithms, which address among others the issue of identifiability, have been
discussed extensively in the control theory literature, but the correspond-
ing methodology is complex and beyond our scope in this book. However,
assuming that we can make the estimation phase work somehow, we are
free to reoptimize the controller using the newly estimated parameters, in
a form of on-line replanning process.

Unfortunately, there is still another difficulty with this type of on-
line replanning: it may be hard to recompute an optimal or near-optimal
policy on-line, using a newly identified system model. In particular, it may
be impossible to use time-consuming and/or data-intensive methods that
involve for example the training of a neural network, or discrete/integer
control constraints. A simpler possibility is to use rollout, which we discuss
in the next section.

5.2 APPROXIMATION IN VALUE SPACE, ROLLOUT, AND
ADAPTIVE CONTROL

We will now consider an approach for dealing with unknown or changing
parameters, which is based on rollout and on-line replanning. We have
already noted this approach in Chapter 1, where we stressed the importance
of fast on-line policy improvement.

Let us assume that some problem parameters change over time, while
the controller estimates the changes on-line, perhaps after a suitable delay
for data collection. The method by which the problem parameters are re-
calculated or become known is immaterial for the purposes of the following
discussion. It may involve a limited form of parameter estimation, whereby
the unknown parameters are “tracked” by data collection over a few time
stages, with due attention paid to issues of parameter identifiability; or it
may involve new features of the control environment, such as a changing
number of servers and/or tasks in a service system.

106 Adaptive and Model Predictive Control Chap. 5

We thus assume away/ignore the detailed issues of parameter estima-
tion, and focus on revising the controller by on-line replanning based on the
newly obtained parameters. This revision may be based on any suboptimal
method, but rollout with some base policy is particularly attractive. The
base policy may be either a fixed robust controller (such as some form of
PID control) or it may be updated over time (in the background, on the
basis of some unspecified rationale), in which case the rollout policy will
be revised both in response to the changed base policy and in response to
the changing parameters.

Here the advantage of rollout is that it is simple, reliable, and rela-
tively fast. In particular, it does not require a complicated training proce-
dure, based for example on the use of neural networks or other approxima-
tion architectures, so no new policy is explicitly computed in response to the
parameter changes . Instead the available controls at the current state are
compared through a one-step or multistep minimization, with cost function
approximation provided by the base policy (cf. Fig. 5.2.1).

Another issue to consider is the stability and robustness properties
of the rollout policy. In this connection, it can be generally proved, under
mild conditions, that if the base policy is stable within a range of parameter
values, the same is true for the rollout policy ; this can also be inferred
from Fig. 3.4.3. Related ideas have a long history in the control theory
literature; see Beard [Bea95], Beard, Saridis, and Wen [BSW99], Jiang and
Jiang [JiJ17], Kalise, Kundu, Kunisch [KKK20], Pang and Jiang [PaJ21].

The principal requirement for using rollout in an adaptive control
context is that the rollout control computation should be fast enough to
be performed between stages. In this connection, we note that acceler-
ated/truncated or simplified versions of rollout, as well as parallel compu-
tation, can be used to meet this time constraint.

Generally, adaptive control by rollout and on-line replanning makes
sense in situations where the calculation of the rollout controls for a given
set of problem parameters is faster and/or more convenient than the calcu-
lation of the optimal controls for the same set of parameter values. These
problems include cases involving nonlinear systems and/or difficult (e.g.,
integer) constraints.

The following example illustrates on-line replanning with the use of
rollout in the context of the simple one-dimensional linear quadratic prob-
lem that we discussed earlier. The purpose of the example is to show an-
alytically how rollout with a base policy that is optimal for a nominal set
of problem parameters works well when the parameters change from their
nominal values. This property is not practically useful in linear quadratic
problems because when the parameter change, it is possible to calculate
the new optimal policy in closed form, but it is indicative of the perfor-
mance robustness of rollout in other contexts; for example linear quadratic
problems with constraints.

Sec. 5.2 Approximation in Value Space, Rollout, and Adaptive Control 107

Multiagent Q-factor minimization xk

Possible States
Possible States xk+1

Rollout with Base Policy
Rollout with Base Policy

Changing System, Cost, and Constraint Parameters

Changing System, Cost, and Constraint Parameters
Changing System, Cost, and Constraint Parameters

Lookahead Minimization
Lookahead Minimization

Figure 5.2.1 Schematic illustration of adaptive control by on-line replanning
based on rollout. One-step lookahead minimization is followed by simulation with
the base policy, which stays fixed. The system, cost, and constraint parameters
are changing over time, and the most recent estimates of their values are incorpo-
rated into the lookahead minimization and rollout operations. Truncated rollout
with multistep lookahead minimization and terminal cost approximation is also
possible. The base policy may also be revised based on various criteria. For the
discussion of this section, we may assume that all the changing parameter infor-
mation is provided by some computation and sensor “cloud” that is beyond our
control.

Example 5.2.1 (On-Line Replanning for Linear Quadratic
Problems Based on Rollout)

Consider a deterministic undiscounted infinite horizon linear quadratic prob-
lem involving the linear system

xk+1 = xk + buk,

and the quadratic cost function

lim
N→∞

N−1
∑

k=0

(x2
k
+ ru2

k
).

This is the one-dimensional problem of the preceding section for the special
case where a = 1 and q = 1. The optimal cost function is given by

J∗(x) = K∗x2,

108 Adaptive and Model Predictive Control Chap. 5

where K∗ is the unique positive solution of the Riccati equation

K =
rK

r + b2K
+ 1. (5.1)

The optimal policy has the form

µ∗(x) = L∗x, (5.2)

where

L∗ = −
bK∗

r + b2K∗
. (5.3)

As an example, consider the optimal policy that corresponds to the
nominal problem parameters b = 2 and r = 0.5: this is the policy (5.2)-(5.3),
with K computed as the positive solution of the quadratic Riccati Eq. (5.1)
for b = 2 and r = 0.5 . For these nominal parameter values, we have

K∗ =
2 +

√
6

4
≈ 1.11.

From Eq. (5.3) we then also obtain

L∗ = −
2 +

√
6

5 + 2
√
6
. (5.4)

We will now consider changes of the values of b and r while keeping L constant
to the preceding value, and we will compare the quadratic cost coefficients of
the following three cost functions as b and r vary:

(a) The optimal cost function K∗x2, where K∗ is given by the positive
solution of the Riccati Eq. (5.1).

(b) The cost function KLx
2 that corresponds to the base policy

µL(x) = Lx,

where L is given by Eq. (5.4). Here, we have (cf. Section 4.1)

KL =
1 + rL2

1− (1 + bL)2
. (5.5)

(c) The cost function K̃Lx
2 that corresponds to the rollout policy

µ̃L(x) = L̃x,

obtained by using the policy µL as base policy. Using the formulas
derived earlier, we have [cf. Eq. (5.5)]

L̃ = −
bKL

r + b2KL

,

Sec. 5.3 Approximation in Value Space - Model Predictive Control 109

and (cf. Section 4.1)

K̃L =
1 + rL̃2

1− (1 + bL̃)2
.

Figure 5.2.2 shows the coefficients K∗, KL, and K̃L for a range of values
of r and b. We have

K∗ ≤ K̃L ≤ KL.

The difference KL −K∗ is indicative of the robustness of the policy µL, i.e.,
the performance loss incurred by ignoring the changes in the values of b and
r, and continuing to use the policy µL, which is optimal for the nominal
values b = 2 and r = 0.5, but suboptimal for other values of b and r. The
difference K̃L − K∗ is indicative of the performance loss due to using on-
line replanning by rollout rather than using optimal replanning. Finally, the
difference KL − K̃L is indicative of the performance improvement due to on-
line replanning using rollout rather than keeping the policy µL unchanged.

Note that Fig. 5.2.2 illustrates the behavior of the error ratio

J̃ − J∗

J − J∗
,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This ratio approaches 0
as J − J∗ becomes smaller because of the superlinear/quadratic convergence
rate of Newton’s method that underlies the rollout algorithm.

5.3 APPROXIMATION IN VALUE SPACE, ROLLOUT, AND
MODEL PREDICTIVE CONTROL

In this section, we briefly discuss the MPC methodology, with a view to-
wards its connection with approximation in value space and the rollout
algorithm. We will focus on the undiscounted infinite horizon determinis-
tic problem, which involves the system

xk+1 = f(xk, uk),

whose state xk and control uk are finite-dimensional vectors. The cost per
stage is assumed nonnegative

g(xk, uk) ≥ 0, for all (xk, uk),

(e.g., a positive definite quadratic cost). There are control constraints uk ∈
U(xk), and to simplify the following discussion, we will initially consider
no state constraints. We assume that the system can be kept at the origin
at zero cost, i.e.,

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ U(0).

110 Adaptive and Model Predictive Control Chap. 5

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fixed Base Policy Adaptive
Fixed Base Policy Adaptive

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization
Adaptive Reoptimization

With the Newton Step Adaptive Rollout

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

Fixed Base Policy Adaptive
Fixed Base Policy Adaptive

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization
Adaptive Reoptimization

With the Newton Step Adaptive Rollout

Figure 5.2.2 Illustration of control by rollout under changing problem pa-
rameters. The quadratic cost coefficients K∗ (optimal, denoted by solid line),
KL (base policy, denoted by circles), and K̃L (rollout policy, denoted by as-
terisks) are shown for the two cases where r = 0.5 and b varies, and b = 2
and r varies. The value of L is fixed at the value that is optimal for b = 2
and r = 0.5 [cf. Eq. (5.4)]. The rollout policy performance is very close to
optimal, even when the base policy is far from optimal.

Note that, as the figure illustrates, we have

lim
J→J

∗

J̃ − J∗

J − J∗
= 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This is a consequence of
the superlinear/quadratic convergence rate of Newton’s method that underlies
rollout, and guarantees that the rollout performance approaches the optimal
much faster than the base policy performance does.

For a given initial state x0, we want to obtain a sequence {u0, u1, . . .} that
satisfies the control constraints, while minimizing the total cost.

Sec. 5.3 Approximation in Value Space - Model Predictive Control 111

uk x

k xk+1

-Factors Current State x

Current State xk

Next Cities Next States

Sample Q-Factors Simulation Control 1 Control 2 Control 3

,n Stage k k Stages
Stages k+1, . . . , k+!−1

Sample Q-Factors Simulation Control 1 State
Sample Q-Factors Simulation Control 1 State xk+! = 0

1)-Stages Base Heuristic Minimization
k (!− 1)-Stages Base Heuristic Minimization

Figure 5.3.1 Illustration of the problem solved by a classical form of MPC at
state xk. We minimize the cost function over the next ! stages while imposing
the requirement that xk+! = 0. We then apply the first control of the optimizing
sequence. In the context of rollout, the minimization over uk is the one-step
lookahead, while the minimization over uk+1, . . . , uk+!−1 that drives xk+! to 0
is the base heuristic.

This is a classical problem in control system design, known as the
regulation problem, where the aim is to keep the state of the system near the
origin (or more generally some desired set point), in the face of disturbances
and/or parameter changes. In an important variant of the problem, there
are additional state constraints of the form xk ∈ X , and there arises the
issue of maintaining the state within X , not just at the present time but
also in future times. We will address this issue later in this section.

The Classical Form of MPC - View as a Rollout Algorithm

We will first focus on a classical form of the MPC algorithm, proposed in
the form given here by Keerthi and Gilbert [KeG88]. In this algorithm,
at each encountered state xk, we apply a control ũk that is computed as
follows; see Fig. 5.3.1:

(a) We solve an !-stage optimal control problem involving the same cost
function and the requirement that the state after ! steps is driven to
0, i.e., xk+! = 0. This is the problem

min
ut, t=k,...,k+!−1

k+!−1
∑

t=k

g(xt, ut), (5.6)

subject to the system equation constraints

xt+1 = f(xt, ut), t = k, . . . , k + !− 1, (5.7)

112 Adaptive and Model Predictive Control Chap. 5

the control constraints

ut ∈ U(xt), t = k, . . . , k + !− 1, (5.8)

and the terminal state constraint

xk+! = 0. (5.9)

Here ! is an integer with ! > 1, which is chosen in some largely
empirical way.

(b) If {ũk, . . . , ũk+!−1} is the optimal control sequence of this problem,
we apply ũk and we discard the other controls ũk+1, . . . , ũk+!−1.

(c) At the next stage, we repeat this process, once the next state xk+1 is
revealed.

To make the connection of the preceding MPC algorithm with rollout,
we note that the one-step lookahead function J̃ implicitly used by MPC [cf.
Eq. (5.6)] is the cost function of a certain stable base policy. This is the
policy that drives to 0 the state after !− 1 stages (not ! stages) and keeps
the state at 0 thereafter, while observing the state and control constraints,
and minimizing the associated (!−1)-stages cost. This rollout view of MPC
was first discussed in the author’s paper [Ber05]. It is useful for making
a connection with the approximate DP/RL, rollout, and its interpretation
in terms of Newton’s method. In particular, an important consequence is
that the MPC policy is stable, since rollout with a stable base policy yields
a stable policy, as we have discussed in Section 3.2.

We may also equivalently view the preceding MPC algorithm as roll-
out with !̄-step lookahead, where 1 < !̄ < !, with the base policy that drives
to 0 the state after ! − !̄ stages and keeps the state at 0 thereafter. This
suggests variations of MPC that involve truncated rollout with terminal
cost function approximation, which we will discuss shortly.

Note also that when faced with changing problem parameters, it is
natural to consider on-line replanning as per our earlier discussion. In
particular, once new estimates of system and/or cost function parameters
become available, MPC can adapt accordingly by introducing the new pa-
rameter estimates into the !-stage optimization problem in (a) above.

5.4 TERMINAL COST APPROXIMATION - STABILITY ISSUES

In a common variant of MPC, the requirement of driving the system state to
0 in ! steps in the !-stage MPC problem (5.6), is replaced by a nonnegative
terminal cost G(xk+!). Thus at state xk, we solve the problem

min
ut, t=k,...,k+!−1

[

G(xk+!) +
k+!−1
∑

t=k

g(xt, ut)

]

, (5.10)

Sec. 5.4 Terminal Cost Approximation - Stability Issues 113

instead of problem (5.6) where we require that xk+! = 0. This variant can
be viewed as rollout with one-step lookahead, and a base policy, which at
state xk+1 applies the first control ũk+1 of the sequence {ũk+1, . . . , ũk+!−1}
that minimizes

G(xk+!) +
k+!−1
∑

t=k+1

g(xt, ut).

It can also be viewed outside the context of rollout, as approximation in
value space with !-step lookahead minimization and terminal cost approx-
imation given by G. Thus the preceding MPC controller may have cost
function that is much closer to J* than G is. This is due to the su-
perlinear/quadratic convergence rate of Newton’s method that underlies
approximation in value space, as we have discussed in Chapter 3.

An important question is to choose the terminal cost approximation so
that the resulting MPC controller is stable. Our discussion of Section 3.3 on
the region of stability of approximation in value space schemes applies here.
In particular, under the nonnegative cost assumption of this section, the
MPC controller will be stable if TG ≤ G (using the abstract DP notation
introduced in Chapter 3), or equivalently

(TG)(x) = min
u∈U(x)

{

g(x, u) +G
(

f(x, u)
)

}

≤ G(x), for all x, (5.11)

as noted in Section 3.2. This condition is sufficient for stability of the
MPC controller, but it is not necessary. Figure 5.4.1 provides a graphical
illustration. It shows that the condition TG ≤ G implies that J* ≤ T !G ≤
T !−1G for all ! ≥ 1 (the books [Ber12] and [Ber18a] provide mathematical
proofs of this fact). This in turn implies that T !G lies within the region of
the stability for all ! ≥ 0.

We also expect that as the length ! of the lookahead minimization
is increased, the stability properties of the MPC controller are improved.
In particular, given G ≥ 0, the resulting MPC controller is likely to be
stable for ! sufficiently large, since T !G ordinarily converges to J*, which
lies within the region of stability. Results of this type are known within
the MPC framework under various conditions (see the papers by Mayne
at al. [MRR00], Magni et al. [MDM01], the MPC book [RMD17], and
the author’s book [Ber20a], Section 3.1.2). Our discussion of stability in
Sections 4.4 and 4.6 is also relevant within this context.

In another variant of MPC, in addition to the terminal cost func-
tion approximation G, we use truncated rollout, which involves running
some stable base policy µ for a number of steps m; see Fig. 5.4.2. This
is quite similar to standard truncated rollout, except that the computa-
tional solution of the lookahead minimization problem (5.10) may become
complicated when the control space is infinite. As discussed in Section 3.3,
increasing the length of the truncated rollout enlarges the region of stability
of the MPC controller . The reason is that by increasing the length of the

114 Adaptive and Model Predictive Control Chap. 5

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Optimal cost Cost of rollout policy ˜

1 J J

also Newton Step

TJ GJ̃ Jµ̃

Defined by MPC Policy µ̃

Cost of Truncated Rollout Policy ˜

Yields Truncated Rollout Policy ˜ Defined by
Defined by MPC Policy µ̃

) Tµ̃T !−1G = T !G

J̃ ! = 3

Instability Region Stability Region 0

J̃ Region where TG ≤ G

1 T !−1G

Slope = 1

Figure 5.4.1 Illustration of the condition TG ≤ G or equivalently

(TG)(x) = min
u∈U(x)

{

g(x, u) +G
(

f(x, u)
)

}

≤ G(x), for all x.

When satisfied by the terminal cost function approximation G, it guarantees the
stability of the MPC policy µ̃ with !-step lookahead minimization, defined by

Tµ̃T
!−1

G = T
!
G,

where for a generic policy µ, Tµ is defined (using the abstract DP notation of
Chapter 3) by

(TµJ)(x) = g
(

x, µ(x)
)

+ J

(

f
(

x, µ(x)
)

)

, for all x.

In this figure, ! = 3.

truncated rollout, we push the start of the Newton step towards of the cost
function Jµ of the stable policy, which lies within the region of stability
since TJµ ≤ TµJµ = Jµ; see also the discussion on linear quadratic prob-
lems in Section 4.7. The base policy may also be used to address state
constraints; see the papers by Rosolia and Borelli [RoB17], [RoB19], and
the discussion in the author’s RL book [Ber20a].

Sec. 5.4 Terminal Cost Approximation - Stability Issues 115

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Cost-to-go approximation Expected value approximation TµJ

Optimal cost Cost of rollout policy ˜

Yields Truncated Rollout Policy ˜ Defined by

1 J J

also Newton Step

Tµ̃T !−1(Tm
µ G) = T !(Tm

µ G) Yields Truncated Rollout Policy ˜
fined by

TJ G

Defined by MPC Policy µ̃

J̃ Jµ̃

Defined by MPC Policy µ̃

Cost of Truncated Rollout Policy ˜

! = 2, m = 4

) Tm
µ G

Base Policy

Terminal Cost Approximation

Terminal Cost Approximation
Terminal Cost Approximation G

m-Step Truncated Rollout with Stable Policy

-Step Truncated Rollout with Stable Policy
-Step Truncated Rollout with Stable Policy µ

!-Step Lookahead Minimization

-Step Lookahead Minimization
-Step Lookahead Minimization

µ x

G T !() Tm
µ G

Instability Region Stability Region 0

T !−1(Tm
µ G)

Slope = 1

Figure 5.4.2 An MPC scheme with !-step lookahead minimization, m-step trun-
cated rollout with a stable base policy µ, and a terminal cost function approxi-
mation G, together with its interpretation as a Newton step. In this figure, ! = 2
and m = 4. As m increases, Tm

µ
G moves closer to Jµ, which lies within the region

of stability.

A Rollout Variant of MPC with Multiple Terminal States and
Base Policies

In another variation of MPC, proposed in the paper by Li et al. [LJM21],
instead of driving the state to 0 at the end of ! steps, we consider multiple
terminal system states at the end of the !-step horizon, as well as the use
of multiple base policies for rollout. In particular, in this scheme we have
a finite set of states X and a finite set of stable base policies M, and we
assume that we have computed off-line the cost function values Jµ(x) for
all x ∈ X and µ ∈ M. At state xk, to compute the MPC control ũk, we
solve for each x ∈ X a problem that is the same as the problem (5.6)-(5.9),
which is solved by the classical form of MPC, except that the terminal state
xk+! is equal to x instead of xk+! = 0. This is the problem

min
ut, t=k,...,k+!−1

k+!−1
∑

t=k

g(xt, ut), (5.12)

116 Adaptive and Model Predictive Control Chap. 5

subject to the system equation constraints

xt+1 = f(xt, ut), t = k, . . . , k + !− 1, (5.13)

the control constraints

ut ∈ U(xt), t = k, . . . , k + !− 1, (5.14)

and the terminal state constraint

xk+! = x. (5.15)

Let V (xk;x) be the optimal value of this problem. Having computed
V (xk;x) for all x ∈ X , we compare all values

V (xk;x) + Jµ(x), x ∈ X , µ ∈ M,

and find the pair (x, µ) that yields the minimal value of V (xk;x) + Jµ(x).
We then define the MPC control ũk to be the control uk that attains the
minimum in the corresponding problem (5.12)-(5.15) with x = x.

Thus, in this variant of MPC we solve multiple problems of the type
that is solved in the classical form of MPC, for multiple values of the
terminal state xk+!, and we then compute the MPC control based on the
“best” terminal state x ∈ X , assuming that the “best” base policy µ will be
used after state k+!. It is possible to show, under appropriate conditions,†
that the cost function Jµ̃ of the MPC policy µ̃, which applies µ̃(xk) = ũk

as described above, has the cost improvement property

Jµ̃(x) ≤ Jµ(x), for all x ∈ X , µ ∈ M; (5.16)

see [LJM21]. Moreover, based on this property and the assumption that
the base policies µ ∈ M are stable, it follows that the MPC policy µ̃ thus
obtained is also stable.

The preceding variation can also be used for systems with arbitrary
state and control spaces, continuous as well as discrete. It is also well-suited
for addressing state constraints, provided the base policies are designed to
satisfy these constraints. In this case, the state constraints are included in
the constraints of the !-step problems (5.12)-(5.15). We refer to the paper
[LJM21], which provides supporting analysis, extensions to the case where
X is an infinite set, as well as computational results involving several types
of problems, with both discrete and continuous state and control spaces.

We mention that the idea of using multiple base policies to evaluate
the available controls at a given state, and selecting the control that yields
the least cost, has been known since the original proposal of the paper
[BTW97]. The main result for such schemes is a cost improvement property,
whereby the rollout policy outperforms simultaneously all the base policies;
cf. Eq. (5.16). This property is also discussed in Sections 6.3 and 6.4, as
well as the books [Ber17a], [Ber19a], [Ber20a].

† These conditions include that for every x ∈ X , we have f
(

x, µ(x)
)

∈ X for

some µ ∈ X , which plays the same role as the assumption that the origin is cost
free and absorbing in the classical form of MPC.

Sec. 5.4 Terminal Cost Approximation - Stability Issues 117

Stochastic MPC by Certainty Equivalence

Let us mention that while in this section we have focused on determin-
istic problems, there are variants of MPC, which include the treatment
of uncertainty. The books and papers cited earlier contain several ideas
along these lines; see for example the books by Kouvaritakis and Cannon
[KoC16], Rawlings, Mayne, and Diehl [RMD17], and the survey by Mesbah
[Mes16].

In this connection it is also worth mentioning the certainty equiva-
lence approach that we discussed briefly in Section 3.2. As noted in that
section, upon reaching state xk we may perform the MPC calculations
after replacing the uncertain quantities wk+1, wk+2, . . . with deterministic
quantities wk+1, wk+2, . . ., while allowing for the stochastic character of
the disturbance wk of just the current stage k. This MPC calculation is
not much more di�cult that the one for deterministic problems, while still
implementing a Newton step for solving the associated Bellman equation;
see the discussion of Section 3.2, and also Section 2.5.3 of the RL book
[Ber19a].

State Constraints, Target Tubes, and O↵-Line Training

Our discussion so far has skirted a major issue in MPC, which is that there
may be additional state constraints of the form xk 2 X, for all k, where X
is some subset of the true state space. Indeed much of the original work on
MPC was motivated by control problems with state constraints, imposed
by the physics of the problem, which could not be handled e↵ectively with
the nice unconstrained framework of the linear quadratic problem that we
have discussed in Chapter 4.

The treatment of state constraints is connected to the theory of reach-
ability of target tubes, first formulated and studied by the author in his
Ph.D. thesis [Ber71], and subsequent papers [BeR71], [Ber72]; see the books
[Ber17a], [Ber19a], [Ber20a] for a discussion that is consistent with the view-
point of this section. A target tube is a subset X̃ of the state constraint
set X, within which the state can be kept indefinitely with feasible control
choices, assuming that the initial state belongs to X̃. In other words, the
problem (5.10) may not be feasible for every xk 2 X, once the constraint
xt 2 X for all t = k + 1, k + 2, . . ., is added in problem (5.10). However, a
suitable target tube is one specified by a subset X̃ ⇢ X such that the prob-
lem (5.10) is feasible under the constraint xt 2 X̃ for all t = k+1, k+2, . . .,
provided xk 2 X̃.

There are several ways to compute sets X̃ with this property, for
which we refer to the aforementioned author’s work and the MPC literature;
see e.g., the book by Rawlings, Mayne, and Diehl [RMD17], and the survey
by Mayne [May14]. The important point here is that the computation of a
target tube must be done o↵-line with one of several available algorithmic

118 Adaptive and Model Predictive Control Chap. 5

approaches, so it becomes part of the off-line training (in addition to the
terminal cost function G).

Given an off-line training process, which provides a target tube con-
straint xk ∈ X̃ for all k, a terminal cost function G, and possibly one or
more base policies for truncated rollout, MPC becomes an on-line play al-
gorithm for which our earlier discussion applies. Note, however, that in an
indirect adaptive control context, where a model is estimated on-line as it
is changing, it may be difficult to recompute on-line a target tube that can
be used to enforce the state constraints of the problem, particularly if the
states constraints change themselves as part of the changing problem data.
This is a problem-dependent issue that deserves further attention.

5.5 NOTES AND SOURCES

The literature for PID control is extensive and includes the books by
Aström and Hagglund [AsH95], [AsH06]. For detailed accounts of adap-
tive control, we refer to the books by Aström and Wittenmark [AsW08],
Bodson [Bod20], Goodwin and Sin [GoS84], Ioannou and Sun [IoS96], Jiang
and Jiang [JiJ17], Krstic, Kanellakopoulos, and Kokotovic [KKK95], Koko-
tovic [Kok91], Kumar and Varaiya [KuV86], Liu, et al. [LWW17], Lavretsky
and Wise [LaW13], Narendra and Annaswamy [NaA12], Sastry and Bod-
son [SaB11], Slotine and Li [SlL91], and Vrabie, Vamvoudakis, and Lewis
[VVL13].

The literature on MPC is voluminous, and has grown over time to
include problem and algorithm variations and extensions. For detailed ac-
counts, we refer to the textbooks by Maciejowski [Mac02], Goodwin, Seron,
and De Dona [GSD06], Camacho and Bordons [CaB07], Kouvaritakis and
Cannon [KoC16], Borrelli, Bemporad, and Morari [BBM17], and Rawlings,
Mayne, and Diehl [RMD17].

Deterministic optimal control with infinite state and control spaces
can exhibit unusual/pathological behavior. For the case of nonnegative cost
per stage, an analysis of the exact value and policy iteration algorithms,
including convergence issues and counterexamples, is given in the author’s
paper [Ber17b] and abstract DP book [Ber22a]. The case of nonpositive
cost per stage has been addressed in classical analyses, beginning with the
work of Blackwell [Bla65]; see also [Str66], [BeS78], [YuB15].

6

Finite Horizon Deterministic

Problems - Discrete Optimization

Contents

6.1. Deterministic Discrete Spaces Finite Horizon Problems p. 120
6.2. General Discrete Optimization Problems p. 125
6.3. Approximation in Value Space p. 128
6.4. Rollout Algorithms for Discrete Optimization p. 132
6.5. Rollout and Approximation in Value Space with Multistep . .

Lookahead . p. 149
6.6. Constrained Forms of Rollout Algorithms p. 158
6.7. Adaptive Control by Rollout with a POMDP Formulation p. 173
6.8. Rollout for Minimax Control p. 181
6.9. Small Stage Costs and Long Horizon - Continuous-Time . . .

Rollout . p. 190
6.10. Epilogue . p. 197

119

120 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

In this chapter, we discuss finite horizon deterministic problems, focusing
primarily on the case where the state and control spaces are finite. After
we introduce these problems, we will argue that they can be transformed
to infinite horizon SSP problems, through the use of an artificial cost-free
termination state that the system moves into at the end of the horizon.
Once the problem is transformed to an infinite horizon SSP problem, the
ideas of approximation in value space, off-line training, on-line play, and
Newton’s method, which we have developed earlier, become applicable.
Moreover the ideas of MPC and adaptive control are easily adapted within
the finite horizon discrete optimization framework.

An interesting aspect of our methodology for discrete deterministic
problems is that it admits extensions that we have not discussed so far.
The extensions include variants that apply to constrained forms of DP,
which involve constraints on the entire system trajectory, and also allow
the use of heuristic algorithms that are more general than policies within
the context of rollout. These variants rely on the problem’s deterministic
structure, and do not extend to stochastic problems.

Another interesting aspect of discrete deterministic problems is that
they can serve as a framework for an important class of commonly en-
countered discrete optimization problems, including integer programming
and combinatorial optimization problems such as scheduling, assignment,
routing, etc. This will bring to bear the methodology of approximation
in value space, rollout, adaptive control, and MPC, and provide effective
suboptimal solution methods for these problems.

In the present chapter, we provide a brief summary of approximation
in value space and rollout algorithms, aimed to make the connection with
approximation in value space and Newton’s method for infinite horizon
problems. Additional discussion may be found in the author’s rollout and
policy iteration book [Ber20a], on which this chapter is based. Moreover,
in Section 6.7-6.9, we will discuss DP problems that have a methodological
connection to deterministic finite horizon DP, but require various algorith-
mic extensions.

6.1 DETERMINISTIC DISCRETE SPACES FINITE HORIZON
PROBLEMS

In deterministic finite horizon DP problems, the state is generated nonran-
domly over N stages, and involves a system of the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (6.1)

where k is the time index, and

xk is the state of the system, an element of some state space Xk,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk), a subset of a control space Uk, that depends on xk,

Sec. 6.1 Deterministic Discrete Spaces Finite Horizon Problems 121

......

Control uk

k Cost gk(xk, uk)
) xk k xk+1 +1 xN

Stage k k Future Stages

) x0

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Deterministic Transition

Deterministic Transition xk+1 = fk(xk, uk)

Figure 6.1.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1.

The state space Xk and control space Uk are arbitrary sets and may
depend on k. Similarly the system function fk can be arbitrary and may
depend on k. The cost incurred at time k is denoted by gk(xk, uk), and the
function gk may depend on k. For a given initial state x0, the total cost of
a control sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN) +
N−1
∑

k=0

gk(xk, uk), (6.2)

where gN(xN) is a terminal cost incurred at the end of the process. This is
a well-defined number, since the control sequence {u0, . . . , uN−1} together
with x0 determines exactly the state sequence {x1, . . . , xN} via the system
equation (6.1); see Figure 6.1.1. We want to minimize the cost (6.2) over
all sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby
obtaining the optimal value as a function of x0

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1).

Notice an important difference from the stochastic case: we optimize
over sequences of controls {u0, . . . , uN−1}, rather than over policies that
consist of a sequence of functions π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk), and satisfies the control constraints
µk(xk) ∈ Uk(xk) for all xk. It is well-known that in the presence of stochas-
tic uncertainty, policies are more effective than control sequences, and can
result in improved cost. On the other hand for deterministic problems,
minimizing over control sequences yields the same optimal cost as over
policies, since the cost of any policy starting from a given state determines
with certainty the controls applied at that state and the future states, and
hence can also be achieved by the corresponding control sequence. This

122 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

s t u

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Initial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 Stage N − 1 Stage1 Stage N
.

. . . .

.

. . . .

.

. . . .

.

. . . .

) Artificial Terminal

with Cost gN (xN)

State Space Partition Initial States

x0 0 x1

Current Position

1 x2

Current Position

2 xN−1 1 xN

x1) u1

) Cost g1(x1, u1)

xN−1

xN

0

x0

u0

uN−1

x2

) x2 = f1(x1, u1)
u

State Transition

Figure 6.1.2 Illustration of a deterministic finite-state DP problem. Nodes cor-
respond to states xk. Arcs correspond to state-control pairs (xk, uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. The
cost gk(xk, uk) is the length of this arc. An artificial terminal node t is connected
with an arc of cost gN (xN) with each state xN . The problem is equivalent to
finding a shortest path from initial nodes of stage 0 to the terminal node t.

point of view allows more general forms of rollout, which we will discuss in
this section: instead of using a policy for rollout, we will allow the use of
more general heuristics for choosing future controls.

Discrete Optimal Control - Transformation to an Infinite Horizon
Problem

We use the term discrete optimal control to refer to deterministic DP prob-
lems where the control spaces are either naturally discrete and consist of a
finite number of elements, or have been discretized for the purposes of com-
putation. Generally, whenever we assume that the control space is finite,
we will also assume implicitly a single or at most a finite number of possible
initial states, so the number of states that can be generated at each stage
is also finite. A problem of this type can be conveniently described with an
acyclic graph specifying for each state xk the possible transitions to next
states xk+1. The nodes of the graph correspond to states xk and the arcs
of the graph correspond to state-control pairs (xk, uk). Each arc with start
node xk corresponds to a choice of a single control uk ∈ Uk(xk) and has as
end node the next state fk(xk, uk). The cost of an arc (xk, uk) is defined as
gk(xk, uk); see Fig. 6.1.2. To handle the final stage, an artificial terminal
node t is added. Each state xN at stage N is connected to the terminal
node t with an arc having cost gN (xN).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the
nodes corresponding to the final stage N . If we view the cost of an arc as
its length, we see that a deterministic finite-state finite horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs. It also turns out that

Sec. 6.1 Deterministic Discrete Spaces Finite Horizon Problems 123

the reverse is true: every shortest path problem involving a graph whose
cycles have positive length can be transformed into a discrete optimal con-
trol problem. This fact is important, but will not be useful to us, so we
will not consider it further here (see the textbook [Ber17a], Chapter 2, for
a detailed discussion).

The connection of finite state and control spaces finite horizon deter-
ministic problem with a shortest path problem is important for our pur-
poses. The reason is that it provides a bridge to an SSP problem with an
infinite horizon, and by extension, to our earlier development of approxi-
mation in value space, Newton’s method, rollout, and the PI algorithm. It
is also important to recognize that this SSP problem has a few additional
special characteristics. These are:

(a) The equivalent SSP involves a deterministic system, has a finite num-
ber of states and controls, and involves an acyclic graph. The states
of the SSP are all the state-time pairs (xk, k), k = 0, 1, . . . , N , where
xk is one of the finite number of elements of Xk that are reachable
from one of the finite number of initial states x0 using a feasible se-
quence of controls. The possible transitions from states (xk, k) to
states (xk+1, k + 1) correspond to controls uk ∈ Uk(xk) such that
xk+1 = fk(xk, uk).

(b) The state space of the SSP expands as the horizon N becomes longer.
While this complicates the use of the PI algorithm, it does not mate-
rially affect the use of a rollout algorithm.

(c) The optimal cost function of the SSP is obtained from the optimal
cost functions of the finite horizon problem, which are generated by
the DP algorithm to be presented shortly. This DP algorithm can be
viewed as the Bellman equation of the SSP.

The Exact Dynamic Programming Algorithm

The DP algorithm for finite horizon deterministic problems rests on a sim-
ple idea, the principle of optimality, which suggests that the optimal cost
function can be constructed in piecemeal fashion going backwards: first
compute the optimal cost function for the “tail subproblem” involving the
last stage, then solve the “tail subproblem” involving the last two stages,
and continue in this manner until the optimal cost function for the entire
problem is constructed.

By translating into mathematical terms the principle of optimality,
we obtain the DP algorithm. It constructs functions

J*
N (xN), J*

N−1(xN−1), . . . , J*
0 (x0),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc. The value J*
k (xk) will be viewed as the optimal cost of the tail sub-

problem that starts at state xk at time k and ends at a state xN .

124 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN), for all xN , (6.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)]

, for all xk.

(6.4)

Note that at stage k, the calculation in Eq. (6.4) must be done for
all states xk before proceeding to stage k − 1. The key fact about the DP
algorithm is that for every initial state x0, the number J*

0 (x0) obtained at
the last step, is equal to the optimal cost J*(x0). Indeed, a more general
fact can be shown, namely that for all k = 0, 1, . . . , N − 1, and all states
xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (6.5)

where J(xk;uk, . . . , uN−1) is the cost generated by starting at xk and using
subsequent controls uk, . . . , uN−1:

J(xk;uk, . . . , uN−1) = gN(xN) +
N−1
∑

t=k

gt(xt, ut).

Thus, J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem

that starts at state xk and time k, and ends at time N . Based on this
interpretation of J∗

k (xk), we call it the optimal cost-to-go from state xk at
stage k, and refer to J∗

k as the optimal cost-to-go function or optimal cost
function at time k.

Once the functions J*
0 , . . . , J

*
N have been obtained, we can use a for-

ward algorithm to construct an optimal control sequence {u∗
0, . . . , u

∗
N−1}

and state trajectory {x∗
1, . . . , x

∗
N} for a given initial state x0.

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗
N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)
]

,

and
x∗
1 = f0(x0, u∗

0).

Sec. 6.2 General Discrete Optimization Problems 125

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗
k ∈ arg min

uk∈Uk(x
∗
k
)

[

gk(x∗
k, uk) + J*

k+1

(

fk(x∗
k, uk)

)
]

, (6.6)

and
x∗
k+1 = fk(x∗

k, u
∗
k).

Note an interesting conceptual division of the optimal control se-
quence construction: there is “off-line training” to obtain J*

k by precom-
putation [cf. the DP Eqs. (6.3)-(6.4)], which is followed by “on-line play”
in real-time to obtain u∗

k [cf. Eq. (6.6)]. This is analogous to the two al-
gorithmic processes described in Chapter 1 in connection with chess and
backgammon.

6.2 GENERAL DISCRETE OPTIMIZATION PROBLEMS

Discrete deterministic optimization problems, including challenging combi-
natorial problems, can be typically formulated as DP problems by breaking
down each feasible solution into a sequence of decisions/controls. This for-
mulation often leads to an intractable exact DP computation because of an
exponential explosion of the number of states as time progresses. However,
a reformulation to a discrete optimal control brings to bear approximate
DP methods, such as rollout and others, to be discussed shortly, which can
deal with the exponentially increasing size of the state space. We illustrate
the reformulation with an example and then generalize.

Example 6.2.1 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits
each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1, . . . , N . The k-city sequences correspond to
the states of the kth stage. The initial state x0 consists of some city, taken
as the start (city A in the example of Fig. 6.2.1). A k-city node/state leads
to a (k+1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k+1 cities; see Fig. 6.2.1. Each sequence of
N cities is connected to an artificial terminal node t with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus
completing the transformation to a DP problem.

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-

126 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 5 15 1 515 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 1215 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

6 13 14 24 27

6 13 14 24 27

A

B

C

D
Four Cities

Figure 6.2.1 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix
at the bottom. We form a graph whose nodes are the k-city sequences and
correspond to the states of the kth stage, assuming that A is the starting city.
The transition costs/travel times are shown next to the arcs. The optimal
costs-to-go are generated by DP starting from the terminal state and going
backwards towards the initial state, and are shown next to the nodes. There is
a unique optimal sequence here (ABDCA), and it is marked with thick lines.
The optimal sequence can be obtained by forward minimization [cf. Eq. (6.6)],
starting from the initial state x0.

ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed later.

Let us now extend the ideas of the preceding example to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

Sec. 6.2 General Discrete Optimization Problems 127

Artificial Start State End State

)
...

)
...

)
...

)
...

)
...)

...

. . . i

. . . i

. . . i

. . . i

Set of States (
Set of States (Set of States (Set of States (

Cost G(u)

s t u

Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 StageStage 1 Stage 2 Stage 3 Stage N

Initial State 15 1 5 18 4 19 9 21 25 8 12 13

(u0) (
) (u0, u1) () (u0, u1, u2)) u = (u0, . . . , uN−1)

u0

u1

u2

uN−1

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

Figure 6.2.2 Formulation of a discrete optimization problem as a DP problem
with N stages. There is a cost G(u) only at the terminal stage on the arc con-
necting an N-solution u = (u0, . . . , uN−1) upon reaching the terminal state. Note
that there is only one incoming arc at each node.

where U is a finite set of feasible solutions and G(u) is a cost function. We
assume that each solution u has N components; i.e., it has the form u =
(u0, . . . , uN−1), where N is a positive integer. We can then view the prob-
lem as a sequential decision problem, where the components u0, . . . , uN−1

are selected one-at-a-time. A k-tuple (u0, . . . , uk−1) consisting of the first
k components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon discrete optimal control problem
shown in Fig. 6.2.2. In particular, for k = 1, . . . , N , we view as the states
of the kth stage all the k-tuples (u0, . . . , uk−1). For stage k = 0, . . . , N − 1,
we view uk as the control. The initial state is an artificial state denoted s.
From this state, by applying u0, we may move to any “state” (u0), with u0

belonging to the set

U0 =
{

ũ0 | there exists a solution of the form (ũ0, ũ1, . . . , ũN−1) ∈ U
}

.
(6.7)

Thus U0 is the set of choices of u0 that are consistent with feasibility.
More generally, from a state (u0, . . . , uk−1), we may move to any state

of the form (u0, . . . , uk−1, uk), upon choosing a control uk that belongs to
the set

Uk(u0, . . . , uk−1) =
{

uk | for some uk+1, . . . , uN−1 we have

(u0, . . . , uk−1, uk, uk+1, . . . , uN−1) ∈ U
}

.
(6.8)

These are the choices of uk that are consistent with the preceding choices
u0, . . . , uk−1, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u0, . . . , uN−1), and the terminal cost is

128 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

G(u); see Fig. 6.2.2. All other transitions in this DP problem formulation
have cost 0.

Let J*
k (u0, . . . , uk−1) denote the optimal cost starting from the k-

solution (u0, . . . , uk−1), i.e., the optimal cost of the problem over solutions
whose first k components are constrained to be equal to u0, . . . , uk−1. The
DP algorithm is described by the equation

J*
k (u0, . . . , uk−1) = min

uk∈Uk(u0,...,uk−1)
J*
k+1(u0, . . . , uk−1, uk),

with the terminal condition

J*
N (u0, . . . , uN−1) = G(u0, . . . , uN−1).

This algorithm executes backwards in time: starting with the known func-
tion J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing J*
0 .

An optimal solution (u∗
0, . . . , u

∗
N−1) is then constructed by going forward

through the algorithm

u∗
k ∈ arg min

uk∈Uk(u
∗
0 ,...,u

∗
k−1

)
J*
k+1(u

∗
0, . . . , u

∗
k−1, uk), k = 0, . . . , N−1, (6.9)

where U0 is given by Eq. (6.7), and Uk is given by Eq. (6.8): first compute
u∗
0, then u∗

1, and so on up to u∗
N−1; cf. Eq. (6.6).

Of course here the number of states typically grows exponentially
with N , but we can use the DP minimization (6.9) as a starting point for
approximation methods. For example we may try to use approximation in
value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(6.9). One possibility is to use as

J̃k+1(u∗
0, . . . , u

∗
k−1, uk),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
0, . . . , u

∗
k−1, uk. This is the rollout algorithm, which turns out to be a very

simple and effective approach for approximate combinatorial optimization.
Let us finally note that while we have used a general cost function G

and constraint set U in our discrete optimization model of this section, in
many problems G and/or U may have a special (e.g., additive) structure,
which is consistent with a sequential decision making process and may be
computationally exploited. The traveling salesman Example 6.2.1 is a case
in point, where G consists of N components (the intercity travel costs),
one per stage.

6.3 APPROXIMATION IN VALUE SPACE

The forward optimal control sequence construction of Eq. (6.6) is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortunately,

Sec. 6.3 Approximation in Value Space 129

in practice this is often prohibitively time-consuming, because the number
of possible pairs (xk, k) can be very large. However, a similar forward al-
gorithmic process can be used if the optimal cost-to-go functions J*

k are
replaced by some approximations J̃k. This is the idea of approximation in
value space that we have discussed earlier in connection with infinite hori-
zon problems. It constructs a suboptimal solution {ũ0, . . . , ũN−1} in place
of the optimal {u∗

0, . . . , u
∗
N−1}, by using J̃k in place of J*

k in the DP pro-
cedure (6.6). Based on our infinite horizon analysis of Chapter 3 and the
interpretation of the deterministic finite horizon problem as an infinite hori-
zon SSP, the cost function of the corresponding one-step lookahead policy
can be viewed as the result of a Newton step for solving Bellman’s equation,
i.e., the DP algorithm (6.4), starting from the point (J̃1, J̃2, . . . , J̃N).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)
]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)]

, (6.10)

and
x̃k+1 = fk(x̃k, ũk).

Thus in approximation in value space the calculation of the subopti-
mal sequence {ũ0, . . . , ũN−1} is done by going forward (no backward calcu-
lation is needed once the approximate cost-to-go functions J̃k are available).
This is similar to the calculation of the optimal sequence {u∗

0, . . . , u
∗
N−1}

[cf. Eq. (6.6)], and is independent of how the functions J̃k are computed.
An alternative (and equivalent) form of the exact DP algorithm (6.4),

uses the optimal cost-to-go functions J*
k indirectly. In particular, it gener-

ates the optimal Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (6.11)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (6.4).

130 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

Note that the optimal cost function J*
k can be recovered from the

optimal Q-factor Q*
k by means of the minimization

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk). (6.12)

Moreover, the DP algorithm (6.4) can be written in an essentially equivalent
form that involves Q-factors only [cf. Eqs. (6.11)-(6.12)]:

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

Exact and approximate forms of this and other related algorithms, in-
cluding counterparts for stochastic optimal control problems, comprise an
important class of RL methods known as Q-learning.

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)

,

which is minimized in approximation in value space [cf. Eq. (6.10)] is known
as the (approximate)Q-factor of (xk, uk). Note that the computation of the
suboptimal control (6.10) can be done through the Q-factor minimization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

This suggests the possibility of using approximate off-line trained Q-factors
in place of cost functions in approximation in value space schemes. How-
ever, contrary to the cost approximation scheme (6.10) and its multistep
counterparts, the performance may be degraded through the errors in the
off-line training of the Q-factors (depending on how the training is done).

Multistep Lookahead

The approximation in value space algorithm (6.10) involves a one-step
lookahead minimization, since it solves a one-stage DP problem for each k.
We may also consider "-step lookahead , which involves the solution of an
"-step DP problem, where " is an integer, 1 < " < N − k, with a terminal
cost function approximation J̃k+!. This is similar to the infinite horizon
case that we discussed in Chapter 2. As we have noted in that section,
multistep lookahead typically provides better performance over one-step
lookahead in RL approximation schemes. For example in AlphaZero chess,
long multistep lookahead is critical for good on-line performance. On the
negative side, the solution of the multistep lookahead optimization prob-
lem, instead of the one-step lookahead counterpart of Eq. (6.10), becomes
more time consuming.

Sec. 6.3 Approximation in Value Space 131

Rollout

Similar to infinite horizon problems, a major issue in the value space ap-
proximation (6.10) is the construction of suitable approximate cost-to-go
functions J̃k+1. This can be done in many different ways, including some
of the principal RL methods. For example, J̃k+1 may be constructed with
a sophisticated off-line training method, as discussed in Section 1.1, in con-
nection with chess and backgammon. Forms of approximate PI method can
be applied in particular, possibly with the use of neural networks, once the
problem is viewed as an infinite horizon SSP problem. Another possibility
is the fitted value iteration method, which is described in Section 4.3 of the
book [Ber19a], and Section 4.3.1 of the book [Ber20a].

Alternatively, J̃k+1 may be obtained on-line with rollout , whereby
the approximate values J̃k+1(xk+1) are obtained when needed by running
a heuristic control scheme, called base heuristic, for a suitably large num-
ber of steps, starting from xk+1.† The base heuristic need not be a pol-
icy. It could be any method, which starting from a state xk+1 generates
a sequence controls uk+1, . . . , uN−1, the corresponding sequence of states
xk+2, . . . , xN , and the cost of the heuristic starting from xk+1, which we
will generically denote by Hk+1(xk+1) in this chapter:

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN).

This value of Hk+1(xk+1) is the one used as the approximate cost-to-
go J̃k+1(xk+1) in the corresponding approximation in value space scheme
(6.10). An important point here is that deterministic problems hold a spe-
cial attraction for rollout, as they do not require expensive on-line Monte
Carlo simulation to calculate the cost function values J̃k+1(xk+1).

There are also several variants of rollout, involving for example trun-
cation, multistep lookahead, and other possibilities. In particular, trun-
cated rollout combines the use of one-step optimization, simulation of the

† For deterministic problems we prefer to use the term “base heuristic” rather

than “base policy” for reasons to be explained later in this chapter, in the con-
text of the notion of sequential consistency (the heuristic may not qualify as a

legitimate DP policy). In particular, if the base heuristic, when started at state

xk, generates the sequence {ũk, x̃k+1, ũk+1, x̃k+2, . . . , ũN−1, x̃N}, it is not nec-
essarily true that, when started at state x̃k+1, it will generate the tail portion

that starts at ũk+1, namely {ũk+1, x̃k+2, . . . , ũN−1, x̃N}, (which would be true if
the heuristic were a legitimate policy). More generally, the method used by the

base heuristic to complete the system’s trajectory starting from some state may

be very different than the method used to complete the trajectory starting at
another state. In any case, if the base heuristic is not a legitimate policy, then

the use of Hk+1(xk+1) as terminal cost function approximation, yields a type of

approximation in value space scheme, which can still be interpreted as a Newton
step.

132 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0 0 x1) . . .

uk x

k xNk xk+1

k u
′

k

′

k
u
′′

k
x

+1
x
′′

k+1

x
′

N

x
′′

N

. . . Q-Factors

-Factors Current State x

Current State xk

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Next Cities Next States

∗
x
′

k+1

Figure 6.4.1 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base
heuristic generates a Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,

and the rollout algorithm selects the control µ̃k(xk) with minimal Q-factor.

base policy for a certain number of steps m, and then adds an approximate
cost J̃k+m+1(xk+m+1) to the cost of the simulation, which depends on the
state xk+m+1 obtained at the end of the rollout. Note that if one foregoes
the use of a base heuristic (i.e., m = 0), one recovers as a special case the
general approximation in value space scheme. Versions of truncated rollout
with multistep lookahead minimization are also possible. Other variants
of rollout include versions involving multiple heuristics, combinations with
other forms of approximation in value space methods, and multistep looka-
head, which will be described later in this chapter, starting with the next
section.

6.4 ROLLOUT ALGORITHMS FOR DISCRETE OPTIMIZATION

In this section, we will develop in more detail the theory of rollout with
one-step lookahead minimization for deterministic problems, including the
important issue of cost improvement. We will also illustrate several variants
of the method, and we will consider questions of efficient implementation.
We will then discuss examples of discrete optimization applications.

Let us consider a deterministic DP problem with a finite number
of controls and a given initial state (so the number of states that can be
reached from the initial state is also finite). We first focus on the pure form
of rollout that uses one-step lookahead and no terminal cost approximation.
Given a state xk at time k, this algorithm considers the tail subproblems
that start at every possible next state xk+1, and solves them suboptimally
by using some algorithm, referred to as base heuristic.

Sec. 6.4 Rollout Algorithms for Discrete Optimization 133

Thus when at xk, rollout generates on-line the next states xk+1 that
correspond to all uk ∈ Uk(xk), and uses the base heuristic to compute the
sequence of states {xk+1, . . . , xN} and controls {uk+1, . . . , uN−1} such that

xt+1 = ft(xt, ut), t = k, . . . , N − 1,

and the corresponding cost

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN).

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk) +Hk+1(xk+1).

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (6.13)

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

; (6.14)

see Fig. 6.4.1. The rollout algorithm thus defines a suboptimal policy
π̃ = {µ̃0, . . . , µ̃N−1}, referred to as the rollout policy, where for each xk

and k, µ̃k(xk) is the control produced by the Q-factor minimization (6.13).
Note that the rollout algorithm requires running the base heuristic

for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to N , it requires computation equal to a small multiple of N
times the computation time for a single application of the base heuristic.
Similarly, if n is bounded by a polynomial in N , the ratio of the rollout
algorithm computation time to the base heuristic computation time is a
polynomial in N .

Example 6.4.1 (Traveling Salesman Problem)

Let us consider the traveling salesman problem of Example 6.2.1, whereby a
salesman wants to find a minimum cost tour that visits each of N given cities
c = 0, . . . , N − 1 exactly once and returns to the city he started from. With
each pair of distinct cities c, c′, we associate a traversal cost g(c, c′). Note
that we assume that we can go directly from every city to every other city.
There is no loss of generality in doing so because we can assign a very high
cost g(c, c′) to any pair of cities (c, c′) that is precluded from participation in

134 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0 0 x1) . . .

uk x

k xNk xk+1

k u
′

k

′

k
u
′′

k
x

x
′

k+1

+1
x
′′

k+1

x
′

N

x
′′

N

Current State xk

Initial City Current Partial Tour Next Cities Nearest Neighbor
Initial City Current Partial Tour
Current Partial Tour

Current Partial Tour Next Cities Nearest Neighbor

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Complete Tours

µ Next Partial Tour
Next Partial Tours

Figure 6.4.2 Rollout with the nearest neighbor heuristic for the traveling
salesman problem. The initial state x0 consists of a single city. The final
state xN is a complete tour of N cities, containing each city exactly once.

the solution. The problem is to find a visit order that goes through each city
exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling sales-
man problem. For illustration purposes, let us focus on the simple nearest

neighbor heuristic, which starts with a partial tour, i.e., an ordered collec-
tion of distinct cities, and constructs a sequence of partial tours, adding to
the each partial tour a new city that does not close a cycle and minimizes
the cost of the enlargement. In particular, given a sequence {c0, c1, . . . , ck}
consisting of distinct cities, the nearest neighbor heuristic adds a city ck+1

that minimizes g(ck, ck+1) over all cities ck+1 "= c0, . . . , ck, thereby forming
the sequence {c0, c1, . . . , ck, ck+1}. Continuing in this manner, the heuristic
eventually forms a sequence of N cities, {c0, c1, . . . , cN−1}, thus yielding a
complete tour with cost

g(c0, c1) + · · ·+ g(cN−2, cN−1) + g(cN−1, c0). (6.15)

We can formulate the traveling salesman problem as a DP problem as
we discussed in Example 6.2.1. We choose a starting city, say c0, as the
initial state x0. Each state xk corresponds to a partial tour (c0, c1, . . . , ck)
consisting of distinct cities. The states xk+1, next to xk, are sequences of the
form (c0, c1, . . . , ck, ck+1) that correspond to adding one more unvisited city
ck+1 "= c0, c1, . . . , ck (thus the unvisited cities are the feasible controls at a
given partial tour/state). The terminal states xN are the complete tours of
the form (c0, c1, . . . , cN−1, c0), and the cost of the corresponding sequence of
city choices is the cost of the corresponding complete tour given by Eq. (6.15).
Note that the number of states at stage k increases exponentially with k, and
so does the computation required to solve the problem by exact DP.

Let us now use as a base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k < N − 1 it-
erations, we have a state xk, i.e., a sequence {c0, . . . , ck} consisting of dis-
tinct cities. At the next iteration, we add one more city by running the
nearest neighbor heuristic starting from each of the sequences of the form
{c0, . . . , ck, c} where c "= c0, . . . , ck. We then select as next city ck+1 the city
c that yielded the minimum cost tour under the nearest neighbor heuristic;

Sec. 6.4 Rollout Algorithms for Discrete Optimization 135

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

6 13 14 24 27

6 13 14 24 27

6 13 14 24 27 Rollout

Base Heuristic Corrected

Yields Rollout Policy µ̃ 20Yields Rollout Policy µ̃ 20

40 23

T0T1

Cost 28 Cost 27 Cost 13Cost 28 Cost 27 Cost 13

) T2

Cost 28 Cost 27 Cost 13

18

18

18

) 45 20 40 18) 45 20 40 18

) 45 20 40 18 2 6

) 45 20 40 18 2 6

) 45 20 40 18 2 6 22

Figure 6.4.3 A traveling salesman problem example of rollout with the near-
est neighbor base heuristic. At city A, the nearest neighbor heuristic generates
the tour ACDBA (labelled T0). At city A, the rollout algorithm compares the
tours ABCDA, ACDBA, and ADCBA, finds ABCDA (labelled T1) to have
the least cost, and moves to city B. At AB, the rollout algorithm compares the
tours ABCDA and ABDCA, finds ABDCA (labelled T2) to have the least cost,
and moves to city D. The rollout algorithm then moves to cities C and A (it
has no other choice). Note that the algorithm generates three tours/solutions,
T0, T1, and T2, of decreasing costs 28, 27, and 13, respectively. The first path
T0 is generated by the base heuristic starting from the initial state, while the
last tour T2 is generated by rollout. This is suggestive of a general result that
we will prove later: the rollout solution is better in terms of cost than the
base heuristic solution. In fact the tour T2 generated by rollout is optimal,
but this is just a coincidence.

see Fig. 6.4.2. The overall computation for the rollout solution is bounded
by a polynomial in N , and is much smaller than the exact DP computation.
Figure 6.4.3 provides an example where the nearest neighbor heuristic and
the corresponding rollout algorithm are compared.

Cost Improvement with Rollout - Sequential Consistency

The definition of the rollout algorithm leaves open the choice of the base

136 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

heuristic. There are several types of suboptimal solution methods that can
be used as base heuristics, such as greedy algorithms, local search, genetic
algorithms, and others.

Intuitively, we expect that the rollout policy’s performance is no worse
than the one of the base heuristic: since rollout optimizes over the first
control before applying the heuristic, it makes sense to conjecture that it
performs better than applying the heuristic without the first control opti-
mization. However, some special conditions must hold in order to guarantee
this cost improvement property. We provide two such conditions, sequen-
tial consistency and sequential improvement , introduced in the paper by
Bertsekas, Tsitsiklis, and Wu [BTW97], and we later show how to modify
the algorithm to deal with the case where these conditions are not met.

Definition 6.4.1: We say that the base heuristic is sequentially con-
sistent if it has the property that when it generates the sequence

{xk, uk, xk+1, uk+1, . . . , xN}

starting from state xk, it also generates the sequence

{xk+1, uk+1, . . . , xN}

starting from state xk+1.

In other words, the base heuristic is sequentially consistent if it “stays
the course”: when the starting state xk is moved forward to the next state
xk+1 of its state trajectory, the heuristic will not deviate from the remainder
of the trajectory.

As an example, the reader may verify that the nearest neighbor
heuristic described in the traveling salesman Example 6.4.1 is sequentially
consistent. Similar examples include the use of many types of greedy/myopic
heuristics (Section 6.4 of the book [Ber17a] provides some additional ex-
amples).† Generally most heuristics used in practice satisfy the sequential
consistency condition at “most” states xk. However, some heuristics of
interest may violate this condition at some states.

† A subtle but important point relates to how one breaks ties while imple-

menting greedy base heuristics. For sequential consistency, when multiple con-

trols are greedy at a given state, one must break the tie in a consistent way, i.e.,
by using a fixed rule at each state encountered by the base heuristic. In partic-

ular, randomization among multiple controls, which are ranked as equal by the

greedy optimization of the heuristic, violates sequential consistency, and can lead
to serious degradation of the corresponding rollout algorithm’s performance.

Sec. 6.4 Rollout Algorithms for Discrete Optimization 137

A sequentially consistent base heuristic can be recognized by the fact
that it will apply the same control uk at a state xk, no matter what position
xk occupies in a trajectory generated by the base heuristic. Thus a base
heuristic is sequentially consistent if and only if it defines a legitimate DP
policy. This is the policy that moves from xk to the state xk+1 that lies on
the state trajectory {xk, xk+1, . . . , xN} that the base heuristic generates.

We will now show that the rollout algorithm obtained with a sequen-
tially consistent base heuristic yields no worse cost than the base heuristic.

Proposition 6.4.1: (Cost Improvement Under Sequential Con-
sistency) Consider the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} obtained
with a sequentially consistent base heuristic, and let Jk,π̃(xk) denote
the cost obtained with π̃ starting from xk at time k. Then

Jk,π̃(xk) ≤ Hk(xk), for all xk and k, (6.16)

where Hk(xk) denotes the cost of the base heuristic starting from xk.

Proof: We prove this inequality by induction. Clearly it holds for k = N ,
since

JN,π̃ = HN = gN .

Assume that it holds for index k+1. For any state xk, let uk be the control
applied by the base heuristic at xk. Then we have

Jk,π̃(xk) = gk
(

xk, µ̃k(xk)
)

+ Jk+1,π̃

(

fk
(

xk, µ̃k(xk)
)
)

≤ gk
(

xk, µ̃k(xk)
)

+Hk+1

(

fk
(

xk, µ̃k(xk)
)
)

= min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk, uk)
)
]

≤ gk
(

xk, uk

)

+Hk+1

(

fk(xk, uk)
)

= Hk(xk),

(6.17)

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The third equality is the DP equation for the policy that corresponds
to the base heuristic (this is the step where we need sequential con-
sistency).

This completes the induction proof of the cost improvement property (6.16).
Q.E.D.

138 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

The cost improvement property of Prop. 6.4.1 may also be inferred
by first transforming the finite horizon problem to an infinite horizon SSP
problem, and then by using the cost improvement property of policy iter-
ation for infinite horizon problems

Sequential Improvement

We will next show that the rollout policy has no worse performance than its
base heuristic under a condition that is weaker than sequential consistency.
Let us recall that the rollout algorithm π̃ = {µ̃0, . . . , µ̃N−1} is defined by
the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk),

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,

[cf. Eq. (6.14)], and Hk+1

(

fk(xk, uk)
)

denotes the cost of the trajectory of
the base heuristic starting from state fk(xk, uk).

Definition 6.4.2: We say that the base heuristic is sequentially im-
proving if for all xk and k, we have

min
uk∈Uk(xk)

Q̃k(xk, uk) ≤ Hk(xk). (6.18)

In words, the sequential improvement property (6.18) states that

Minimal heuristic Q-factor at xk ≤ Heuristic cost at xk.

Note that when the heuristic is sequentially consistent it is also sequentially
improving. This follows from the preceding relation, since for a sequentially
consistent heuristic, the heuristic cost at xk is equal to the Q-factor of the
control uk that the heuristic applies at xk,

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,

which is greater or equal to the minimal Q-factor at xk. This implies Eq.
(6.18). We will now show that a sequentially improving heuristic yields
policy improvement.

Sec. 6.4 Rollout Algorithms for Discrete Optimization 139

Proposition 6.4.2: (Cost Improvement Under Sequential Im-
provement) Consider the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} ob-
tained with a sequentially improving base heuristic, and let Jk,π̃(xk)
denote the cost obtained with π̃ starting from xk at time k. Then

Jk,π̃(xk) ≤ Hk(xk), for all xk and k,

where Hk(xk) denotes the cost of the base heuristic starting from xk.

Proof: Follows from the calculation of Eq. (6.17), by replacing the last
two steps (which rely on sequential consistency) with Eq. (6.18). Q.E.D.

Thus the rollout algorithm obtained with a sequentially improving
base heuristic, will improve or at least will perform no worse than the base
heuristic, from every starting state xk. In fact the algorithm has a mono-
tonic improvement property, whereby it discovers a sequence of improved
trajectories . In particular, let us denote the trajectory generated by the
base heuristic starting from x0 by

T0 = (x0, u0, . . . , xN−1, uN−1, xN),

and the final trajectory generated by the rollout algorithm starting from
x0 by

TN = (x0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃N).

Consider also the intermediate trajectories generated by the rollout algo-
rithm given by

Tk = (x0, ũ0, x̃1, ũ1, . . . , x̃k, uk, . . . , xN−1, uN−1, xN), k = 1, . . . , N − 1,

where
(x̃k, uk, . . . , xN−1, uN−1, xN),

is the trajectory generated by the base heuristic starting from x̃k. Then,
by using the sequential improvement condition, it can be proved (see Fig.
6.4.4) that

Cost of T0 ≥ · · · ≥ Cost of Tk ≥ Cost of Tk+1 ≥ · · · ≥ Cost of TN . (6.19)

Empirically, it has been observed that the cost improvement obtained
by rollout with a sequentially improving heuristic is typically considerable
and often dramatic. In particular, many case studies, dating to the mid-
dle 1990s, indicate consistently good performance of rollout; see the book
[Ber20a] for a bibliography. The DP textbook [Ber17a] provides some de-
tailed worked-out examples (Chapter 6, Examples 6.4.2, 6.4.5, 6.4.6, and

140 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

) . . .

) . . .

) . . .

x0 x̃1 1 x̃2 2 x̃k−1 1 x̃k

1 uk

k xk+1

ũ0 0 ũ1 1 ũk−1

r ũk

k x̃k+1

x0

Base Heuristic Cost Hk(x̃k) Base Heuristic Cost

) Base Heuristic Cost Hk+1(x̃k+1)

Monotonicity Property Under Sequential Improvement
Monotonicity Property Under Sequential Improvement

Cost of Tk ≥ Cost of Tk+1

Trajectory Tk

Trajectory Tk+1Optimal Base Rollout Terminal Score Approximation Current

Figure 6.4.4 Proof of the monotonicity property (6.19). At x̃k, the kth state
generated by the rollout algorithm, we compare the “current” trajectory Tk whose
cost is the sum of the cost of the current partial trajectory (x0, ũ0, x̃1, ũ1, . . . , x̃k)
and the cost Hk(x̃k) of the base heuristic starting from x̃k, and the trajec-
tory Tk+1 whose cost is the sum of the cost of the partial rollout trajectory
(x0, ũ0, x̃1, ũ1, . . . , x̃k), and the Q-factor Q̃k(x̃k, ũk) of the base heuristic starting
from (x̃k , ũk). The sequential improvement condition guarantees that

Hk(x̃k) ≥ Q̃k(x̃k, ũk),

which implies that
Cost of Tk ≥ Cost of Tk+1.

If strict inequality holds, the rollout algorithm will switch from Tk and follow
Tk+1; cf. the traveling salesman example of Fig. 6.4.3.

Exercises 6.11, 6.14, 6.15, 6.16). The price for the performance improve-
ment is extra computation that is typically equal to the computation time
of the base heuristic times a factor that is a low order polynomial of N .
It is generally hard to quantify the amount of performance improvement,
but the computational results obtained from the case studies are consistent
with the Newton step interpretations that we discussed in Chapter 3.

The books [Ber19a] (Section 2.5.1) and [Ber20a] (Section 3.1) show
that the sequential improvement condition is satisfied in the context of
MPC, and is the underlying reason for the stability properties of the MPC
scheme. On the other hand the base heuristic underlying the classical form
of the MPC scheme (cf. Section 5.3) is not sequentially consistent.

Generally, the sequential improvement condition may not hold for a
given base heuristic. This is not surprising since any heuristic (no matter
how inconsistent or silly) is in principle admissible to use as base heuristic.
Here is an example:

Example 6.4.2 (Sequential Improvement Violation)

Consider the 2-stage problem shown in Fig. 6.4.5, which involves two states
at each of stages 1 and 2, and the controls shown. Suppose that the unique

Sec. 6.4 Rollout Algorithms for Discrete Optimization 141

x0
∗

0
x
∗

1
∗

1
x
∗

2

0 u
∗

0
∗

1
u
∗

1

∗

3
ũ1

ũ0

x̃1 x̃2

Rollout Choice

Rollout Choice

u1

Optimal Trajectory Chosen by Base Heuristic at
Optimal Trajectory Chosen by Base Heuristic at x0

High Cost Transition Chosen by Heuristic at
High Cost Transition Chosen by Heuristic at x∗

1
∗ Violates Sequential Improvement 2.4.3, 2.4.4 2.4.2 3.3,

Violates Sequential Improvement 2.4.3, 2.4.4 2.4.2 3.3,

Figure 6.4.5 A 2-stage problem with states x∗
1, x̃1 at stage 1, and states

x∗
2, x̃2 at stage 2. The controls and corresponding transitions are as shown

in the figure. The rollout choice at the initial state x0 is strictly suboptimal,
while the base heuristic choice is optimal. The reason is that the base heuristic
is not sequentially improving and makes the suboptimal choice u1 at x∗

1, but
makes the different (optimal) choice u∗

1 when run from x0.

optimal trajectory is (x0, u
∗
0, x

∗
1, u

∗
1, x

∗
2), and that the base heuristic produces

this optimal trajectory starting at x0. The rollout algorithm chooses a control
at x0 as follows: it runs the base heuristic to construct a trajectory starting
from x∗

1 and x̃1, with corresponding costs H1(x
∗
1) and H1(x̃1). If

g0(x0, u
∗
0) +H1(x

∗
1) > g0(x0, ũ0) +H1(x̃1), (6.20)

the rollout algorithm rejects the optimal control u∗
0 in favor of the alternative

control ũ0. The inequality above will occur if the base heuristic chooses ū1 at
x∗
1 (there is nothing to prevent this from happening, since the base heuristic

is arbitrary), and moreover the cost g1(x
∗
1, ū1) + g2(x̃2), which is equal to

H1(x
∗
1) is high enough.
Let us also verify that if the inequality (6.20) holds then the heuristic

is not sequentially improving at x0, i.e., that

H0(x0) < min
{

g0(x0, u
∗
0) +H1(x

∗
1), g0(x0, ũ0) +H1(x̃1)

}

.

Indeed, this is true because H0(x0) is the optimal cost

H0(x0) = g0(x0, u
∗
0) + g1(x

∗
1, u

∗
1) + g2(x

∗
2),

and must be smaller than both

g0(x0, u
∗
0) +H1(x

∗
1),

which is the cost of the trajectory (x0, u
∗
0, x

∗
1, u1, x̃2), and

g0(x0, ũ0) +H1(x̃1),

which is the cost of the trajectory (x0, ũ0, x̃1, ũ1, x̃2).

142 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

The preceding example and the monotonicity property (6.19) suggest
a simple enhancement to the rollout algorithm, which detects when the
sequential improvement condition is violated and takes corrective measures.
In this algorithmic variant, called fortified rollout , we maintain the best
trajectory obtained so far, and keep following that trajectory up to the
point where we discover another trajectory that has improved cost.

Using Multiple Base Heuristics - Parallel Rollout

In many problems, several promising heuristics may be available. It is then
possible to use all of these heuristics in the rollout framework. The idea is
to construct a superheuristic, which selects the best out of the trajectories
produced by the entire collection of heuristics. The superheuristic can then
be used as the base heuristic for a rollout algorithm.†

In particular, let us assume that we have m heuristics, and that the
"th of these, given a state xk+1, produces a trajectory

T̃ !
k+1 = {xk+1, ũ!

k+1, xk+2, . . . , ũ!
N−1, x̃

!
N},

and corresponding cost C(T̃ !
k+1). The superheuristic then produces at xk+1

the trajectory T̃ !
k+1 for which C(T̃ !

k+1) is minimum. The rollout algorithm
selects at state xk the control uk that minimizes the minimal Q-factor:

ũk ∈ arg min
uk∈Uk(xk)

min
!=1,...,m

Q̃!
k(xk, uk),

where
Q̃!

k(xk, uk) = gk(xk, uk) + C(T̃ !
k+1)

is the cost of the trajectory (xk, uk, T̃ !
k+1). A similar idea was discussed in

connection with MPC in Section 5.4, and in the paper [LJM21]. Note that
the Q-factors of the different heuristics can be computed independently
and in parallel. In view of this fact, the rollout scheme just described is
sometimes referred to as parallel rollout.

An interesting property, which can be readily verified by using the
definitions, is that if all the heuristics are sequentially improving, the same
is true for the superheuristic, something that is also suggested by Fig. 6.4.4.
Indeed, let us write the sequential improvement condition (6.18) for each
of the base heuristics

min
uk∈Uk(xk)

Q̃!
k(xk, uk) ≤ H!

k(xk), " = 1, . . . ,m,

† A related practically interesting possibility is to introduce a partition of the

state space into subsets, and a collection of multiple heuristics that are specially
tailored to the subsets. We may then select the appropriate heuristic to use on

each subset of the partition. In fact one may use a collection of multiple heuristics

tailored to each subset of the state space partition, and at each state, select out
of all the heuristics that apply, the one that yields minimum cost.

Sec. 6.4 Rollout Algorithms for Discrete Optimization 143

where Q̃!
k(xk, uk) and H!

k(xk) are Q-factors and heuristic costs that corre-
spond to the "th heuristic. Then by taking minimum over ", we have

min
!=1,...,m

min
uk∈Uk(xk)

Q̃!
k(xk, uk) ≤ min

!=1,...,m
H!

k(xk),

for all xk and k. By interchanging the order of the minimizations of the
left side, we then obtain

min
uk∈Uk(xk)

min
!=1,...,m

Q̃!
k(xk, uk)

︸ ︷︷ ︸

Superheuristic Q-factor

≤ min
!=1,...,m

H!
k(xk)

︸ ︷︷ ︸

Superheuristic cost

,

which is precisely the sequential improvement condition (6.18) for the su-
perheuristic.

Simplified Rollout Algorithms

We will now consider a rollout variant, called simplified rollout algorithm,
which is motivated by problems where the control constraint set Uk(xk) is
either infinite or finite but very large. Then the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (6.21)

[cf. Eqs. (6.13) and (6.14)], may be unwieldy, since the number of Q-factors

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

is accordingly infinite or large.
To remedy this situation, we may replace Uk(xk) with a smaller finite

subset Uk(xk):
Uk(xk) ⊂ Uk(xk).

The rollout control µ̃k(xk) in this variant is one that attains the minimum
of Q̃k(xk, uk) over uk ∈ Uk(xk):

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (6.22)

An example is when Uk(xk) results from discretization of an infinite set
Uk(xk). Another possibility is when by using some preliminary approxi-
mate optimization, we can identify a subset Uk(xk) of promising controls,
and to save computation, we restrict attention to this subset. A related
possibility is to generate Uk(xk) by some random search method that ex-
plores intelligently the set Uk(xk) with the aim to minimize Q̃k(xk, uk) [cf.
Eq. (6.21)].

144 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

It turns out that the proof of the cost improvement property of Prop.
6.4.2,

Jk,π̃(xk) ≤ Hk(xk), for all xk and k,

goes through if the following modified sequential improvement property
holds:

min
uk∈Uk(xk)

Q̃k(xk, uk) ≤ Hk(xk). (6.23)

This can be seen by verifying that Eq. (6.23) is sufficient to guarantee that
the monotone improvement Eq. (6.19) is satisfied. The condition (6.23)
is very simple to satisfy if the base heuristic is sequentially consistent, in
which case the control uk selected by the base heuristic satisfies

Q̃k(xk, uk) = Hk(xk).

In particular, for the property (6.23) to hold, it is sufficient that Uk(xk)
contains the base heuristic choice uk.

The idea of replacing the minimization (6.21) by the simpler mini-
mization (6.22) can be extended. In particular, by working through the
preceding argument, it can be seen that any policy

π̃ = {µ̃0, . . . , µ̃N−1}

such that µ̃k(xk) satisfies the condition

Q̃k

(

xk, µ̃k(xk)
)

≤ Hk(xk),

for all xk and k, guarantees the modified sequential improvement property
(6.23), and hence also the cost improvement property. A prominent exam-
ple of such an algorithm arises in the multiagent case where u hasm compo-
nents, u = (u1, . . . , um), and the minimization over U1

k (xk)×· · ·×Um
k (xk) is

replaced by a sequence of single component minimizations, one-component-
at-a-time; cf. Section 3.7.

The Fortified Rollout Algorithm

In this section we describe a rollout variant that implicitly enforces the
sequential improvement property. This variant, called the fortified rollout
algorithm, starts at x0, and generates step-by-step a sequence of states
{x0, x1, . . . , xN} and corresponding sequence of controls. Upon reaching
state xk we have the trajectory

P k = {x0, u0, . . . , uk−1, xk}

that has been constructed by rollout, called permanent trajectory, and we
also store a tentative best trajectory

T k = {x0, u0, . . . , uk−1, xk, uk, xk+1, uk+1, . . . , uN−1, xN}

Sec. 6.4 Rollout Algorithms for Discrete Optimization 145

x0) . . .

-Factors Current State x

Current State xk

k ũk

k x̃k+1

+1 xk+1

k uk

x̃N

xN

uk x

k xNk xk+1

Permanent trajectory P k

x
′

N

Nearest Neighbor Heuristic Move to the Right

Nearest Neighbor Heuristic Move to the Right

Nearest Neighbor Heuristic Move to the Right

Tentative Best Trajectory T k

Min Q-factor choice

Figure 6.4.6 Schematic illustration of fortified rollout. After k steps, we have
constructed the permanent trajectory P k = {x0, u0, . . . , uk−1, xk}, and the ten-
tative best trajectory

T k = {x0, u0, . . . , uk−1, xk, uk, xk+1, uk+1, . . . , uN−1, xN},

the best end-to-end trajectory computed so far. We now run the rollout algorithm
at xk, i.e., we find the control ũk that minimizes over uk the sum of gk(xk , uk)
plus the heuristic cost from the state xk+1 = fk(xk , uk), and the corresponding
trajectory

T̃k = {x0, u0, . . . , uk−1, xk, ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}.

If the cost of the end-to-end trajectory T̃k is lower than the cost of T k, we add
(ũk, x̃k+1) to the permanent trajectory and set the tentative best trajectory to
T k+1 = T̃k. Otherwise we add (uk, xk+1) to the permanent trajectory and keep
the tentative best trajectory unchanged: T k+1 = T k.

with corresponding cost

C(T k) =
k−1
∑

t=0

gt(xt, ut) + gk(xk, uk) +
N−1
∑

t=k+1

gt(xt, ut) + gN(xN).

The tentative best trajectory T k is the best end-to-end trajectory computed
up to stage k of the algorithm. Initially, T 0 is the trajectory generated by
the base heuristic starting at the initial state x0. The idea now is to discard
the suggestion of the rollout algorithm at every state xk where it produces
a trajectory that is inferior to T k, and use T k instead (see Fig. 6.4.6).†

† The fortified rollout algorithm can actually be viewed as the ordinary roll-
out algorithm applied to a modified version of the original problem and modified

base heuristic that has the sequential improvement property. This construction is

somewhat technical and unintuitive and will not be given; we refer to Bertsekas,
Tsitsiklis, and Wu [BTW97], and the DP textbook [Ber17a], Section 6.4.2.

146 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

In particular, upon reaching state xk, we run the rollout algorithm
as earlier, i.e., for every uk ∈ Uk(xk) and next state xk+1 = fk(xk, uk), we
run the base heuristic from xk+1, and find the control ũk that gives the
best trajectory, denoted

T̃k = {x0, u0, . . . , uk−1, xk, ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}

with corresponding cost

C(T̃k) =
k−1
∑

t=0

gt(xt, ut) + gk(xk, ũk) +
N−1
∑

t=k+1

gt(x̃t, ũt) + gN (x̃N).

Whereas the ordinary rollout algorithm would choose control ũk and move
to x̃k+1, the fortified algorithm compares C(T k) and C(T̃k), and depending
on which of the two is smaller, chooses uk or ũk and moves to xk+1 or to
x̃k+1, respectively. In particular, if C(T k) ≤ C(T̃k) the algorithm sets the
next state and corresponding tentative best trajectory to

xk+1 = xk+1, T k+1 = T k,

and if C(T k) > C(T̃k) it sets the next state and corresponding tentative
best trajectory to

xk+1 = x̃k+1, T k+1 = T̃k.

In other words the fortified rollout at xk follows the current tenta-
tive best trajectory T k unless a lower cost trajectory T̃k is discovered by
running the base heuristic from all possible next states xk+1.† It follows
that at every state the tentative best trajectory has no larger cost than
the initial tentative best trajectory, which is the one produced by the base
heuristic starting from x0. Moreover, it can be seen that if the base heuris-
tic is sequentially improving, the rollout algorithm and its fortified version
coincide. Experimental evidence suggests that it is often important to use
the fortified version if the base heuristic is not known to be sequentially
improving. Fortunately, the fortified version involves hardly any additional
computational cost.

As expected, when the base heuristic generates an optimal trajectory,
the fortified rollout algorithm will also generate the same trajectory. This
is illustrated by the following example.

† The base heuristic may also be run from a subset of the possible next states

xk+1, as in the case where a simplified version of rollout is used. Then fortified
rollout will still guarantee a cost improvement property.

Sec. 6.4 Rollout Algorithms for Discrete Optimization 147

Example 6.4.3

Let us consider the application of the fortified rollout algorithm to the problem
of Example 6.4.2 and see how it addresses the issue of cost improvement.
The fortified rollout algorithm stores as initial tentative best trajectory the
optimal trajectory (x0, u

∗
0, x

∗
1, u

∗
1, x

∗
2) generated by the base heuristic at x0.

Then, starting at x0, it runs the heuristic from x∗
1 and x̃1, and (despite the

fact that the ordinary rollout algorithm prefers going to x̃1 rather than x∗
1) it

discards the control ũ0 in favor of u∗
0, which is dictated by the tentative best

trajectory. It then sets the tentative best trajectory to (x0, u
∗
0, x

∗
1, u

∗
1, x

∗
2).

We finally note that the fortified rollout algorithm can be used in
a different setting to restore and maintain the cost improvement prop-
erty. Suppose in particular that the rollout minimization at each step is
performed with approximations. For example the control uk may have
multiple independently constrained components, i.e.,

uk = (u1
k, . . . , u

m
k), Uk(xk) = U1

k (xk)× · · ·× Um
k (xk).

Then, to take advantage of distributed computation, it may be attractive
to decompose the optimization over uk in the rollout algorithm,

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk, uk)
)
]

,

into an (approximate) parallel optimization over the components ui
k (or

subgroups of these components). However, as a result of approximate opti-
mization over uk, the cost improvement property may be degraded, even if
the sequential improvement assumption holds. In this case by maintaining
the tentative best trajectory, starting with the one produced by the base
heuristic at the initial condition, we can ensure that the fortified rollout al-
gorithm, even with approximate minimization, will not produce an inferior
solution to the one of the base heuristic.

Model-Free Rollout

We will now consider a rollout algorithm for discrete deterministic op-
timization for the case where we do not know the cost function and the
constraints of the problem. Instead we have access to a base heuristic, and
also a human or software “expert” who can rank any two feasible solutions
without assigning numerical values to them.

We consider the general discrete optimization problem of selecting
a control sequence u = (u0, . . . , uN−1) to minimize a function G(u). For
simplicity we assume that each component uk is constrained to lie in a
given constraint set Uk, but extensions to more general constraint sets are
possible. We assume the following:

(a) A base heuristic with the following property is available: Given any
k < N − 1, and a partial solution (u0, . . . , uk), it generates, for every

148 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

(u0, . . . , uk)

Base Heuristic Expert Ranks Complete Solutions
Base Heuristic Expert Ranks Complete Solutions , . . . , ũN−1)

, ũk+1, . . . ,

) Sk(u0, . . . , uk, ũk+1), ũk+1 ∈ Uk+1

Base Heuristic Expert Ranks Complete Solutions
Base Heuristic Expert Ranks Complete Solutions

Base Heuristic Expert Ranks Complete Solutions

Current Partial Solution

Current Partial Solution

Figure 6.4.7 Schematic illustration of model-free rollout with an expert for min-
imizing G(u) subject to u ∈ U0 × · · ·× UN−1. We assume that we do not know
G and/or U0, . . . , UN−1. Instead we have a base heuristic, which given a partial
solution (u0, . . . , uk), outputs all next controls ũk+1 ∈ Uk+1, and generates from
each a complete solution

Sk(u0, . . . , uk, ũk+1) = (u0, . . . , uk, ũk+1, . . . , ũN−1).

Also, we have a human or software “expert” that can rank any two complete
solutions without assigning numerical values to them. The control that is selected
from Uk+1 by the rollout algorithm is the one whose corresponding complete
solution is ranked best by the expert.

ũk+1 ∈ Uk+1, a complete feasible solution by concatenating the given
partial solution (u0, . . . , uk) with a sequence (ũk+1, . . . , ũN−1). This
complete feasible solution is denoted

Sk(u0, . . . , uk, ũk+1) = (u0, . . . , uk, ũk+1, . . . , ũN−1).

The base heuristic is also used to start the algorithm from an artificial
empty solution, by generating all components ũ0 ∈ U0 and a complete
feasible solution (ũ0, . . . , ũN−1), starting from each ũ0 ∈ U0.

(b) An “expert” is available that can compare any two feasible solutions
u and u, in the sense that he/she can determine whether

G(u) > G(u), or G(u) ≤ G(u).

Sec. 6.5 Rollout and Approximation in Value Space with Multistep Lookahead149

It can be seen that deterministic rollout can be applied to this prob-
lem, even though the cost function G is unknown. The reason is that the
rollout algorithm uses the cost function only as a means of ranking com-
plete solutions in terms of their cost. Hence, if the ranking of any two
solutions can be revealed by the expert, this is all that is needed.† In fact,
the constraint sets U0, . . . , UN−1 need not be known either, as long as they
can be generated by the base heuristic. Thus, the rollout algorithm can be
described as follows (see Fig. 6.4.7):

We start with an artificial empty solution, and at the typical step,
given the partial solution (u0, . . . , uk), k < N−1, we use the base heuristic
to generate all possible one-step-extended solutions

(u0, . . . , uk, ũk+1), ũk+1 ∈ Uk+1,

and the set of complete solutions

Sk(u0, . . . , uk, ũk+1), ũk+1 ∈ Uk+1.

We then use the expert to rank this set of complete solutions. Finally,
we select the component uk+1 that is ranked best by the expert, extend
the partial solution (u0, . . . , uk) by adding uk+1, and repeat with the new
partial solution (u1, . . . , uk, uk+1).

Except for the (mathematically inconsequential) use of an expert
rather than a cost function, the preceding rollout algorithm can be viewed
as a special case of the one given earlier. As a result several of the roll-
out variants that we have discussed so far (rollout with multiple heuristics,
simplified rollout, and fortified rollout) can also be easily adapted. For an
application of the model-free rollout methodology to the problem of RNA
folding, see the paper [LPS21] and the RL book [Ber20a].

6.5 ROLLOUT AND APPROXIMATION IN VALUE SPACE WITH
MULTISTEP LOOKAHEAD

We will now consider approximation in value space with multistep looka-
head minimization, possibly also involving some form of rollout. Figure
6.5.1 describes the case of pure (nontruncated) form of rollout with two-
step lookahead for deterministic problems. In particular, suppose that after
k steps we have reached state xk. We then consider the set of all possible
two-step-ahead states xk+2, we run the base heuristic starting from each

† Note that for this to be true, it is important that the problem is deter-
ministic, and that the expert ranks solutions using some underlying (though

unknown) cost function. In particular, the expert’s rankings should have a tran-

sitivity property: if u is ranked better than u′ and u′ is ranked better than u′′,
then u is ranked better than u′′.

150 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0) . . .
)
.
.
.

)
.
.
.

uk x

k xN

k xk+1

k u
′

k

x
′

N

. . . Q-Factors

-Factors Current State x

Current State xk

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

∗
x
′

k+1

xk+2

x
′

k+2

uk+1

u
′

k+1

PATH PLANNING States at the End of the Lookahead Final States

PATH PLANNING States at the End of the Lookahead Final States

PATH PLANNING States at the End of the Lookahead Final States

x
′′

k+2

x
′′′

k+2

u
′′

k+1

u
′′′

k+1

0 x1

Figure 6.5.1 Illustration of multistep rollout with ! = 2 for deterministic prob-
lems. We run the base heuristic from each leaf xk+! at the end of the lookahead
graph. We then construct an optimal solution for the lookahead minimization
problem, where the heuristic cost is used as terminal cost approximation. We
thus obtain an optimal !-step control sequence through the lookahead graph, use
the first control in the sequence as the rollout control, discard the remaining con-
trols, move to the next state, and repeat. Note that the multistep lookahead
minimization may involve approximations aimed at simplifying the associated
computations.

of them, and compute the two-stage cost to get from xk to xk+2, plus the
cost of the base heuristic from xk+2. We select the state, say x̃k+2, that
is associated with minimum cost, compute the controls ũk and ũk+1 that
lead from xk to x̃k+2, choose ũk as the next control and xk+1 = fk(xk, ũk)
as the next state, and discard ũk+1.

The extension of the algorithm to lookahead of more than two steps
is straightforward: instead of the two-step-ahead states xk+2, we run the
base heuristic starting from all the possible "-step ahead states xk+!, etc.
For cases where the "-step lookahead minimization is very time consuming,
we may consider variants involving approximations aimed at simplifying
the associated computations.

An important variation is truncated rollout with terminal cost ap-
proximation. Here the rollout trajectories are obtained by running the
base heuristic from the leaf nodes of the lookahead graph, and they are
truncated after a given number of steps, while a terminal cost approxima-
tion is added to the heuristic cost to compensate for the resulting error;
see Fig. 6.5.2. One possibility that works well for many problems, partic-
ularly when the combined lookahead for minimization and base heuristic
simulation is long, is to simply set the terminal cost approximation to zero.
Alternatively, the terminal cost function approximation can be obtained

Sec. 6.5 Rollout and Approximation in Value Space with Multistep Lookahead151

Selective Depth Lookahead Tree

States xk+1

proximation

States xk+2

Truncated Rollout Terminal Cost Approximation
Truncated Rollout Terminal Cost ApproximationTruncated Rollout Terminal Cost Approximation J̃

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

Current State xk
. . .x0

-Factors Current State x

Figure 6.5.2 Illustration of truncated rollout with two-step lookahead and a
terminal cost approximation J̃ . The base heuristic is used for a limited number
of steps and the terminal cost is added to compensate for the remaining steps.

by problem approximation or by using some sophisticated off-line training
process that may involve an approximation architecture such as a neural
network. Generally, the terminal cost approximation is especially impor-
tant if a large portion of the total cost is incurred upon termination (this
is true for example in games).

Note that the preceding algorithmic scheme can be viewed as mul-
tistep approximation in value space, and it can be interpreted as a New-
ton step, with suitable starting point that is determined by the truncated
rollout with the base heuristic, and the terminal cost approximation. This
interpretation is possible once the discrete optimal control problem is refor-
mulated to an equivalent infinite horizon SSP problem. Thus the algorithm
inherits the fast convergence property of the Newton step, which we have
discussed in the context of infinite horizon problems.

The architecture of Fig. 6.5.2 contains as a special case the general
multistep approximation in value space scheme, where there is no rollout
at all; i.e., the leaves of the multistep lookahead tree are evaluated with the
function J̃ . Figure 6.5.3 illustrates this special case, where for notational
simplicity we have denoted the current state by x0. The illustration involves
an acyclic graph with a single root (the current state) and " layers, with
the nth layer consisting of the states xn that are reachable from x0 with a
feasible sequence of n controls. In particular, there is an arc for every state
x1 of the 1st layer that can be reached from x0 with a feasible control, and

152 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

0 Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer !

Terminal Cost Approximation State 1 State 2 2-State/2-Control Ex-

Layer n x

+ 1 (may be the cost of a heuristic)

Shortest Path

Shortest Path Move Chosen
(Current State)x0

: Feature-based parametric architecture State J̃(x!)

) x!

x
∗

1

x
∗

2

x
∗

n

x
∗

!

Figure 6.5.3 Illustration of the general !-step approximation in value space
scheme with a terminal cost approximation J̃ where x0 denotes the current state.
It involves an acyclic graph of ! layers, with layer n, n = 1, . . . , !, consisting of all
the states xn that can be reached from x0 with a sequence of n feasible controls.
In !-step approximation in value space, we obtain a trajectory {x0, x∗

1, . . . , x
∗
!
}

that minimizes the shortest distance from x0 to x! plus J̃(x!). We then use the
control that corresponds to the first move x0 → x∗

1.

similarly an arc for every pair of states (xn, xn+1), of layers n and n + 1,
respectively, for which xn+1 can be reached from xn with a feasible control.
The cost of each of these arcs is the stage cost of the corresponding state-
control pair, minimized over all possible controls that correspond to the
same pair (xn, xn+1). Mathematically, the cost of the arc (xn, xn+1) is

ĝn(xn, xn+1) = min
{un∈Un(xn) | xn+1=fn(xn,un)}

gn(xn, un). (6.24)

For the states x! of the last layer there is also a given terminal cost approx-
imation J̃(x!), possibly obtained through off-line training and/or rollout
with a base policy. It can be thought of as the cost of an artificial arc
connecting x! to an artificial termination state.

Once we have computed all the shortest distances D(x!) from x0 to
all states x! of the last layer ", we obtain the "-step lookahead control to
be applied at the current state x0, by minimizing over x! the sum

D(x!) + J̃(x!).

If x∗
! is the state that attains the minimum, we generate the corresponding

trajectory (x0, x∗
1, . . . , x

∗
!), and then use the control that corresponds to

Sec. 6.5 Rollout and Approximation in Value Space with Multistep Lookahead153

the first move x0 → x∗
1; see Fig. 6.5.3. Note that the shortest path prob-

lems from x0 to all states xn of all the layers n = 1, . . . , " can be solved
simultaneously by backward DP (start from layer " and go back towards
x0).

Long Lookahead for Deterministic Problems

The architecture of Figs. 6.5.2 is similar to the one we discussed in Section
1.1 for AlphaZero and related programs. However, because it is adapted
to deterministic problems, it is much simpler to implement and to use. In
particular, the truncated rollout portion does not involve expensive Monte
Carlo simulation, while the multistep lookahead minimization portion in-
volves a deterministic shortest path problem, which is much easier to solve
that its stochastic counterpart. These favorable characteristics can be ex-
ploited to facilitate implementations that involve very long lookahead.

Generally speaking, longer lookahead is desirable because it typically
results in improved performance. We will adopt this as a working hypoth-
esis. It is typically true in practice, although it cannot be established
analytically in the absence of additional assumptions.† On the other hand,
the on-line computational cost of multistep lookahead increases, often ex-
ponentially, with the length of lookahead.

We conclude that we should aim to use a lookahead that is as long as
is allowed by the on-line computational budget (the amount of time that is
available for calculating a control to apply at the current state). This leads
to the question of how to increase the length of multistep lookahead within
our on-line computational budget. One way to do this, which we have
already discussed, is the use of truncated rollout, which explores forward
through a deterministic base policy at far less computational cost than
lookahead minimization of equal length. Another possibility is to speed up
the lookahead minimization calculation, thereby allowing a larger number "
of computational stages. In what follows, we will explore two ways by which
this can be done: iterative deepening of the shortest path computation, and
pruning of the lookahead minimization graph.

Iterative Deepening Using Forward Dynamic Programming

As noted earlier, the shortest path problems from x0 to x! in Fig. 6.5.3 can
be solved simultaneously by the familiar backward DP that starts from
layer " and goes towards x0. An important alternative for solving these
problems is the forward DP algorithm. This is the same as the backwards

† Indeed, there are examples where as the size ! of the lookahead becomes

longer, the performance of the multistep lookahead policy deteriorates (see [Ber17a],

Section 6.1.2, or [Ber19a], Section 2.2.1). However, these examples are isolated
and artificial. They are not representative of practical experience.

154 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0 Layer 1 Layer 2 Layer

0 Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer !

0 x1

x2

2 x!

2 x!

x J̃(x!)Terminal Cost Approximation State 1 State 2 2-State/2-Control Ex-

Multistep Lookahead xn

n xn+1

Layer n x

Layer n+ 1

+ 1 (may be the cost of a heuristic)

+1 xn x
′
n

-Step Lookahead xn+1

(Current State)

Dn(xn): Shortest distance from
): Shortest distance from x0 to state xn

of layer n

Figure 6.5.4 Illustration of the forward DP algorithm for computing the shortest
distances from the current state x0 to all the states xn of the layers n = 1, . . . , !.
The shortest distance Dn+1(xn+1) to a state xn+1 of layer n is obtained by
minimizing over all predecessor states xn the sum

ĝn(xn, xn+1) +Dn(xn).

DP algorithm with the direction of the arcs reversed (start from x0 and go
towards layer "). In particular, the shortest distances Dn+1(xn+1) to layer
n + 1 states are obtained from the shortest distances Dn(xn) to layer n
states through the equation

Dn+1(xn+1) = min
xn

[

ĝn(xn, xn+1) +Dn(xn)
]

,

which is also illustrated in Fig. 6.5.4. Here ĝn(xn, xn+1) is the cost (or
length) of the arc (xn, xn+1); cf. Eq. (6.24).

In particular, the solution of the "-step lookahead problem is obtained
from the shortest path to the state x∗

! of layer " that minimizes D!(x!) +
J̃(x!). The idea of iterative deepening is to progressively solve the n-step
lookahead problem first for n = 1, then for n = 2, and so on, until our
on-line computational budget is exhausted . In addition to fitting perfectly
the mechanism of the forward DP algorithm, this scheme has the character
of an “anytime” algorithm; i.e., it returns a feasible solution to a lookahead
minimization of some depth, even if it is interrupted because the limit of our
computational budget has been reached. In practice this is an important
advantage, well known from chess programming, which allows us to keep

Sec. 6.5 Rollout and Approximation in Value Space with Multistep Lookahead155

x0 Layer 1 Layer 2 Layer

0 Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer !

0 x1

x2

2 x!

2 x!

x J̃(x!)Terminal Cost Approximation State 1 State 2 2-State/2-Control Ex-

Multistep Lookahead xn

n xn+1

Layer n x

Layer n+ 1

+ 1 (may be the cost of a heuristic)

or Pruned States or Pruned States

(Current State)

Figure 6.5.5 Illustration of iterative deepening with pruning within the context
of forward DP.

on aiming for longer lookahead minimization, within the limit imposed by
our computational budget constraint.

Pruning the Lookahead Minimization Graph - Double Rollout

A principal difficulty in approximation in value space with "-step lookahead
stems from the rapid expansion of the lookahead graph as " increases.
The idea of pruning the lookahead minimization graph is simply to delete
some of its arcs in order to expedite the shortest path computations from
the current state to the states of subsequent layers; see Fig. 6.5.5. One
possibility is to combine pruning with iterative deepening by eliminating
from the computation states x̂n of layer n such that the n-step lookahead
cost

Dn(x̂n) + J̃(x̂n)

is “far from the minimum” over xn. This in turn prunes automatically
some of the states of the next layer n+1. The rationale is that such states
are “unlikely’ to be part of the shortest path that we aim to compute.
Note that this type of pruning is progressive, i.e., we prune states in layer
n before pruning states in layer n+ 1.

An alternative form of pruning is based on applying rollout to the so-
lution of the "-step lookahead minimization; after all, this is also a discrete
optimization problem that can be addressed by any suboptimal method,
including rollout. Thus we may use a second base heuristic to generate a

156 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0 Layer 1 Layer 2 Layer

0 Layer 1 Layer 2 Layer

Layer 1 Layer 2 Layer !

0 x1

2 x!

2 x!

x J̃(x!)Terminal Cost Approximation State 1 State 2 2-State/2-Control Ex-+ 1 (may be the cost of a heuristic)

Layer !̄!̄ x!̄

Base Policy !̄-Step Lookahead

Pruned States Rollout

(Current State)

Pruned States (with one-step lookahead) Rollout

Figure 6.5.6 Illustration of the double rollout algorithm. We use a shorter !̄-step
lookahead rollout where

1 ≤ !̄ < !,

and run a base heuristic from all the states x!̄ up to stage ! to evaluate x!̄. The
state x∗

!̄
that gives the best result is thus obtained, the corresponding shortest path

trajectory from x0 to x∗
!̄
is computed, and the first control along that trajectory

is applied at x0.

promising trajectory through the !-step lookahead tree by using a shorter
!̄-step lookahead rollout where 1 ≤ !̄ < !. After we solve the !̄-step looka-
head minimization problem, by backward or forward DP, we evaluate each
of the states x!̄ of layer !̄ by running a base heuristic up to stage !; see
Fig. 6.5.6. This “double rollout” algorithm requires a number of heuristic
applications that grows linearly rather than exponentially with (!− !̄), the
number of rollout stages. In particular, at each stage, the number of heuris-
tic applications of the !-step rollout and of the “double rollout” algorithm
will be bounded by n! and by nm+1 ·(!− !̄), respectively, where m is a bound
on the number of control choices at each state. Note that the base heuristic
that is used for the !-step lookahead problem need not be related to any
rollout that is part of the calculation of J̃ .

The double rollout method admits several variations. These include a
fortified version, which guards against lack of sequential improvement, and
the possibility that the rollout algorithm gets sidetracked along an inferior
trajectory. The fortified algorithm maintains a tentative best trajectory,
from which it will not deviate until the rollout algorithm generates a less
costly trajectory, similar to the one-step lookahead case.

Sec. 6.5 Rollout and Approximation in Value Space with Multistep Lookahead157

Subgraph S

Layer 1 Layer 2 Layer !

x
∗

Expansion

S x∗ minimizesminimizes D(x) +H(x) over
) over the leaf nodes x ∈ S

x0 Layer 1 Layer 2 Layer(Current State)

Figure 6.5.7 Illustration of the !-step lookahead minimization problem and its
suboptimal solution with the IMR algorithm. The algorithm maintains a con-
nected acyclic subgraph S as shown. At each iteration it expands S by selecting
a leaf node of S and by adding its neighbor nodes to S (if not already in S). The
leaf node, denoted x∗, is the one that minimizes over all leaf nodes x of S the
sum of the shortest distance D(x) from x0 to x and a “heuristic cost” H(x).

Incremental Multistep Rollout

We will now consider a more flexible form of the double rollout scheme,
which we call incremental multistep rollout (IMR). It applies a base heuris-
tic and a forward DP computation to a sequence of subgraphs of a multistep
lookahead graph, with the size of the subgraphs expanding iteratively.

The difference from double rollout is the following: in incremental roll-
out a connected subgraph of multiple paths is iteratively extended starting
from the current state going towards the end of the lookahead horizon,
instead of extending a single path as in double rollout. This is similar to
what is done in Monte Carlo Tree Search (MCTS, to be discussed later),
which is also designed to solve approximately general multistep lookahead
minimization problems (including stochastic ones), and involves iterative
expansion of an acyclic lookahead graph to new nodes, as well as backtrack-
ing to previously encountered nodes. However, incremental rollout seems
to be more appropriate than MCTS for deterministic problems, where there
are no random variables in the problem’s model and therefore Monte Carlo
simulation does not make sense.

The IMR algorithm starts with and maintains a connected acyclic
subgraph S of the given multistep lookahead graph G, which contains x0.
At each iteration it expands S by selecting a leaf node of S and by adding
its neighbor nodes to S (if not already in S); see Fig. 6.5.7. The leaf node,
denoted x∗, is the one that minimizes (over all leaf nodes x of S) the sum

D(x) +H(x),

where

158 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

D(x) is the shortest distance from x0 to the leaf node x using only
arcs that belong to S. This can be computed by forward DP.

H(x) is a “heuristic cost” corresponding to x. This is defined as the
sum of three terms:

(a) The cost of the base heuristic starting from node x and ending
at one of the states x! in the last layer ".

(b) The terminal cost approximation J̃(x!), where x! is the state
obtained via the base heuristic as in (a) above.

(c) An additional penalty P (x) that depends on the layer to which
x belongs. As an example, we will assume here that

P (x) = δ · (the layer index of x),

where δ is a positive parameter. Thus P (x) adds a cost of δ for
each extra arc to reach x from x0, and penalizes nodes x that lie
in more distant layers from the root x0. It thus encourages the
algorithm to “backtrack” and select nodes x∗ that lie in layers
closer to x0.

The role of the parameter δ is noteworthy and affects significantly the
nature of the algorithm. When δ = 0, the initial graph S consists of the
single state x0, and the base heuristic is sequentially improving, it can be
seen that IMR performs exactly like the rollout algorithm for solving the
"-step lookahead minimization problem. On the other hand when δ is large
enough, the algorithm operates like the forward DP algorithm. The reason
is that a very large value of δ forces the algorithm to expand all nodes of
a given layer before proceeding to the next layer.

Generally, as δ increases, the algorithm tends to backtrack more often,
and to generate more paths through the graph, thereby visiting more nodes
and increasing the number of applications of the base heuristic. Thus δ
may be viewed as an exploration parameter ; when δ is large the algorithm
tends to explore more paths thereby improving the quality of the multistep
lookahead minimization, at the expense of greater computational effort.
In the absence of additional problem-specific information, favorable values
of δ should be obtained through experimentation. One may also consider
alternative and more adaptive schemes; for example with a δ that depends
on x0, and is adjusted in the course of the computation.

6.6 CONSTRAINED FORMS OF ROLLOUT ALGORITHMS

In this section we will discuss constrained deterministic DP problems, in-
cluding challenging combinatorial optimization and integer programming
problems. We introduce a rollout algorithm, which relies on a base heuristic
and applies to problems with general trajectory constraints. Under suitable

Sec. 6.6 Constrained Forms of Rollout Algorithms 159

assumptions, we will show that if the base heuristic produces a feasible so-
lution, the rollout algorithm has a cost improvement property: it produces
a feasible solution, whose cost is no worse than the base heuristic’s cost.

Before going into formal descriptions of the constrained DP problem
formulation and the corresponding algorithms, it is worth to revisit the
broad outline of the rollout algorithm for deterministic DP:

(a) It constructs a sequence {T0, T1, . . . , TN} of complete system trajec-
tories with monotonically nonincreasing cost (assuming a sequential
improvement condition).

(b) The initial trajectory T0 is the one generated by the base heuristic
starting from x0, and the final trajectory TN is the one generated by
the rollout algorithm.

(c) For each k, the trajectories Tk, Tk+1, . . . , TN share the same initial
portion (x0, ũ0, . . . , ũk−1, x̃k).

(d) For each k, the base heuristic is used to generate a number of can-
didate trajectories, all of which share the initial portion with Tk, up
to state x̃k. These candidate trajectories correspond to the controls
uk ∈ Uk(xk). (In the case of fortified rollout, these trajectories include
the current “tentative best” trajectory.)

(e) For each k, the next trajectory Tk+1 is the candidate trajectory that
is best in terms of total cost.

In our constrained DP formulation, to be described shortly, we intro-
duce a trajectory constraint T ∈ C, where C is some subset of admissible
trajectories. A consequence of this is that some of the candidate trajec-
tories in (d) above, may be infeasible. Our modification to deal with this
situation is simple: we discard all the candidate trajectories that violate the
constraint, and we choose Tk+1 to be the best of the remaining candidate
trajectories, the ones that are feasible.

Of course, for this modification to be viable, we have to guarantee
that at least one of the candidate trajectories will satisfy the constraint for
every k. For this we will rely on a sequential improvement condition that we
will introduce shortly. For the case where this condition does not hold, we
will introduce a fortified version of the algorithm, which requires only that
the base heuristic generates a feasible trajectory T0 starting from the initial
condition x0. Thus to apply reliably the constrained rollout algorithm, we
only need to know a single feasible solution, i.e., a trajectory T0 that starts
at x0 and satisfies the constraint T0 ∈ C.

Constrained Problem Formulation

We assume that the state xk takes values in some (possibly infinite) set and
the control uk takes values in some finite set. The finiteness of the control
space is only needed for implementation purposes of the rollout algorithms

160 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

to be described shortly; simplified versions of the algorithm do not require
the finiteness condition. A sequence of the form

T = (x0, u0, x1, u1, . . . , uN−1, xN), (6.25)

where
xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (6.26)

is referred to as a complete trajectory. Our problem is stated succinctly as

min
T∈C

G(T), (6.27)

where G is some cost function and C is the constraint set.
Note that G need not have the additive form

G(T) = gN (xN) +
N−1∑

k=0

gk(xk, uk), (6.28)

which we have assumed so far. Thus, except for the finiteness of the control
space, which is needed for implementation of rollout, this is a very general
optimization problem. In fact, later we will simplify the problem further
by eliminating the state transition structure of Eq. (6.26).†

Trajectory constraints can arise in a number of ways. A relatively
simple example is the standard problem formulation for deterministic DP:
an additive cost of the form (6.28), where the controls satisfy the time-
uncoupled constraints uk ∈ Uk(xk) [so here C is the set of trajectories that
are generated by the system equation with controls satisfying uk ∈ Uk(xk)].
In a more complicated constrained DP problem, there may be constraints
that couple the controls of different stages such as

gmN (xN) +
N−1
∑

k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M, (6.29)

where gmk and bm are given functions and scalars, respectively. An example
where difficult trajectory constraints arise is when the control contains some
discrete components, which once chosen must remain fixed for multiple time
periods.

Here is another discrete optimization example involving the traveling
salesman problem.

† Actually, similar to our discussion on model-free rollout in Section 6.4,

it is not essential that we know the explicit form of the cost function G and

the constraint set C. For our constrained rollout algorithms, it is sufficient to
have access to a human or software expert that can determine whether a given

trajectory T is feasible, i.e., satisfies the constraint T ∈ C, and also to be able to

compare any two feasible trajectories T1 and T2, based on some internal process
that is unknown to us, without assigning numerical values to them.

Sec. 6.6 Constrained Forms of Rollout Algorithms 161

s Terminal State t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

Initial State x0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

Capacity=1 Optimal Solution 20 15

Capacity=1 Optimal Solution 20 15

Safety Costs of Complete Tours ABCDA
Safety Costs of Complete Tours ABCDA

Constraint: Tour Safety

Constraint: Tour Safety ≤ 10

Figure 6.6.1 An example of a constrained traveling salesman problem; cf. Ex-
ample 6.6.1. We want to find a minimum cost tour that has safety cost less or
equal to 10. The safety costs of the six possible tours are given in the table on
the right. The (unconstrained) minimum cost tour, ABDCA, does not satisfy the
safety constraint. The optimal constrained tour is ABCDA.

Example 6.6.1 (A Constrained Form of the Traveling
Salesman Problem)

Let us consider a constrained version of the traveling salesman problem of
Example 6.2.1. We want to find a minimum travel cost tour that additionally
satisfies a safety constraint that the “safety cost” of the tour should be less
than a certain threshold; see Fig. 6.6.1. This constraint need not have the
additive structure of Eq. (6.29). We are simply given a safety cost for each
tour (see the table at the bottom right), which is calculated in a way that is
of no further concern to us. In this example, for a tour to be admissible, its
safety cost must be less than or equal to 10. Note that the (unconstrained)
minimum cost tour, ABDCA, does not satisfy the safety constraint.

Transforming Constrained DP Problems to Unconstrained
Problems

Generally, a constrained DP problem can be transformed to an uncon-

162 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

strained DP problem, at the expense of a complicated reformulation of the
state and the system equation. The idea is to redefine the state at stage k
to be the partial trajectory

yk = (x0, u0, x1, . . . , uk−1, xk),

which evolves according to a redefined system equation:

yk+1 =
(

yk, uk, fk(xk, uk)
)

.

The problem then becomes to find a control sequence that minimizes the
terminal cost G(yN) subject to the constraint yN ∈ C. This is a problem
to which the standard form of DP applies:

J*
k (yk) = min

uk∈Uk(yk)
J*
k+1

(

yk, uk, fk(xk, uk)
)

, k = 0, . . . , N − 1,

where
J*
N (yN) = G(yN),

and for k = 0, . . . , N − 1, the constraint set Uk(yk) is the subset of controls
for which it is possible to attain feasibility. Thus Uk(yk) is the set of
uk such that there exist uk+1, . . . , uN−1 and corresponding xk+1, . . . , xN ,
which together with yk, satisfy

(yk, uk, xk+1, uk+1, . . . , xN−1, uN−1, xN) ∈ C.

The reformulation to an unconstrained problem just described is typ-
ically impractical, because the associated computation can be overwhelm-
ing. However, it provides guidance for structuring a constrained rollout
algorithm, which we describe next. Moreover, it allows the interpretation
of this constrained rollout algorithm in terms of the Newton step, which is
the central theme of this monograph.

Using a Base Heuristic for Constrained Rollout

We will now describe formally the constrained rollout algorithm. We as-
sume the availability of a base heuristic, which for any given partial tra-
jectory

yk = (x0, u0, x1, . . . , uk−1, xk),

can produce a (complementary) partial trajectory

R(yk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN),

that starts at xk and satisfies the system equation

xt+1 = ft(xt, ut), t = k, . . . , N − 1.

Sec. 6.6 Constrained Forms of Rollout Algorithms 163

) . . .

) . . .

) . . .

) . . .

) . . .

x0 x̃1 1 x̃2 2 x̃k−1 1 x̃k

1 uk

k xk+1

ũ0 0 ũ1 1 ũk−1

k uk+1

+1 xk+2 +2 xN−1 1 xNỹk

k yk+1

+1 uN−1

10 11 12 R(yk+1)

) Tk(ỹk, uk) =
(

ỹk, uk, R(yk+1)
)

∈ C

˜ ỹ0 = x̃0 = x0

Figure 6.6.2 The trajectory generation mechanism of the rollout algorithm. At
stage k, and given the current partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

which starts at x̃0 and ends at x̃k, we consider all possible next states xk+1 =
fk(x̃k, uk), run the base heuristic starting at yk+1 = (ỹk , uk, xk+1), and form the
complete trajectory Tk(ỹk , uk). Then the rollout algorithm:

(a) Finds ũk, the control that minimizes the cost G
(

Tk(ỹk , uk)
)

over all uk for

which the complete trajectory Tk(ỹk, uk) is feasible.

(b) Extends ỹk by
(

ũk, fk(x̃k, ũk)
)

to form ỹk+1.

Thus, given yk and any control uk, we can use the base heuristic to obtain
a complete trajectory as follows:

(a) Generate the next state xk+1 = fk(xk, uk).

(b) Extend yk to obtain the partial trajectory

yk+1 =
(

yk, uk, fk(xk, uk)
)

.

(c) Run the base heuristic from yk+1 to obtain the partial trajectory
R(yk+1).

(d) Join the two partial trajectories yk+1 and R(yk+1) to obtain the com-
plete trajectory

(

yk, uk, R(yk+1)
)

, which is denoted by Tk(yk, uk):

Tk(yk, uk) =
(

yk, uk, R(yk+1)
)

. (6.30)

This process is illustrated in Fig. 6.6.2. Note that the partial trajectory
R(yk+1) produced by the base heuristic depends on the entire partial tra-
jectory yk+1, not just the state xk+1.

A complete trajectory Tk(yk, uk) of the form (6.30) is generally fea-
sible for only the subset Uk(yk) of controls uk that maintain feasibility:

Uk(yk) =
{

uk | Tk(yk, uk) ∈ C
}

. (6.31)

164 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

Our rollout algorithm starts from a given initial state ỹ0 = x̃0, and gener-
ates successive partial trajectories ỹ1, . . . , ỹN , of the form

ỹk+1 =
(

ỹk, ũk, fk(x̃k, ũk)
)

, k = 0, . . . , N − 1, (6.32)

where x̃k is the last state component of ỹk, and ũk is a control that min-
imizes the heuristic cost G

(

Tk(ỹk, uk)
)

over all uk for which Tk(ỹk, uk) is
feasible. Thus at stage k, the algorithm forms the set Uk(ỹk) [cf. Eq. (6.31)]
and selects from Uk(ỹk) a control ũk that minimizes the cost of the complete
trajectory Tk(ỹk, uk):

ũk ∈ arg min
uk∈Uk(ỹk)

G
(

Tk(ỹk, uk)
)

; (6.33)

see Fig. 6.6.2. The objective is to produce a feasible final complete trajec-
tory ỹN , which has a cost G(ỹN) that is no larger than the cost of R(ỹ0)
produced by the base heuristic starting from ỹ0, i.e.,

G(ỹN) ≤ G
(

R(ỹ0)
)

.

Note that Tk(ỹk, uk) is not guaranteed to be feasible for any given
uk (i.e., may not belong to C), but we will assume that the constraint set
Uk(ỹk) of problem (6.33) is nonempty, so that our rollout algorithm is well-
defined. We will later modify our algorithm so that it is well-defined under
the weaker assumption that just the complete trajectory generated by the
base heuristic starting from the initial state ỹ0 is feasible, i.e., R(ỹ0) ∈ C.

Constrained Rollout Algorithm

The algorithm starts at stage 0 and sequentially proceeds to the last
stage. At the typical stage k, it has constructed a partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k) (6.34)

that starts at the given initial state ỹ0 = x̃0, and is such that

x̃t+1 = ft(x̃t, ũt), t = 0, 1, . . . , k − 1.

The algorithm then forms the set of controls

Uk(ỹk) =
{

uk | Tk(ỹk, uk) ∈ C
}

Sec. 6.6 Constrained Forms of Rollout Algorithms 165

that is consistent with feasibility [cf. Eq. (6.31)], and chooses a control
ũk ∈ Uk(ỹk) according to the minimization

ũk ∈ arg min
uk∈Uk(ỹk)

G
(

Tk(ỹk, uk)
)

, (6.35)

[cf. Eq. (6.33)], where

Tk(ỹk, uk) =
(

ỹk, uk, R
(

ỹk, uk, fk(x̃k, uk)
)
)

;

[cf. Eq. (6.30)]. Finally, the algorithm sets

x̃k+1 = fk(x̃k, ũk), ỹk+1 = (ỹk, ũk, x̃k+1),

[cf. Eq. (6.32)], thus obtaining the partial trajectory ỹk+1 to start the
next stage.

It can be seen that our constrained rollout algorithm is not much
more complicated or computationally demanding than its unconstrained
version where the constraint T ∈ C is not present (as long as checking
feasibility of a complete trajectory T is not computationally demanding).
Note, however, that our algorithm makes essential use of the deterministic
character of the problem, and does not admit a straightforward extension
to stochastic problems, since checking feasibility of a complete trajectory
is typically difficult in the context of these problems.

The rollout algorithm just described is illustrated in Fig. 6.6.3 for our
earlier traveling salesman Example 6.6.1. Here we want to find a minimum
travel cost tour that additionally satisfies a safety constraint, namely that
the “safety cost” of the tour should be less than a certain threshold. Note
that the minimum cost tour, ABDCA, in this example does not satisfy
the safety constraint. Moreover, the tour ABCDA obtained by the rollout
algorithm has barely smaller cost than the tour ACDBA generated by the
base heuristic starting from A. In fact if the travel cost D→A were larger,
say 25, the tour produced by constrained rollout would be more costly than
the one produced by the base heuristic starting from A. This points to the
need for a constrained version of the notion of sequential improvement and
for a fortified variant of the algorithm, which we discuss next.

Sequential Consistency, Sequential Improvement, and the Cost
Improvement Property

We will now introduce sequential consistency and sequential improvement
conditions guaranteeing that the control set Uk(ỹk) in the minimization

166 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

s Terminal State t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

Initial State x0

Heuristic Partial Tour

Heuristic Partial Tour

Heuristic Partial TourHeuristic Partial Tour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

Heuristic Partial Tour from A from AB from AC from AD

Heuristic Partial Tour from A from AB from AC from ADHeuristic Partial Tour from A from AB from AC from AD

Capacity=1 Optimal Solution 20 15

Capacity=1 Optimal Solution 20 15

Stages Beyond Truncation Rollout Choice

Stages Beyond Truncation Rollout Choice

Heuristic from AB

Safety Costs of Complete Tours ABCDA
Safety Costs of Complete Tours ABCDA

Constraint: Tour Safety

Constraint: Tour Safety ≤ 10

Figure 6.6.3 The constrained traveling salesman problem; cf. Example 6.6.1,
and its rollout solution using the base heuristic shown, which completes a partial
tour as follows:

At A it yields ACDBA.
At AB it yields ABCDA.
At AC it yields ACBDA.
At AD it yields ADCBA.

This base heuristic is not assumed to have any special structure. It is just capable
of completing every partial tour without regard to any additional considerations.
Thus for example the heuristic generates at A the complete tour ACDBA, and it
switches to the tour ACBDA once the salesman moves to AC.

At city A, the rollout algorithm:

(a) Considers the partial tours AB, AC, and AD.

(b) Uses the base heuristic to obtain the corresponding complete tours ABCDA,
ACBDA, and ADCBA.

(c) Discards ADCBA as being infeasible.

(d) Compares the other two tours, ABCDA and ACBDA, finds ABCDA to
have smaller cost, and selects the partial tour AB.

(e) At AB, it considers the partial tours ABC and ABD.

(f) It uses the base heuristic to obtain the corresponding complete tours ABCDA
and ABDCA, and discards ABDCA as being infeasible.

(g) It finally selects the complete tour ABCDA.

Sec. 6.6 Constrained Forms of Rollout Algorithms 167

(6.35) is nonempty, and that the costs of the complete trajectories Tk(ỹk, ũk)
are improving with each k in the sense that

G
(

Tk+1(ỹk+1, ũk+1)
)

≤ G
(

Tk(ỹk, ũk)
)

, k = 0, 1, . . . , N − 1,

while at the first step of the algorithm we have

G
(

T0(ỹ0, ũ0)
)

≤ G
(

R(ỹ0)
)

.

It will then follow that the cost improvement property

G(ỹN) ≤ G
(

R(ỹ0)
)

holds.

Definition 6.6.1: We say that the base heuristic is sequentially con-
sistent if whenever it generates a partial trajectory

(xk, uk, xk+1, uk+1, . . . , uN−1, xN),

starting from a partial trajectory yk, it also generates the partial tra-
jectory

(xk+1, uk+1, xk+2, uk+2, . . . , uN−1, xN),

starting from the partial trajectory yk+1 =
(

yk, uk, xk+1

)

.

As we have noted in the context of unconstrained rollout, greedy
heuristics tend to be sequentially consistent. Also any policy [a sequence
of feedback control functions µk(yk), k = 0, 1, . . . , N−1] for the DP problem
of minimizing the terminal cost G(yN) subject to the system equation

yk+1 =
(

yk, uk, fk(xk, uk)
)

and the feasibility constraint yN ∈ C can be seen to be sequentially consis-
tent. For an example where sequential consistency is violated, consider the
base heuristic of the traveling salesman Example 6.6.1. From Fig. 6.6.3, it
can be seen that the base heuristic at A generates ACDBA, but from AC
it generates ACBDA, thus violating sequential consistency.

For a given partial trajectory yk, let us denote by yk∪R(yk) the com-
plete trajectory obtained by joining yk with the partial trajectory generated
by the base heuristic starting from yk. Thus if

yk = (x0, u0, . . . , uk−1, xk)

and
R(yk) = (xk, uk+1, . . . , uN−1, xN),

168 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

we have

yk ∪R(yk) = (x0, u0, . . . , uk−1, xk, uk+1, . . . , uN−1, xN).

Definition 6.6.2: We say that the base heuristic is sequentially im-
proving if for every k = 0, 1, . . . , N − 1 and partial trajectory yk for
which yk ∪R(yk) ∈ C, the set Uk(yk) is nonempty, and we have

G
(

yk ∪R(yk)
)

≥ min
uk∈Uk(yk)

G
(

Tk(yk, uk)
)

. (6.36)

Note that for a base heuristic that is not sequentially consistent, the
condition yk ∪R(yk) ∈ C does not imply that the set Uk(yk) is nonempty.
The reason is that starting from

(

yk, uk, fk(xk, uk)
)

the base heuristic may
generate a different trajectory than from yk, even if it applies uk at yk.
Thus we need to include nonemptiness of Uk(yk) as a requirement in the
preceding definition of sequential improvement (in the fortified version of
the algorithm to be discussed shortly, this requirement will be removed).

On the other hand, if the base heuristic is sequentially consistent, it is
also sequentially improving. The reason is that for a sequentially consistent
heuristic, yk ∪R(yk) is equal to one of the trajectories contained in the set

{

Tk(yk, uk) | uk ∈ Uk(yk)
}

.

Our main result is contained in the following proposition.

Proposition 6.6.1: (Cost Improvement for Constrained Roll-
out) Assume that the base heuristic is sequentially improving and
generates a feasible complete trajectory starting from the initial state
ỹ0 = x̃0, i.e., R(ỹ0) ∈ C. Then for each k, the set Uk(ỹk) is nonempty,
and we have

G
(

R(ỹ0)
)

≥ G
(

T0(ỹ0, ũ0)
)

≥ G
(

T1(ỹ1, ũ1)
)

≥ · · ·

≥ G
(

TN−1(ỹN−1, ũN−1)
)

= G(ỹN),

Sec. 6.6 Constrained Forms of Rollout Algorithms 169

where
Tk(ỹk, ũk) =

(

ỹk, ũk, R(ỹk+1)
)

;

cf. Eq. (6.30). In particular, the final trajectory ỹN generated by the
constrained rollout algorithm is feasible and has no larger cost than
the trajectory R(ỹ0) generated by the base heuristic starting from the
initial state.

Proof: Consider R(ỹ0), the complete trajectory generated by the base
heuristic starting from ỹ0. Since ỹ0 ∪ R(ỹ0) = R(ỹ0) ∈ C by assumption,
it follows from the sequential improvement definition, that the set U0(ỹ0)
is nonempty and we have

G
(

R(ỹ0)
)

≥ G
(

T0(ỹ0, ũ0)
)

,

[cf. Eq. (6.36)], while T0(ỹ0, ũ0) ∈ C.
The preceding argument can be repeated for the next stage, by replac-

ing ỹ0 with ỹ1, and R(ỹ0) with T0(ỹ0, ũ0). Since ỹ1∪R(ỹ1) = T0(ỹ0, ũ0) ∈ C,
from the sequential improvement definition, the set U1(ỹ1) is nonempty and
we have

G
(

T0(ỹ0, ũ0)
)

= G
(

ỹ1 ∪R(ỹ1)
)

≥ G
(

T1(ỹ1, ũ1)
)

,

[cf. Eq. (6.36)], while T1(ỹ1, ũ1) ∈ C. Similarly, the argument can be
successively repeated for every k, to verify that Uk(ỹk) is nonempty and
that G

(

Tk(ỹk, ũk)
)

≥ G
(

Tk+1(ỹk+1, ũk+1)
)

for all k. Q.E.D.

Proposition 6.6.1 establishes the fundamental cost improvement prop-
erty for constrained rollout under the sequential improvement condition.
On the other hand we may construct examples where the sequential im-
provement condition (6.36) is violated and the cost of the solution pro-
duced by rollout is larger than the cost of the solution produced by the
base heuristic starting from the initial state (cf. the unconstrained rollout
Example 6.4.2).

In the case of the traveling salesman Example 6.6.1, it can be verified
that the base heuristic specified in Fig. 6.6.3 is sequentially improving.
However, if the travel cost D→A were larger, say 25, then it can be verified
that the definition of sequential improvement would be violated at A, and
the tour produced by constrained rollout would be more costly than the
one produced by the base heuristic starting from A.

The Fortified Rollout Algorithm and Other Variations

We will now discuss some variations and extensions of the constrained
rollout algorithm. Let us first consider the case where the sequential im-
provement assumption is not satisfied. Then it may happen that given the

170 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

current partial trajectory ỹk, the set of controls Uk(ỹk) that corresponds to
feasible trajectories Tk(ỹk, uk) [cf. Eq. (6.31)] is empty, in which case the
rollout algorithm cannot extend the partial trajectory ỹk further. To by-
pass this difficulty, we introduce a fortified constrained rollout algorithm,
patterned after the fortified algorithm given earlier. For validity of this
algorithm, we require that the base heuristic generates a feasible complete
trajectory R(ỹ0) starting from the initial state ỹ0.

The fortified constrained rollout algorithm, in addition to the current
partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

maintains a complete trajectory T̂k, called tentative best trajectory, which
is feasible (i.e., T̂k ∈ C) and agrees with ỹk up to state x̃k, i.e., T̂k has the
form

T̂k = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k, uk, xk+1, . . . , uN−1, xN), (6.37)

for some uk, xk+1, . . . , uN−1, xN such that

xk+1 = fk(x̃k, uk), xt+1 = ft(xt, ut), t = k + 1, . . . , N − 1.

Initially, T̂0 is the complete trajectory R(ỹ0), generated by the base heuris-
tic starting from ỹ0, which is assumed to be feasible. At stage k, the
algorithm forms the subset Ûk(ỹk) of controls uk ∈ Uk(ỹk) such that the
corresponding Tk(ỹk, uk) is not only feasible, but also has cost that is no
larger than the one of the current tentative best trajectory:

Ûk(ỹk) =
{

uk ∈ Uk(ỹk) | G
(

Tk(ỹk, uk)
)

≤ G(T̂k)
}

.

There are two cases to consider at state k:

(1) The set Ûk(ỹk) is nonempty. Then the algorithm forms the partial
trajectory ỹk+1 = (ỹk, ũk, x̃k+1), where

ũk ∈ arg min
uk∈Ûk(ỹk)

G
(

Tk(ỹk, uk)
)

, x̃k+1 = fk(x̃k, ũk),

and sets Tk(ỹk, ũk) as the new tentative best trajectory, i.e.,

T̂k+1 = Tk(ỹk, ũk).

(2) The set Ûk(ỹk) is empty. Then, the algorithm forms the partial tra-
jectory ỹk+1 =

(

ỹk, ũk, x̃k+1), where

ũk = uk, x̃k+1 = xk+1,

Sec. 6.6 Constrained Forms of Rollout Algorithms 171

and uk, xk+1 are the control and state subsequent to x̃k in the current
tentative best trajectory T̂k [cf. Eq. (6.37)], and leaves T̂k unchanged,
i.e.,

T̂k+1 = T̂k.

It can be seen that the fortified constrained rollout algorithm will
follow the initial complete trajectory T̂0, the one generated by the base
heuristic starting from ỹ0, up to a stage k where it will discover a new
feasible complete trajectory with smaller cost to replace T̂0 as the tentative
best trajectory. Similarly, the new tentative best trajectory T̂k may be
subsequently replaced by another feasible trajectory with smaller cost, etc.

Note that if the base heuristic is sequentially improving, and the
fortified rollout algorithm will generate the same complete trajectory as
the (nonfortified) rollout algorithm given earlier, with the tentative best
trajectory T̂k+1 being equal to the complete trajectory Tk(ỹk, ũk) for all
k. The reason is that if the base heuristic is sequentially improving, the
controls ũk generated by the nonfortified algorithm belong to the set Ûk(ỹk)
[by Prop. 6.6.1, case (1) above will hold].

However, it can be verified that even when the base heuristic is not
sequentially improving, the fortified rollout algorithm will generate a com-
plete trajectory that is feasible and has cost that is no worse than the cost
of the complete trajectory generated by the base heuristic starting from ỹ0.
This is because each tentative best trajectory has a cost that is no worse
than the one of its predecessor, and the initial tentative best trajectory is
just the trajectory generated by the base heuristic starting from the initial
condition ỹ0.

Tree-Based Rollout Algorithms

It is possible to improve the performance of the rollout algorithm at the
expense of maintaining more than one partial trajectory. In particular,
instead of the partial trajectory ỹk of Eq. (6.34), we can maintain a tree of
partial trajectories that is rooted at ỹ0. These trajectories need not have
equal length, i.e., they need not involve the same number of stages. At
each step of the algorithm, we select a single partial trajectory from this
tree, and execute the rollout algorithm’s step as if this partial trajectory
were the only one. Let this partial trajectory have k stages and denote it
by ỹk. Then we extend ỹk similar to our earlier rollout algorithm, with
possibly multiple feasible trajectories. There is also a fortified version of
this algorithm where a tentative best trajectory is maintained, which is the
minimum cost complete trajectory generated thus far.

The aim of the tree-based algorithm is to obtain improved perfor-
mance, essentially because it can go back and extend partial trajectories
that were generated and temporarily abandoned at previous stages. The
net result is a more flexible algorithm that is capable of examining more

172 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

alternative trajectories. Note also that there is considerable freedom to
select the number of partial trajectories maintained in the tree.

We finally mention a drawback of the tree-based algorithm: it is
suitable for off-line computation, but it cannot be applied in an on-line
context, where the rollout control selection is made after the current state
becomes known as the system evolves in real-time.

Constrained Multiagent Rollout

Let us consider a special structure of the control space, where the control
uk consists of m components, uk = (u1

k, . . . , u
m
k), each belonging to a cor-

responding set U !
k(xk), " = 1, . . . ,m. Thus the control space at stage k is

the Cartesian product

Uk(xk) = U1
k (xk)× · · ·× Um

k (xk).

We refer to this as the multiagent case, motivated by the special case where
each component u!

k, " = 1, . . . ,m, is chosen by a separate agent " at stage
k.

Similar to the stochastic unconstrained case of Chapter 3, we can
introduce a modified but equivalent problem, involving one-at-a-time agent
control selection. In particular, at the generic state xk, we break down
the control uk into the sequence of the m controls u1

k, u
2
k, . . . , u

m
k , and

between xk and the next state xk+1 = fk(xk, uk), we introduce artificial
intermediate “states”

(xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
m−1
k),

and corresponding transitions. The choice of the last control component
um
k at “state” (xk, u1

k, . . . , u
m−1
k) marks the transition at cost gk(xk, uk) to

the next state xk+1 = fk(xk, uk) according to the system equation. It is
evident that this reformulated problem is equivalent to the original, since
any control choice that is possible in one problem is also possible in the
other problem, with the same cost.

By working with the reformulated problem, we can consider a rollout
algorithm that requires a sequence of m minimizations per stage, one over
each of the control components u1

k, . . . , u
m
k , with the past controls already

determined by the rollout algorithm, and the future controls determined
by running the base heuristic. Assuming a maximum of n elements in the
control component spaces U !

k(xk), " = 1, . . . ,m, the computation required
for the m single control component minimizations is of order O(nm) per
stage. By contrast the standard rollout minimization (6.35) involves the
computation and comparison of as many as nm terms G

(

Tk(ỹk, uk)
)

per
stage.

Sec. 6.7 Adaptive Control by Rollout with a POMDP Formulation 173

6.7 ADAPTIVE CONTROL BY ROLLOUT WITH A POMDP
FORMULATION

In this section, we discuss various approaches for the approximate solution
of Partially Observed Markovian Decision Problems (POMDP) with a spe-
cial structure, which is well-suited for adaptive control, as well as other
contexts that involve search for a hidden object. It is well known that
POMDP are among the most challenging DP problems, and nearly always
require the use of approximations for (suboptimal) solution.

The application and implementation of rollout and approximate PI
methods to general finite-state POMDP is described in the author’s RL
book [Ber19a] (Section 5.7.3). Here we will focus attention on a special
class of POMDP where the state consists of two components:

(a) A perfectly observed component xk that evolves over time according
to a discrete-time equation.

(b) A component θ which is unobserved but stays constant, and is esti-
mated through the perfect observations of the component xk.

We view θ as a parameter in the system equation that governs the evolution
of xk. Thus we have

xk+1 = fk(xk, θ, uk, wk), (6.38)

where uk is the control at time k, selected from a set Uk(xk), and wk

is a random disturbance with given probability distribution that depends
on (xk, θ, uk). We will assume that θ can take one of m known values
θ1, . . . , θm:

θ ∈ {θ1, . . . , θm}.

The a priori probability distribution of θ is given and is updated based
on the observed values of the state components xk and the applied controls
uk. In particular, we assume that the information vector

Ik = {x0, . . . , xk, u0, . . . , uk−1}

is available at time k, and is used to compute the conditional probabilities

bk,i = P{θ = θi | Ik}, i = 1, . . . ,m.

These probabilities form a vector

bk = (bk,1, . . . , bk,m),

which together with the perfectly observed state xk, form the pair (xk, bk)
that is commonly called the belief state of the POMDP at time k.

Note that according to the classical methodology of POMDP (see
e.g., [Ber17a], Chapter 4), the belief component bk+1 is determined by the

174 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

belief state (xk, bk), the control uk, and the observation obtained at time
k + 1, i.e., xk+1. Thus bk can be updated according to an equation of the
form

bk+1 = Bk(xk, bk, uk, xk+1),

where Bk is an appropriate function, which can be viewed as a recursive
estimator of θ. There are several approaches to implement this estimator
(perhaps with some approximation error), including the use of Bayes’ rule
and the simulation-based method of particle filtering.

The preceding mathematical model forms the basis for a classical
adaptive control formulation, where each θi represents an unknown set
of system parameters, and the computation of the belief probabilities bk,i
can be viewed as the outcome of a system identification algorithm. In this
context, the problem becomes one of dual control , a combined identification
and control problem, whose optimal solution is notoriously difficult.

Another interesting context arises in search problems, where θ spec-
ifies the locations of one or more objects of interest within a given space.
Further related applications include sequential estimation and Bayesian op-
timization (see the author’s paper [Ber22c]), and puzzles such as Wordle,
which will be discussed briefly later in this section.

The Exact DP Algorithm - Approximation in Value Space

We will now describe an exact DP algorithm that operates in the space of
information vectors Ik. To describe this algorithm, let us denote by Jk(Ik)
the optimal cost starting at information vector Ik at time k. Using the
equation

Ik+1 = (Ik, xk+1, uk) =
(

Ik, fk(xk, θ, uk, wk), uk

)

,

the algorithm takes the form

Jk(Ik) = min
uk∈Uk(xk)

Eθ,wk

{

gk(xk, θ, uk, wk)+

Jk+1

(

Ik, fk(xk, θ, uk, wk), uk

)

| Ik, uk

}

,

(6.39)
for k = 0, . . . , N − 1, with JN (IN) = gN (xN); see e.g., the DP textbook
[Ber17a], Section 4.1.

By using the law of iterated expectations,

Eθ,wk
{· | Ik, uk} = Eθ

{

Ewk
{· | Ik, θ, uk} | Ik, uk

}

,

we can rewrite this DP algorithm as

Jk(Ik) = min
uk∈Uk(xk)

m
∑

i=1

bk,iEwk

{

gk(xk, θi, uk, wk)+

Jk+1

(

Ik, fk(xk, θi, uk, wk), uk

)

| Ik, θi, uk

}

.

(6.40)

Sec. 6.7 Adaptive Control by Rollout with a POMDP Formulation 175

The summation over i above represents the expected value of θ conditioned
on Ik and uk.

The algorithm (6.40) is typically very hard to implement, because
of the dependence of Jk+1 on the entire information vector Ik+1, which
expands in size according to

Ik+1 = (Ik, xk+1, uk).

To address this implementation difficulty, we may use approximation in
value space, based on replacing Jk+1 in the DP algorithm (6.39) with some
function that can be obtained (either off-line or on-line) with a tractable
computation.

One approximation possibility is based on the use of the optimal cost
function corresponding to each parameter value θi,

Ĵ i
k+1(xk+1), i = 1, . . . ,m. (6.41)

Here, Ĵ i
k+1(xk+1) is the optimal cost that would be obtained starting from

state xk+1 under the assumption that θ = θi; this corresponds to a perfect
state information problem. Then an approximation in value space scheme
with one-step lookahead minimization is given by

ũk ∈ arg min
uk∈Uk(xk)

m
∑

i=1

bk,iEwk

{

gk(xk, θi, uk, wk)+

Ĵ i
k+1

(

fk(xk, θi, uk, wk)
)

| xk, θi, uk

}

.

(6.42)
In particular, instead of the optimal control, which minimizes the optimal
Q-factor of (Ik, uk) appearing in the right side of Eq. (6.39), we apply
control ũk that minimizes the expected value over θ of the optimal Q-
factors that correspond to fixed values of θ.

A simpler version of this approach is to use the same function Ĵ i
k+1 for

every i. However, the dependence on imay be useful in some contexts where
differences in the value of i may have a radical effect on the qualitative
character of the system equation.

Generally, the optimal costs Ĵ i
k+1(xk+1) that correspond to the dif-

ferent parameter values θi [cf. Eq. (6.41)] may be hard to compute, despite
their perfect state information structure.† An alternative possibility is to
use off-line trained feature-based or neural network-based approximations
to Ĵ i

k+1(xk+1).

† In favorable special cases, such as linear quadratic problems, the optimal

costs Ĵ i
k+1(xk+1) may be easily calculated in closed form. Still, however, even in

such cases the calculation of the belief probabilities bk,i may not be simple, and
may require the use of a system identification algorithm.

176 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

In the case where the horizon is infinite, it is reasonable to expect
that the estimate of the parameter θ improves over time, and that with a
suitable estimation scheme, it converges asymptotically to the correct value
of θ, call it θ∗, i.e.,

lim
k→∞

bk,i =

{

1 if θi = θ∗,
0 if θi)= θ∗.

Then it can be seen that the generated one-step lookahead controls ũk are
asymptotically obtained from the Bellman equation that corresponds to
the correct parameter θ∗, and are typically optimal in some asymptotic
sense. Schemes of this type have been discussed in the adaptive control lit-
erature since the 70s; see e.g., Mandl [Man74], Doshi and Shreve [DoS80],
Kumar and Lin [KuL82], Kumar [Kum85]. Moreover, some of the pitfalls
of performing parameter identification while simultaneously applying adap-
tive control have been described by Borkar and Varaiya [BoV79], and by
Kumar [Kum83]; see [Ber17a], Section 6.8 for a related discussion.

Rollout

Another possibility is to use the costs of given policies πi in place of the
optimal costs Ĵ i

k+1(xk+1). In this case the one-step lookahead scheme (6.42)
takes the form

ũk ∈ arg min
uk∈Uk(xk)

m∑

i=1

bk,iEwk

{

gk(xk, θi, uk, wk)+

Ĵ i
k+1,πi

(

fk(xk, θi, uk, wk)
)

| xk, θi, uk

}

,

(6.43)
and has the character of a rollout algorithm, with πi = {µi

0, . . . , µ
i
N−1},

i = 1, . . . ,m, being known base policies, with components µi
k that depend

only on xk. Here, the term

Ĵ i
k+1,πi

(

fk(xk, θi, uk, wk)
)

in Eq. (6.43) is the cost of the base policy πi, calculated starting from the
next state

xk+1 = fk(xk, θi, uk, wk),

under the assumption that θ will stay fixed at the value θ = θi until the
end of the horizon.

This algorithm is related to the adaptive control/rollout algorithm
that we discussed earlier in Section 5.2. Indeed, when the belief proba-
bilities bk,i imply certainty, i.e., bk,̄i = 1 for some parameter index ī, and
bk,i = 0 for i)= ī, the algorithm (6.43) is identical to the rollout by re-
optimization algorithm of Section 5.2, where it is assumed that the model
of the system has been estimated exactly. Also if all the policies πi are

Sec. 6.7 Adaptive Control by Rollout with a POMDP Formulation 177

the same, a cost improvement property similar to the ones shown earlier
can be proved. For further discussion and connections to the Bayesian
optimization methodology, we refer to the author’s paper [Ber22c].

The Case of a Deterministic System

Let us now consider the case where the system (6.38) is deterministic of
the form

xk+1 = fk(xk, θ, uk). (6.44)

Then, while the problem still has a stochastic character due to the uncer-
tainty about the value of θ, the DP algorithm (6.40) and its approximation
in value space counterparts are greatly simplified because there is no expec-
tation over wk to contend with. Indeed, given a state xk, a parameter θi,
and a control uk, the on-line computation of the control of the rollout-like
algorithm (6.43), takes the form

ũk ∈ arg min
uk∈Uk(xk)

m
∑

i=1

bk,i

(

gk(xk, θi, uk)+ Ĵ i
k+1,πi

(

fk(xk, θi, uk)
)
)

. (6.45)

The computation of Ĵ i
k+1,πi

(

fk(xk, θi, uk)
)

involves a deterministic propa-

gation from the state xk+1 of Eq. (6.44) up to the end of the horizon, using
the base policy πi, while assuming that θ is fixed at the value θi.

In particular, the term

Qk(uk, θi) = gk(xk, θi, uk) + Ĵ i
k+1,πi

(

fk(xk, θi, uk)
)

(6.46)

appearing on the right side of Eq. (6.45) is viewed as a Q-factor that must
be computed for every pair (uk, θi), uk ∈ Uk(xk), i = 1, . . . ,m, using the
base policy πi. The expected value of this Q-factor,

Q̂k(uk) =
m
∑

i=1

bk,iQk(uk, θi),

must then be calculated for every uk ∈ Uk(xk), and the computation of the
rollout control ũk is obtained from the minimization

ũk ∈ arg min
uk∈Uk(xk)

Q̂k(uk); (6.47)

cf. Eq. (6.45). This computation is illustrated in Fig. 6.7.1.
The case of a deterministic system is particularly interesting because

we can typically expect that the true parameter θ∗ is identified in a fi-
nite number of stages, since at each stage k, we are receiving a noiseless
measurement relating to θ, namely the state xk. Once this happens, the
problem becomes one of perfect state information.

178 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

x0) . . .

)
.
.
.

)
.
.
.

uk x

k xN

k xk+1

k u
′

k

. . . Q-Factors

-Factors Current State x

Current State xk

∗
x
′

k+1

0 x1

x

′′

k+1

x

′′′

k+1

2 Next States Final States

Next States Final States

u θ1

θ2

u θ1

θ2

Price Rise Base Policy π
1

Price Rise Base Policy π
1

Base Policy π
2

Base Policy π
2

Figure 6.7.1 Schematic illustration of adaptive control by rollout for determin-
istic systems; cf. Eqs. (6.46) and (6.47). The Q-factors Qk(uk , θ

i) are averaged
over θi, using the current belief distribution bk , and the control applied is the one
that minimizes the averaged Q-factor

∑m

i=1
bk,iQk(uk , θ

i) over uk ∈ Uk(xk).

An illustration similar to the one of Fig. 6.7.1 applies to the rollout
scheme (6.43) for the case of a stochastic system. In this case, a Q-factor

Qk(uk, θi, wk) = gk(xk, θi, uk, wk) + Ĵ i
k+1,πi

(

fk(xk, θi, uk, wk)
)

must be calculated for every triplet (uk, θi, wk), using the base policy πi.
The rollout control ũk is obtained by minimizing the expected value of this
Q-factor [averaged using the distribution of (θ, wk)]; cf. Eq. (6.43).

An interesting and intuitive example that demonstrates the determin-
istic system case is the popular Wordle puzzle.

Example 6.7.1 (The Wordle Puzzle)

In the classical form of this puzzle, we try to guess a mystery word θ∗ out
of a known finite collection of 5-letter words. This is done with sequential
guesses each of which provides additional information on the correct word θ∗,
by using certain given rules to shrink the current mystery list (the smallest list
that contains θ∗, based on the currently available information). The objective
is to minimize the number of guesses to find θ∗ (using more than 6 guesses
is considered to be a loss). This type of puzzle descends from the classical
family of Mastermind puzzles that centers around decoding a secret sequence
of objects (e.g., letters or colors) using partial observations.

The rules for shrinking the mystery list relate to the common letters
between the word guesses and the mystery word θ∗, and they will not be de-
scribed here (there is a large literature regarding the Wordle puzzle). More-
over, θ∗ is assumed to be chosen from the initial collection of 5-letter words

Sec. 6.7 Adaptive Control by Rollout with a POMDP Formulation 179

according to a uniform distribution. Under this assumption, it can be shown
that the belief distribution bk at stage k continues to be uniform over the mys-
tery list. As a result, we may use as state xk the mystery list at stage k, which
evolves deterministically according to an equation of the form (6.44), where
uk is the guess word at stage k. There are several base policies to use in the
rollout-like algorithm (6.45), which are described in the paper by Bhambri,
Bhattacharjee, and Bertsekas [BBB22], together with computational results
that show that the corresponding rollout algorithm (6.45) performs remark-
ably close to optimal.

The rollout approach also applies to several variations of the Wordle
puzzle. Such variations may include for example a larger length ! > 5 of mys-
tery words, and/or a known nonuniform distribution over the initial collection
of !-letter words; see [BBB22].

Belief-Based Approximation in Value Space and Rollout

We will now consider an alternative belief-based DP algorithm, given by

J ′
k(xk, bk) = min

uk∈Uk(xk)
Eθ,wk

{

gk(xk, θ, uk, wk)+J ′
k+1(xk+1, bk+1)

}

, (6.48)

where

xk+1 = fk(xk, θ, uk, wk), bk+1 = Bk(xk, bk, uk, xk+1).

The relation between the algorithms (6.39) and (6.48) is that if we write
bk as a function of Ik, then the equality

Jk(Ik) = J ′
k(xk, bk)

holds as an identity, i.e., for all Ik; see e.g., [Ber17a], Chapter 4.
Let us consider approximations whereby we replace J ′

k+1 with some
other function that is more easily computable, in the spirit of approxima-
tion in value space. There are several possibilities along this line, some of
which have been discussed in previous sections. In particular, in a rollout
algorithm we introduce a base policy π = {µ0, . . . , µN−1}, with compo-
nents µk that are functions of (xk, bk), and we use in place of J ′

k+1, the
cost function J ′

k+1,π of π. This yields the algorithm

ũk ∈ arg min
uk∈Uk(xk)

Eθ,wk

{

gk(xk, θ, uk, wk)+

J ′
k+1,π

(

xk+1, Bk(xk, bk, uk, xk+1)
)
}

,

where xk+1 is given by

xk+1 = fk(xk, θ, uk, wk).

180 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

Example 6.7.2 (Searching Multiple Sites for a Treasure)

In a classical and challenging problem of search, there are m sites, denoted
1, . . . ,m, one and only one of which contains a treasure. We assume that
searching a site i costs a known amount ci > 0. If site i is searched and a
treasure is present at the site, the search reveals it with probability pi, in
which case the process terminates and no further costs are incurred. The
problem is to find the search strategy that minimizes the total expected cost
to find the treasure.

The basic structure of this problem arises in a broad variety of appli-
cations, such as search-and-rescue, inspection-and-repair, as well as various
artificial intelligence search contexts. The range of applications is expanded
by considering variants of the problem that involve multiple treasures with
site-dependent values, and multiple agents/searchers with agent-dependent
search costs. Some related problems admit an exact analytical solution. A
simple case is discussed in Example 4.3.1 of the DP textbook [Ber17]. A re-
lated but structurally different formulation arises in the context of multiarmed
bandit problems; see the DP textbook [Ber12], Example 1.3.1.

The probability that site i contains the treasure at the start of stage k,
i.e., after k searches, is denoted by bk,i. The vector

bk = (bk,1, . . . , bk,m),

is the belief state of the POMDP problem, and the initial belief state b0 is
given. While the treasure has not yet been found, the control uk at stage k is
the choice of the site to search and takes one of the m values 1, . . . , m. To be
precise, the belief state also includes a state xk which has two possible values:
“treasure not found” and the termination state “treasure found,” and there
is a trivial system equation whereby xk transitions to the termination state
once a successful search occurs.

The belief states evolves according to an equation that is calculated
with the aid of Bayes’ rule. In particular, assume that the treasure has not
yet been found, and site ī is searched at time k. Then by applying Bayes’
rule, it can be verified that the probability bk,̄i is updated according to

bk+1,̄i =

{
1 if the search finds the treasure,

bk,̄i(1−pī)

bk,̄i(1−pī)+
∑

i%=ī
bk,i

if the search does not find the treasure,

and the probabilities bk,j with j "= ī are updated according to

bk+1,j =

{
0 if the search finds the treasure,

bk,j

bk,̄i(1−pī)+
∑

i%=ī
bk,i

if the search does not find the treasure.

We write these equations in the abstract form

bk+1,i = Bi
k(bk, uk, xk+1),

Sec. 6.8 Rollout for Minimax Control 181

where xk+1 takes values “treasure found” and “treasure not found” with prob-
abilities bk,̄ipī and 1−bk,̄ipī, respectively (uk here is the site ī that is searched
at time k).

Suppose now that we have a base policy π = {µ0, µ1, . . .} that consists
of functions µk, which given the current belief state bk, choose to search site
µk(bk). Then assuming that the treasure has not yet been found at time k,
the rollout algorithm (6.43) takes the form

ũk ∈ arg min
uk∈{1,...,m}

[

cuk + Exk+1

{

J
′
k+1,π

(

Bk(bk, uk, xk+1)
)
}]

, (6.49)

where J ′
k+1,π

(

Bk(bk, uk, xk+1)
)

is the expected cost of the base policy starting
from belief state

Bk(bk, uk, xk+1) =
(

B1
k(bk, uk, xk+1), . . . , B

m
k (bk, uk, xk+1)

)

.

The cost J ′
k+1,π(bk+1) appearing in Eq. (6.49), starting from a belief state

bk+1, can be computed using the law of iterated expectations as follows: For
each i = 1, . . . ,m, we compute the cost Ci,π that would be incurred starting
from bk+1 and using π, while assuming that the treasure is located at site i;
this can be done for example by simulation. We then set

J ′
k+1,π(bk+1) =

m
∑

i=1

bk+1,iCi,π.

There are several possibilities for base policy π, which are likely context
dependent. For a simple example, we may let π be the greedy policy that
searches the site ī of maximum success probability:

ī ∈ arg max
i∈{1,...,m}

bk,i.

In conclusion, assuming that the terms

Exk+1

{

J ′
k+1,π

(

Bk(bk, uk, xk+1)
)
}

are available on-line for all bk and uk, through a combination of on-line and off-
line computation (that may involve simulation), the algorithm (6.49) admits
a tractable implementation, which yields a one-step lookahead suboptimal
policy.

6.8 ROLLOUT FOR MINIMAX CONTROL

The problem of optimal control of uncertain systems is usually treated
within a stochastic framework, whereby all disturbances w0, . . . , wN−1 are
described by probability distributions, and the expected value of the cost is
minimized. However, in many practical situations a stochastic description

182 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

of the disturbances may not be available, but one may have information
with less detailed structure, such as bounds on their magnitude. In other
words, one may know a set within which the disturbances are known to lie,
but may not know the corresponding probability distribution. Under these
circumstances one may use a minimax approach, whereby the worst possi-
ble values of the disturbances within the given set are assumed to occur.
Within this context, we take the view that the disturbances are chosen by
an antagonistic opponent. The minimax approach is also connected with
two-player games, when in lack of information about the opponent, we
adopt a worst case viewpoint during on-line play, as well as with contexts
where we wish to guard against adversarial attacks.†

To be specific, consider a finite horizon context, and assume that the
disturbances w0, w1, . . . , wN−1 do not have a probabilistic description but
rather are known to belong to corresponding given sets Wk(xk, uk) ⊂ Dk,
k = 0, 1, . . . , N − 1, which may depend on the current state xk and control
uk. The minimax control problem is to find a policy π = {µ0, . . . , µN−1}
with µk(xk) ∈ Uk(xk) for all xk and k, which minimizes the cost function

Jπ(x0) = max
wk∈Wk(xk,µk(xk))

k=0,1,...,N−1

[

gN (xN) +
N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

]

.

The DP algorithm for this problem takes the following form, which resem-
bles the one corresponding to the stochastic DP problem (maximization is
used in place of expectation):

J∗
N (xN) = gN (xN), (6.50)

J∗
k (xk) = min

uk∈U(xk)
max

wk∈Wk(xk,uk)

[

gk(xk, uk, wk) + J∗
k+1

(

fk(xk, uk, wk)
)]

.

(6.51)
This algorithm can be explained by using a principle of optimality

type of argument. In particular, we consider the tail subproblem whereby
we are at state xk at time k, and we wish to minimize the “cost-to-go”

max
wt∈Wt(xt,µt(xt))
t=k,k+1,...,N−1

[

gN (xN) +
N−1
∑

t=k

gt
(

xt, µt(xt), wt

)

]

.

We argue that if π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} is an optimal policy for the min-

imax problem, then the tail of the policy {µ∗
k, µ

∗
k+1, . . . , µ

∗
N−1} is optimal

† The minimax approach to decision and control has its origins in the 50s
and 60s. It is also referred to by other names, depending on the underlying

context, such as robust control , robust optimization, control with a set membership

description of the uncertainty , and games against nature. In this book, we will
be using the minimax control name.

Sec. 6.8 Rollout for Minimax Control 183

for the tail subproblem. The optimal cost of this subproblem is J∗
k (xk),

as given by the DP algorithm (6.50)-(6.51). The algorithm expresses the
intuitive fact that when at state xk at time k, then regardless of what hap-
pened in the past, we should choose uk that minimizes the worst/maximum
value over wk of the sum of the current stage cost plus the optimal cost
of the tail subproblem that starts from the next state. This argument re-
quires a mathematical proof, which turns out to involve a few fine points.
For a detailed mathematical derivation, we refer to the author’s textbook
[Ber17a], Section 1.6. However, the DP algorithm (6.50)-(6.51) is correct
assuming finite state and control spaces, among other cases.

Approximation in Value Space and Minimax Rollout

The approximation ideas for stochastic optimal control are also relevant
within the minimax context. In particular, approximation in value space
with one-step lookahead applies at state xk a control

ũk ∈ arg min
uk∈Uk(xk)

max
wk∈Wk(xk,uk)

[

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)
]

,

(6.52)
where J̃k+1(xk+1) is an approximation to the optimal cost-to-go J∗

k+1(xk+1)
from state xk+1.

Rollout is obtained when this approximation is the tail cost of some
base policy π = {µ0, . . . , µN−1}:

J̃k+1(xk+1) = Jk+1,π(xk+1).

Given π, we can compute Jk+1,π(xk+1) by solving a deterministic maxi-
mization DP problem with the disturbances wk+1, . . . , wN−1 playing the
role of “optimization variables/controls.” For finite state, control, and dis-
turbance spaces, this is a longest path problem defined on an acyclic graph,
since the control variables uk+1, . . . , uN−1 are determined by the base pol-
icy. It is then straightforward to implement rollout: at xk we generate all
next states of the form

xk+1 = fk(xk, uk, wk)

corresponding to all possible values of uk ∈ Uk(xk) and wk ∈ Wk(xk, uk).
We then run the maximization/longest path problem described above to
compute J̃k+1(xk+1) from each of these possible next states xk+1. Finally,
we obtain the rollout control ũk by solving the minimax problem in Eq.
(6.52). Moreover, it is possible to use truncated rollout to approximate
the tail cost of the base policy. For a more detailed discussion of this
implementation, see the author’s paper [Ber19d] (Section 5.4).

Note that like all rollout algorithms, the minimax rollout algorithm is
well-suited for on-line replanning in problems where data may be changing
or may be revealed during the process of control selection.

184 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

We mentioned earlier that deterministic problems allow a more gen-
eral form of rollout, whereby we may use a base heuristic that need not
be a legitimate policy, i.e., it need not be sequentially consistent. For cost
improvement it is sufficient that the heuristic be sequentially improving. A
similarly more general view of rollout is not easily constructed for stochastic
problems, but is possible for minimax control.

In particular, suppose that at any state xk there is a heuristic that
generates a sequence of feasible controls and disturbances, and correspond-
ing states,

{uk, wk, xk+1, uk+1, wk+1, xk+2, . . . , uN−1, wN−1, xN},

with corresponding cost

Hk(xk) = gk(xk, uk, wk) + · · ·+ gN−1(xN−1, uN−1, wN−1) + gN (xN).

Then the rollout algorithm applies at state xk a control

ũk ∈ arg min
uk∈Uk(xk)

max
wk∈Wk(xk,uk)

[

gk(xk, uk, wk) +Hk+1

(

fk(xk, uk, wk)
)
]

.

This does not preclude the possibility that the disturbances wk, . . . , wN−1

are chosen by an antagonistic opponent, but allows more general choices
of disturbances, obtained for example, by some form of approximate max-
imization. For example, when the disturbance involves multiple compo-
nents, wk = (w1

k, . . . , w
m
k), corresponding to multiple opponent agents, the

heuristic may involve an agent-by-agent maximization strategy.
The sequential improvement condition, similar to the deterministic

case, is that for all xk and k,

min
uk∈Uk(xk)

max
wk∈Wk(xk,wk)

[

gk(xk, uk, wk) +Hk+1

(

fk(xk, uk, wk)
)
]

≤ Hk(xk).

It guarantees cost improvement, i.e., that for all xk and k, the rollout policy

π̃ = {µ̃0, . . . , µ̃N−1}

satisfies
Jk,π̃(xk) ≤ Hk(xk).

Thus, generally speaking, minimax rollout is fairly similar to rollout
for deterministic as well as stochastic DP problems. The main difference
with deterministic (or stochastic) problems is that to compute the Q-factor
of a control uk, we need to solve a maximization problem, rather than carry
out a deterministic (or Monte-Carlo, respectively) simulation with the given
base policy.

Sec. 6.8 Rollout for Minimax Control 185

Example 6.8.1 (Pursuit-Evasion Problems)

Consider a pursuit-evasion problem with state xk = (x1
k, x

2
k), where x1

k is
the location of the minimizer/pursuer and x2

k is the location of the maxi-
mizer/evader, at stage k, in a (finite node) graph defined in two- or three-
dimensional space. There is also a cost-free and absorbing termination state
that consists of a subset of pairs (x1, x2) that includes all pairs with x1 = x2.
The pursuer chooses one out of a finite number of actions uk ∈ Uk(xk) at each
stage k, when at state xk, and if the state is xk and the pursuer selects uk,
the evader may choose from a known set Xk+1(xk, uk) of next states xk+1,
which depends on (xk, uk). The objective of the pursuer is to minimize a
nonnegative terminal cost g(x1

N , x2
N) at the end of N stages (or reach the

termination state, which has cost 0 by assumption). A reasonable base pol-
icy for the pursuer can be precomputed by DP as follows: given the current
(nontermination) state xk = (x1

k, x
2
k), make a move along the path that starts

from x1
k and minimizes the terminal cost after N − k stages, under the as-

sumption that the evader will stay motionless at his current location x2
k. (In

a variation of this policy, the DP computation is done under the assumption
that the evader will follow some nominal sequence of moves.)

For the on-line computation of the rollout control, we need the max-
imal value of the terminal cost that the evader can achieve starting from
every xk+1 ∈ Xk+1(xk, uk), assuming that the pursuer will follow the base
policy (which has already been computed). We denote this maximal value
by J̃k+1(xk+1). The required values J̃k+1(xk+1) can be computed by an
(N − k)-stage DP computation involving the optimal choices of the evader,
while assuming the pursuer uses the (already computed) base policy. Then
the rollout control for the pursuer is obtained from the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

max
xk+1∈Xk+1(xk,uk)

J̃k+1(xk+1).

Note that the preceding algorithm can be adapted for the imperfect
information case where the pursuer knows x2

k imperfectly. This is possible
by using a form of assumed certainty equivalence: the pursuer’s base policy
and the evader’s maximization can be computed by using an estimate of the
current location x2

k instead of the unknown true location.

In the preceding pursuit-evasion example, the choice of the base policy
was facilitated by the special structure of the problem. Generally, however,
finding a suitable base policy that can be conveniently implemented is an
important problem-dependent issue.

Variants of Minimax Rollout

Several of the variants of rollout discussed earlier have analogs in the min-
imax context, e.g., truncation with terminal cost approximation, multistep
and selective step lookahead, and multiagent rollout. In particular, in the
"-step lookahead variant, we solve the "-stage problem

186 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

min
uk ,µk+1,...,µk+!−1

max
wt∈Wt(xt,ut)
t=k,...,k+!−1

{

gk(xk, uk, wk) +
k+!−1∑

t=k+1

gt
(

xt, µt(xt), wt

)

+Hk+!(xk+!)

}

,

we find an optimal solution ũk, µ̃k+1, . . . , µ̃k+!−1, and we apply the first
component ũk of that solution. As an example, this type of problem is
solved at each move of chess programs like AlphaZero, where the terminal
cost function is encoded through a position evaluator. In fact when multi-
step lookahead is used, special techniques such as alpha-beta pruning may
be used to accelerate the computations by eliminating unnecessary portions
of the lookahead graph. These techniques are well-known in the context of
the two-person computer game methodology, and are used widely in games
such as chess.

It is interesting to note that, contrary to the case of stochastic optimal
control, there is an on-line constrained form of rollout for minimax control.
Here there are some additional trajectory constraints of the form

(x0, u0, . . . , uN−1, xN) ∈ C,

where C is an arbitrary set. The modification needed is similar to the one
of Section 6.6: at partial trajectory

ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k),

generated by rollout, we use a heuristic with cost function Hk+1 to compute
the Q-factor

Q̃k(x̃k, uk) = max
wk ,...,wN−1

[

gk(x̃k, uk, wk)

+Hk+1

(

fk(x̃k, uk, wk), wk+1, . . . , wN−1

)
]

for each uk in the set Ũk(ỹk) that guarantee feasibility [we can check fea-
sibility here by running some algorithm that verifies whether the future
disturbances wk, . . . , wN−1 can be chosen to violate the constraint under
the base policy, starting from (ỹk, uk)]. Once the set of “feasible controls”
Ũk(ỹk) is computed, we can obtain the rollout control by the Q-factor
minimization:

ũk ∈ arg min
uk∈Ũk(ỹk)

Q̃k(x̃k, uk).

We may also use fortified versions of the unconstrained and con-
strained rollout algorithms, which guarantee a feasible cost-improved roll-
out policy. This requires the assumption that the base heuristic at the ini-
tial state produces a trajectory that is feasible for all possible disturbance
sequences. Similar to the deterministic case, there are also truncated and
multiagent versions of the minimax rollout algorithm.

Sec. 6.8 Rollout for Minimax Control 187

Example 6.8.2 (Multiagent Minimax Rollout)

Let us consider a minimax problem where the minimizer’s choice involves the
collective decision of m agents, u = (u1, . . . , um), with u! corresponding to
agent !, and constrained to lie within a finite set U !. Thus u must be chosen
from within the set

U = U1 × . . .× U !,

which is finite but grows exponentially in size with m. The maximizer’s
choice w is constrained to belong to a finite set W . We consider multiagent
rollout for the minimizer, and for simplicity, we focus on a two-stage problem.
However, there are straightforward extensions to a more general multistage
framework.

In particular, we assume that the minimizer knowing an initial state x0,
chooses u = (u1, . . . , um), with u! ∈ U !, ! = 1, . . . ,m, and a state transition

x1 = f0(x0, u)

occurs with cost g0(x0, u). Then the maximizer, knowing x1, chooses w ∈ W ,
and a terminal state

x2 = f1(x1, w)

is generated with cost
g1(x1, w) + g2(x2).

The problem is to select u ∈ U , to minimize

g0(x0, u) + max
w∈W

[

g(x1, w) + g2(x2)
]

.

The exact DP algorithm for this problem is given by

J∗
1 (x1) = max

w∈W

[

g1(x1, w) + g2
(

f1(x1, w)
)
]

,

J∗
0 (x0) = min

u∈U

[

g0(x0, u) + J∗
1

(

f0(x0, u)
)
]

.

This DP algorithm is computationally intractable for large m. The reason is
that the set of possible minimizer choices u grows exponentially with m, and
for each of these choices the value of J∗

1

(

f0(x0, u)
)

must be computed.
However, the problem can be solved approximately with multiagent

rollout, using a base policy µ = (µ1, . . . , µm). Then the number of times
J∗
1

(

f0(x0, u)
)

needs to be computed is dramatically reduced. This computa-
tion is done sequentially, one-agent-at-a-time, as follows:

ũ1 ∈ arg min
u1∈U1

[

g0
(

x0, u
1, µ2(x0), . . . , µ

m(x0)
)

+ J∗
1

(

f0
(

x0, u
1, µ2(x0), . . . , µ

m(x0)
)
)]

,

188 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

ũ2 ∈ arg min
u2∈U2

[

g0
(

x, ũ1, u2, µ3(x0), . . . , µ
m(x0)

)

+ J∗
1

(

f0
(

x0, ũ
1, u2, µ3(x0), . . . , µ

m(x0)
)
)]

,

.

ũm ∈ arg min
um∈Um

[

g0
(

x0, ũ
1, ũ2, . . . , ũm−1, um

)

+ J∗
1

(

f0
(

x0, ũ
1, ũ2, . . . , ũm−1, um

)
)]

.

In this algorithm, the number of times for which J∗
1

(

f0(x0, u)
)

must be com-
puted grows linearly with m.

When the number of stages is larger than two, a similar algorithm can
be used. Essentially, the one-stage maximizer’s cost function J∗

1 must be
replaced by the optimal cost function of a multistage maximization problem,
where the minimizer is constrained to use the base policy.

An interesting question is how do various algorithms work when ap-
proximations are used in the min-max and max-min problems? We can
certainly improve the minimizer’s policy assuming a fixed policy for the
maximizer . However, it is unclear how to improve both the minimizer’s
and the maximizer’s policies simultaneously. In practice, in symmetric
games , like chess, a common policy is trained for both players. In partic-
ular, in the AlphaZero and TD-Gammon programs this strategy is com-
putationally expedient and has worked well. However, there is no reliable
theory to guide the simultaneous training of policies for both maximizer
and minimizer, and it is quite plausible that unusual behavior may arise in
exceptional cases. Even exact policy iteration methods for Markov games
encounter serious convergence difficulties, and need to be modified for re-
liable behavior. The author’s paper [Ber21c] and book [Ber22a] (Chapter
5) address these convergence issues with modified versions of the policy
iteration method, and give many earlier references.

We finally note another source of difficulty in minimax control: New-
ton’s method applied to solution of the Bellman equation for minimax
problems exhibits more complex behavior than its expected value coun-
terpart. The reason is that the Bellman operator T for infinite horizon
problems, given by

(TJ)(x) = min
u∈U(x)

max
w∈W (x,u)

[

g(x, u, w) + αJ
(

f(x, u, w)
)
]

, for all x,

is neither convex nor concave as a function of J . To see this, note that the
function

max
w∈W (x,u)

[

g(x, u, w) + αJ
(

f(x, u, w)
)
]

,

viewed as a function of J [for fixed (x, u)], is convex, and when minimized
over u ∈ U(x), it becomes neither convex nor concave (cf. Fig. 3.9.4).

Sec. 6.8 Rollout for Minimax Control 189

As a result there are special di�culties in connection with convergence
of Newton’s method and the natural form of policy iteration, given by
Pollatschek and Avi-Itzhak [PoA69]; see also Chapter 5 of the author’s
abstract DP book [Ber22a].

Minimax Control and Zero-Sum Game Theory

Zero-sum game problems are viewed as fundamental in the field of eco-
nomics, and there is an extensive and time-honored theory around them.
In the case where the game involves a dynamic system

xk+1 = fk(xk, uk, wk),

and a cost function
gk(xk, uk, wk),

there are two players, the minimizer choosing uk 2 Uk(xk), and the maxi-
mizer choosing wk 2 Wk(xk), at each stage k. Such zero-sum games involve
two minimax control problems:

(a) The min-max problem, where the minimizer chooses a policy first
and the maximizer chooses a policy second with knowledge of the
minimizer’s policy. The DP algorithm for this problem has the form

J⇤
N (xN) = gN (xN),

J⇤
k (xk) = min

uk2Uk(xk)
max

wk2Wk(xk)

h
gk(xk, uk, wk)+J⇤

k+1

�
fk(xk, uk, wk)

�i
.

(b) The max-min problem, where the maximizer chooses policy first and
the minimizer chooses policy second with knowledge of the maxi-
mizer’s policy. The DP algorithm for this problem has the form

ĴN (xN) = gN (xN),

Ĵk(xk) = max
wk2Wk(xk)

min
uk2Uk(xk)

h
gk(xk, uk, wk)+ Ĵk+1

�
fk(xk, uk, wk)

�i
.

A basic and easily seen fact is that

Max-Min optimal value Min-Max optimal value.

Game theory is particularly interested on conditions that guarantee
that

Max-Min optimal value = Min-Max optimal value. (6.53)

However, this question is of limited interest in engineering contexts that
involve worst case design. Moreover, the validity of the minimax equality
(6.53) is beyond the range of practical RL. This is so primarily because once
approximations are introduced, the delicate assumptions that guarantee
this equality are disrupted.

190 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

6.9 SMALL STAGE COSTS AND LONG HORIZON -
CONTINUOUS-TIME ROLLOUT

Let us consider the deterministic one-step approximation in value space
scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[

gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)
]

. (6.54)

In the context of rollout, J̃k+1

(

fk(xk, uk)
)

is either the cost of the trajectory
generated by the base heuristic starting from the next state fk(xk, uk), or
some approximation that may involve truncation and terminal cost function
approximation, as in the truncated rollout scheme of Section 6.5.

There is a special difficulty within this context, which is often en-
countered in practice. It arises when the cost per stage gk(xk, uk) is either
0 or is small relative to the cost-to-go approximation J̃k+1

(

fk(xk, uk)
)

.
Then there is a potential pitfall to contend with: the cost approximation
errors that are inherent in the term J̃k+1

(

fk(xk, uk)
)

may overwhelm the
first stage cost term gk(xk, uk), with unpredictable consequences for the
quality of the one-step-lookahead policy π̃ = {µ̃0, . . . , µ̃N−1}. We will dis-
cuss this difficulty by first considering a discrete-time problem arising from
discretization of a continuous-time optimal control problem.

Continuous-Time Optimal Control and Approximation in Value
Space

Consider a problem that involves a vector differential equation of the form

ẋ(t) = h
(

x(t), u(t), t
)

, 0 ≤ t ≤ T, (6.55)

where x(t) ∈ #n is the state vector at time t, ẋ(t) ∈ #n is the vector of
first order time derivatives of the state at time t, u(t) ∈ U ⊂ #m is the
control vector at time t, where U is the control constraint set, and T is a
given terminal time. Starting from a given initial state x(0), we want to
find a feasible control trajectory

{

u(t) | t ∈ [0, T]
}

, which together with its
corresponding state trajectory

{

x(t) | t ∈ [0, T]
}

, minimizes a cost function
of the form

G
(

x(T)
)

+

∫ T

0
g
(

x(t), u(t), t
)

dt, (6.56)

where g represents cost per unit time, and G is a terminal cost function.
This is a classical problem with a long history.

Let us consider a simple conversion of the preceding continuous-time
problem to a discrete-time problem, while treading lightly over some of the
associated mathematical fine points. We introduce a small discretization
increment δ > 0, such that T = δN where N is a large integer, and we
replace the differential equation (6.55) by

xk+1 = xk + δ · hk(xk, uk), k = 0, . . . , N − 1.

Sec. 6.9 Small Stage Costs and Long Horizon 191

Here the function hk is given by

hk(xk, uk) = h
(

x(kδ), u(kδ), kδ
)

,

where we view {xk | k = 0, . . . , N − 1} and {uk | k = 0, . . . , N − 1} as state
and control trajectories, respectively, which approximate the corresponding
continuous-time trajectories:

xk ≈ x(kδ), uk ≈ u(kδ).

We also replace the cost function (6.56) by

gN(xN) +
N−1
∑

k=0

δ · gk(xk, uk),

where

gN(xN) = G
(

x(Nδ)
)

, gk(xk, uk) = g
(

x(kδ), u(kδ), kδ
)

.

Thus the approximation in value space scheme with time discretiza-
tion takes the form

µ̃k(xk) ∈ arg min
uk∈U

[

δ · gk(xk, uk) + J̃k+1

(

xk + δ · hk(xk, uk)
)
]

; (6.57)

where J̃k+1 is the function that approximates the cost-to-go starting from
a state at time k+1. We note here that the ratio of the terms δ ·gk(xk, uk)
and J̃k+1

(

xk+δ ·hk(xk, uk)
)

is likely to tend to 0 as δ → 0, since J̃k+1

(

xk+
δ ·hk(xk, uk)

)

ordinarily stays roughly constant at a nonzero level as δ → 0.
This suggests that the one-step lookahead minimization may be degraded
substantially by discretization, and other errors, including rollout trunca-
tion and terminal cost approximation. Note that a similar sensitivity to
errors may occur in other discrete-time models that involve frequent se-
lection of decisions, with cost per stage that is very small relative to the
cumulative cost over many stages and/or the terminal cost.

To deal with this difficulty, we subtract the constant J̃k(xk) in the
one-step-lookahead minimization (6.57), and write

µ̃k(xk) ∈ arg min
uk∈U

[

δ · gk(xk, uk) +
(

J̃k+1

(

xk + δ · hk(xk, uk)
)

− J̃k(xk)
)]

;

(6.58)
since J̃k(xk) does not depend on uk, the results of the minimization are
not affected. Assuming J̃k is differentiable with respect to its argument,
we can write

J̃k+1

(

xk + δ · hk(xk, uk)
)

− J̃k(xk) ≈ δ ·∇xJ̃k(xk)′hk(xk, uk),

192 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

where ∇xJ̃k denotes the gradient of Jk (a column vector), and prime de-
notes transposition. By dividing with δ, and taking informally the limit as
δ → 0, we can write the one-step lookahead minimization (6.58) as

µ̃(t) ∈ arg min
u(t)∈U

[

g
(

x(t), u(t), t
)

+∇xJ̃t
(

x(t)
)′
h
(

x(t), u(t), t
)
]

, (6.59)

where J̃t(x) is the continuous-time cost function approximation and∇xJ̃t(x)
is its gradient with respect to x. This is the correct analog of the approxi-
mation in value space scheme (6.54) for continuous-time problems.

Rollout for Continuous-Time Optimal Control

In view of the value approximation scheme of Eq. (6.59), it is natural to
speculate that the continuous-time analog of rollout with a base policy of
the form

π =
{

µt

(

x(t)
)

| 0 ≤ t ≤ T
}

, (6.60)

where µt

(

x(t)
)

∈ U for all x(t) and t, has the form

µ̃t

(

x(t)
)

∈ arg min
u(t)∈U

[

g
(

x(t), u(t), t
)

+∇xJπ,t
(

x(t)
)′
h
(

x(t), u(t), t
)
]

.

(6.61)
Here Jπ,t

(

x(t)
)

is the cost of the base policy π starting from state x(t) at
time t, and satisfies the terminal condition

Jπ,T
(

x(T)
)

= G
(

x(T)
)

.

Computationally, the inner product in the right-hand side of the above
minimization can be approximated using the finite difference formula

∇xJπ,t
(

x(t)
)′
h
(

x(t), u(t), t
)

≈
Jπ,t

(

x(t) + δ · h
(

x(t), u(t), t
)
)

− Jπ,t
(

x(t)
)

δ
,

which can be calculated by running the base policy π starting from x(t)
and from x(t) + δ · h

(

x(t), u(t), t
)

. (This finite differencing operation may
involve tricky computational issues, but we will not get into this.)

An important question is how to select the base policy π. A choice
that is often sensible and convenient is to choose π to be a “short-sighted”
policy, which takes into account the “short term” cost from the current
state (say for a very small horizon starting from the current time t), but
ignores the remaining cost. An extreme case is the myopic policy, given by

µt

(

x(t)
)

∈ argmin
u∈U

g
(

x(t), u(t), t
)

.

Sec. 6.9 Small Stage Costs and Long Horizon 193

ẋ(t) = u(t)

dt Given Point Given Line

Given Point Given Line

α t Tt T

x(t)

Point (0, 0) 0) Optimal Solution
0) Optimal Trajectory

Length =

∫ T

0

√

1 +
(

u(t)
)2

dt

Figure 6.9.1 Problem of finding a curve of minimum length from a given
point to a given line, and its formulation as a calculus of variations problem.

This policy is the continuous-time analog of the greedy policy that we dis-
cussed in the context of discrete-time problems, and the traveling salesman
Example 6.4.1 in particular.

The following example illustrates the rollout algorithm (6.61) with
a problem where the base policy cost Jπ,t

(

x(t)
)

is independent of x(t) (it
depends only on t), so that

∇xJπ,t
(

x(t)
)

≡ 0.

In this case, in view of Eq. (6.59), the rollout policy is myopic. It turns out
that the optimal policy in this example is also myopic, so that the rollout
policy is optimal, even though the base policy is very poor.

Example 6.9.1 (A Calculus of Variations Problem)

This is a simple example from the classical context of calculus of variations
(see [Ber17a], Example 7.1.3). The problem is to find a minimum length
curve that starts at a given point and ends at a given line. Without loss of
generality, let (0, 0) be the given point, and let the given line be the vertical
line that passes through (T, 0), as shown in Fig. 6.9.1.

Let
(

t, x(t)
)

be the points of the curve, where 0 ≤ t ≤ T . The portion

of the curve joining the points
(

t, x(t)
)

and
(

t+ dt, x(t+ dt)
)

can be approx-
imated, for small dt, by the hypotenuse of a right triangle with sides dt and
ẋ(t)dt. Thus the length of this portion is

√

(dt)2 +
(

ẋ(t)
)2
(dt)2,

which is equal to
√

1 +
(

ẋ(t)
)2

dt.

194 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

The length of the entire curve is the integral over [0, T] of this expression, so
the problem is to

minimize

∫ T

0

√

1 +
(

ẋ(t)
)2

dt

subject to x(0) = 0.

To reformulate the problem as a continuous-time optimal control problem,
we introduce a control u and the system equation

ẋ(t) = u(t), x(0) = 0.

The problem then takes the form

minimize

∫ T

0

√

1 +
(

u(t)
)2

dt.

This is a problem that fits our continuous-time optimal control framework,
with

h
(

x(t), u(t), t
)

= u(t), g
(

x(t), u(t), t
)

=

√

1 +
(

u(t)
)2
, G

(

x(T)
)

= 0.

Consider now a base policy π whereby the control depends only on t

and not on x. Such a policy has the form

µt

(

x(t)
)

= β(t), for all x(t),

where β(t) is some scalar function. For example, β(t) may be constant, β(t) ≡
β̄ for some scalar β̄, which yields a straight line trajectory that starts at (0, 0)
and makes an angle φ with the horizontal with tan(φ) = β̄. The cost function
of the base policy is

Jπ,t

(

x(t)
)

=

∫ T

t

√

1 + β(τ)2 dτ,

which is independent of x(t), so that ∇xJπ,t

(

x(t)
)

≡ 0. Thus, from the
minimization of Eq. (6.61), we have

µ̃t

(

x(t)
)

∈ arg min
u(t)∈"

√

1 +
(

u(t)
)2
,

and the rollout policy is
µ̃t

(

x(t)
)

≡ 0.

This is the optimal policy: it corresponds to the horizontal straight line that
starts at (0, 0) and ends at (T, 0).

Sec. 6.9 Small Stage Costs and Long Horizon 195

Rollout with General Base Heuristics - Sequential Improvement

An extension of the rollout algorithm (6.61) is to use a more general base
heuristic whose cost function Ht

(

x(t)
)

can be evaluated by simulation.
This rollout algorithm has the form

µ̃(t) ∈ arg min
u(t)∈U

[

g
(

x(t), u(t), t
)

+∇xHt

(

x(t)
)′
h
(

x(t), u(t), t
)
]

.

Here the policy cost function Jπ,t is replaced by a more general differen-
tiable function Ht, obtainable through a base heuristic, which may lack the
sequential consistency property that is inherent in policies.

We will now show a cost improvement property of the rollout algo-
rithm based on the natural condition

HT

(

x̃(T)
)

= G
(

x̃(T)
)

, (6.62)

and the assumption

min
u(t)∈U

[

g
(

x(t), u(t), t
)

+∇tHt

(

x(t)
)

+∇xHt

(

x(t)
)′
h
(

x(t), u(t), t
)
]

≤ 0,

(6.63)
for all

(

x(t), t
)

, where ∇xHt denotes gradient with respect to x, and ∇tHt

denotes gradient with respect to t. This assumption is the continuous-time
analog of the sequential improvement condition of Definition 6.4.2 [cf. Eq.
(6.18)]. Under this assumption, we will show that

Jπ̃,0
(

x(0)
)

≤ H0
(

x(0)
)

, (6.64)

i.e., the cost of the rollout policy starting from the initial state x(0) is no
worse than the base heuristic cost starting from the same initial state.

Indeed, let
{

x̃(t) | t ∈ [0, T]
}

and
{

ũ(t) | t ∈ [0, T]
}

be the state
and control trajectories generated by the rollout policy starting from x(0).
Then the sequential improvement condition (6.63) yields

g
(

x̃(t), ũ(t), t
)

+∇tHt

(

x̃(t)
)

+∇xHt

(

x̃(t)
)′
h
(

x̃(t), ũ(t), t
)

≤ 0

for all t, and by integration over [0, T], we obtain

∫ T

0
g
(

x̃(t), ũ(t), t
)

dt+

∫ T

0

(

∇tHt

(

x̃(t)
)

+∇xHt

(

x̃(t)
)′
h
(

x̃(t), ũ(t), t
)
)

dt ≤ 0.

(6.65)
The second integral above can be written as

∫ T

0

(

∇tHt

(

x̃(t)
)

+∇xHt

(

x̃(t)
)′
h
(

x̃(t), ũ(t), t
))

dt

=

∫ T

0

(

∇tHt

(

x̃(t)
)

+∇xHt

(

x̃(t)
)′ dx̃(t)

dt

)

dt,

196 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

and its integrand is the total differential with respect to time: d
dt

(

Ht

(

x̃(t)
)
)

.

Thus we obtain from Eq. (6.65)

∫ T

0
g
(

x̃(t),ũ(t), t
)

dt+

∫ T

0

d

dt

(

Ht

(

x̃(t)
)
)

dt

=

∫ T

0
g
(

x̃(t), ũ(t), t
)

dt+HT

(

x̃(T)
)

−H0
(

x̃(0)
)

≤ 0.

(6.66)

Since HT

(

x̃(T)
)

= G
(

x̃(T)
)

[cf. Eq. (6.62)] and x̃(0) = x(0), from Eq.
(6.66) [which is a direct consequence of the sequential improvement condi-
tion (6.63)], it follows that

Jπ̃,0
(

x(0)
)

=

∫ T

0
g
(

x̃(t), ũ(t), t
)

dt+G
(

x̃(T)
)

≤ H0
(

x(0)
)

,

thus proving the cost improvement property (6.64).
Note that the sequential improvement condition (6.63) is satisfied if

Ht is the cost function Jπ,t corresponding to a base policy π. The reason is
that for any policy π =

{

µt(x(t)) | 0 ≤ t ≤ T
}

[cf. Eq. (6.60)], the analog
of the DP algorithm (under the requisite mathematical conditions) takes
the form

0 = g
(

x(t), µt(x(t)), t
)

+∇tJπ,t
(

x(t)
)

+∇xJπ,t
(

x(t)
)′
h
(

x(t), µt(x(t)), t
)

.
(6.67)

In continuous-time optimal control theory, this is known as the Hamilton-
Jacobi-Bellman equation. It is a partial differential equation, which may be
viewed as the continuous-time analog of the DP algorithm for a single pol-
icy; there is also a Hamilton-Jacobi-Bellman equation for the optimal cost
function J*

t

(

x(t)
)

(see optimal control textbook accounts, such as [Ber17a],
Section 7.2, and the references cited there). As illustration, the reader may
verify that the cost function of the base policy used in the calculus of vari-
ations problem of Example 6.9.1 satisfies this equation. It can be seen
from the Hamilton-Jacobi-Bellman Eq. (6.67) that when Ht = Jπ,t, the se-
quential improvement condition (6.63) and the cost improvement property
(6.64) hold.

Approximating Cost Function Differences

Let us finally note that the preceding analysis suggests that when dealing
with a discrete-time problem with a long horizon N , a system equation
xk+1 = fk(xk, uk), and a small cost per stage gk(xk, uk) relative to the
optimal cost-to-go function Jk+1

(

fk(xk, uk)
)

, it is worth considering an
alternative implementation of the approximation in value space scheme. In
particular, we should consider approximating the cost differences

Dk(xk, uk) = Jk+1

(

fk(xk, uk)
)

− Jk(xk)

Sec. 6.10 Epilogue 197

instead of approximating the cost-to-go functions Jk+1

(

fk(xk, uk)
)

. The
one-step-lookahead minimization (6.54) should then be replaced by

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

[

gk(xk, uk) + D̃k(xk, uk)
]

,

where D̃k is the approximation to Dk.
Note also that while for continuous-time problems, the idea of ap-

proximating the gradient of the optimal cost function is essential and comes
out naturally from the analysis, for discrete-time problems, approximating
cost-to-go differences rather than cost functions is optional and should be
considered in the context of a given problem. Methods along this line in-
clude advantage updating, cost shaping, biased aggregation, and the use of
baselines, for which we refer to the books [BeT96], [Ber19a], and [Ber20a].
A special method to explicitly approximate cost function differences is dif-
ferential training, which was proposed in the author’s paper [Ber97], and
was also discussed in Section 4.3.4 of the book [Ber20a].

Unfortunately, approximating cost-to-go differences may not be ef-
fective when the cost per stage is 0 for all states, while a nonzero cost is
incurred only at termination. This type of cost structure occurs, among
others, in games such as chess and backgammon. In this case a potentially
effective remedy is to resort to longer lookahead, either through multistep
lookahead minimization, or through some form of truncated rollout, as it
is done in the AlphaZero and TD-Gammon programs.

6.10 EPILOGUE

While the ideas of approximation in value space, rollout, and PI have a
long history, their significance has been highlighted by the success of Alp-
haZero, and the earlier but just as impressive TD-Gammon program. Both
programs were trained off-line extensively using sophisticated approximate
PI algorithms and neural networks. Yet in AlphaZero, the player obtained
off-line was greatly improved by on-line play, as we have discussed in Chap-
ter 1. Moreover, TD-Gammon was greatly improved by supplementing its
on-line play scheme with truncated rollout.

We have argued that this performance enhancement by on-line play
defines a new transformative and broadly applicable paradigm for deci-
sion and control, which is couched on the AlphaZero/TD-Gammon design
principles: on-line decision making, using approximation in value space
with multistep lookahead, and rollout. Moreover, this paradigm provides
the basis for a much needed unification of the methodological cultures of
reinforcement learning, and optimization/control, and particularly MPC,
which in fact embodies several of the AlphaZero/TD-Gammon design ideas.

We have highlighted the multiple beneficial properties of truncated
rollout as a reliable, easily implementable, and cost effective alternative to

198 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

long lookahead minimization. We have also noted how rollout with a stable
policy, enhances the stability properties of the controller obtained by ap-
proximation in value space schemes. The issue of stability is of paramount
importance in control system design and MPC, but is not addressed ade-
quately by the RL methodology, as practiced by the AI community.

Moreover, we have argued that there is an additional benefit of policy
improvement by approximation in value space, not observed in the context
of games (which have unchanging rules and environment). It is well-suited
for on-line replanning and changing problem parameters, as in the context
of indirect adaptive control.

Finally, we have discussed various methods to improve the efficiency of
on-line play algorithms by effectively extending the length of the multistep
lookahead minimization through approximation. These methods include
pruning, double rollout, and incremental rollout for deterministic prob-
lems, and the use of certainty equivalence after the first step of lookahead
minimization for stochastic problems.

The Mathematical Framework

From a mathematical point of view, we have aimed to provide the frame-
work and insights, which facilitate the use of on-line decision making on top
of off-line training. In particular, through a unified abstract DP analysis,
which is well-suited to visualization, we have shown that the principal ideas
of approximation in value space and rollout apply very broadly to deter-
ministic and stochastic optimal control problems, involving both discrete
and continuous search spaces.

A key idea of this work is the interpretation of approximation in value
space with one-step lookahead as a step of Newton’s method . This idea has
been known for some time, but only within the more restrictive context
of policy iteration, where the cost function approximation is restricted to
be the cost function of some policy. The extensions of this idea, including
more general cost function approximations, multistep lookahead, truncated
rollout, connection with stability issues, and discrete and multiagent opti-
mization, which are provided in this work, are new (following their intro-
duction in the book [Ber20a]), and aim to promote the view that Newton’s
method and other classical algorithms, such as Newton-SOR, are central
conceptual elements of the RL methodology.

Mathematical proofs of our superlinear convergence rate and sensitiv-
ity results were given primarily for the case of a one-dimensional quadratic
problem (Chapter 4). However, these results can be straightforwardly ex-
tended to more general multidimensional linear quadratic problems. More-
over, similar results can be obtained for more general problems, by using
the equivalence to a Newton step that we showed in Chapter 3, and by
relying on known analyses of nondifferentiable forms of Newton’s method,
which we have discussed in the Appendix and in the paper [Ber22b]. At

Sec. 6.10 Epilogue 199

the same time considerable work remains to be done to clarify exceptional
behaviors of Newton’s method within various DP contexts, and to work
out rigorously the associated mathematical results. Furthermore, there is
a need for better characterization of the region of attraction of the method
in contexts beyond the nice discounted problems with bounded cost per
stage.

A major supplementary idea of this work is the interpretation of off-
line training of policies and cost approximations as means for enhancement
of the initial condition of the Newton step. Among others, this interpre-
tation supports the view that the Newton step/on-line player is the key
determinant of the overall scheme’s performance, and that the initial con-
dition adjustment/off-line training plays a subsidiary role. Still, however,
while this is a valuable conceptual starting point, we expect that in specific
contexts the initial condition of the Newton step and the attendant off-line
training process may play an important role. For example in the MPC
context, off-line training may be critical in dealing with issues of stability,
state constraints, and target tube construction.

We finally note that the preceding mathematical ideas have a univer-
sal character in view of their abstract DP foundation, which allows their
use in very general DP contexts, involving both discrete and continuous
state and control spaces, as well as value and policy approximations. As a
result, they can be effectively integrated within a broad range of methodolo-
gies, such as adaptive control, MPC, decentralized and multiagent control,
discrete and Bayesian optimization, neural network-based approximations,
and heuristic algorithms for discrete optimization, as we have discussed in
greater detail in the books [Ber19a] and [Ber20a].

Rollout for Finite-Horizon Problems and Discrete Optimization

In the present chapter we have noted that while our starting point in this
work has been infinite horizon problems, approximation in value space
and rollout can be applied to finite horizon problems as well, and can be
similarly interpreted in terms of Newton’s method. In particular, finite
horizon problems can be converted to infinite horizon stochastic shortest
path problems with a termination state that corresponds to the end of the
horizon. Once this is done, the conceptual framework of our work can be
applied to provide insight on the connections between approximation in
value space, rollout, and Newton’s method.

Thus, our rollout ideas find application beyond the infinite horizon DP
context, and apply to the solution of classical discrete and combinatorial
optimization problems, as we have aimed to show in this chapter. This
was the basis for the original proposal of the use of rollout for discrete and
combinatorial optimization problems in the paper by Bertsekas, Tsitsiklis,
and Wu [BTW97]; see also the author’s book [Ber20a], which provides a
fuller presentation of the finite horizon methodology.

200 Finite Horizon Deterministic Problems - Discrete Optimization Chap. 6

The book [Ber20a] also contains several examples of application of
rollout to discrete optimization and provides references to many works
spanning the period from the late 90s to the present. These works discuss
variants and problem-specific adaptations of rollout algorithms for a broad
variety of practical problems, and consistently report favorable computa-
tional experience. The size of the cost improvement over the base policy is
often impressive, evidently owing to the fast convergence rate of Newton’s
method that underlies rollout. Moreover these works illustrate some of the
other important advantages of rollout: reliability, simplicity, suitability for
on-line replanning, and the ability to interface with other RL techniques,
such as neural network training, which can be used to provide suitable base
policies and/or approximations to their cost functions.

We finally note that in Section 6.5 we have explored yet another use of
rollout, as a means for facilitating approximation in value space with long
multistep lookahead, by performing expeditiously (yet approximately) the
multistep lookahead minimization over the corresponding acyclic lookahead
graph. This idea is new and the range of applications of the incremental
rollout algorithm as a competitor to Monte Carlo Tree Search and other
tree search methods, is very broad.

APPENDIX A:

Newton’s Method and Error

Bounds

Contents

A.1. Newton’s Method for Differentiable Fixed Point
Problems . p. 202

A.2. Newton’s Method Without Differentiability of the
Bellman Operator p. 207

A.3. Local and Global Error Bounds for Approximation in . . .
Value Space p. 210

A.4. Local and Global Error Bounds for Approximate
Policy Iteration p. 212

201

202 Newton’s Method and Error Bounds Appendix A

In this appendix, we first develop the classical theory of Newton’s method
for solving a fixed point problem of the form

y = G(y),

where y is an n-dimensional vector, and G : !n "→ !n is a continuously
differentiable mapping.† We then extend the results to the case where G

is nondifferentiable because it is obtained as the minimum of continuously
differentiable mappings, as in the case of the Bellman operator (cf. Chapter
3).

The convergence analysis relates to the solution of Bellman’s equa-
tion J = TJ , for the case where J is an n-dimensional (there are n states),
TJ is real-valued for all real-valued J , and T is either differentiable or in-
volves minimization over a finite number of controls. However, the analysis
illuminates the mechanism by which Newton’s method works for more gen-
eral problems, involving for example infinite spaces problems. Moreover,
the analysis does not use the concavity and monotonicity properties of T
that hold in the DP contexts that we have discussed (discounted, SSP, and
nonnegative-cost deterministic problems, cf. Chapter 2), but may not hold
in other DP-related contexts.

A.1 NEWTON’SMETHOD FORDIFFERENTIABLE FIXED POINT
PROBLEMS

Newton’s method is an iterative algorithm that generates a sequence {yk},
starting from some initial vector y0. It aims to obtain asymptotically a
fixed point of G, i.e., yk → y∗, where y∗ is such that y∗ = G(y∗). Newton’s
method is usually analyzed in the context of solving systems of equations.
In particular, by introducing the mapping H : !n "→ !n, given by

H(y) = G(y)− y, y ∈ !n,

the fixed point problem is transformed to solving the equation H(y) = 0.
We view H(y) as a column vector in !n, with its n components denoted
by H1(y), . . . , Hn(y):

H(y) =

H1(y)
...

Hn(y)

.

Each of the functions Hi is given by

Hi(y) = Gi(y)− yi,

† The subsequent analysis of Sections A.1 and A.2 also holds when G maps
an open subset Y of !n into itself, i.e., G(y) ∈ Y for all y ∈ Y .

Sec. A.1 Newton’s Method for Differentiable Fixed Point Problems 203

0 0 y H

y1y0

y∗

) Region of Attraction

0

y1y0

y∗

) Region of Attraction

y T

y T

) Region of Attraction of y∗) Region of Attraction of y∗

H(y) = G(y)− y Gy G(y)

Figure A.1 Illustration of Newton’s method for solving the differentiable fixed
point problem y = G(y), and equivalently, the equation H(y) = 0 where

H(y) = G(y)− y.

At each iteration the method first linearizes the problem at the current iterate yk

via a first order Taylor series expansion, and then computes yk+1 as the solution
of the linearized problem. The method converges to a solution y∗ when started
within its region of attraction, i.e, the set of starting points y0 such that

‖yk+1 − y
∗‖ ≤ ‖yk − y

∗‖, and yk → y
∗
.

In this one-dimensional case where G is concave and monotonically increasing,
the region of attraction is as shown.

where yi is the ith component of y and Gi is the ith component of G.
Assuming that H is differentiable, Newton’s method takes the form

yk+1 = yk −
(

∇H(yk)′
)−1

H(yk), (A.1)

where∇H is the n×nmatrix whose columns are the gradients∇H1, . . . ,∇Hn

of the n components H1, . . . , Hn, viewed as column vectors:

∇H(y) =
(

∇H1(y) · · · ∇Hn(y)
)

,

and ∇H(yk)′ denotes the transpose of ∇H(yk) [i.e., ∇H(yk)′ is the Jaco-
bian of H at yk]. The algorithm (A.1), illustrated in one dimension in Fig.
A.1, is the classical form of Newton’s method , and it assumes that ∇H(yk)
is invertible for every k.†

Its analysis has two principal aspects:

† An intuitive view of the Newton iteration is that it first linearizes H at the
current point yk via a first order Taylor series expansion,

H(y) ≈ H(yk) +∇H(yk)
′(y − yk),

204 Newton’s Method and Error Bounds Appendix A

(a) Local convergence, which deals with the behavior near a nonsingular
solution y∗, i.e., one where H(y∗) = 0 and the matrix ∇H(y∗) is
invertible.

(b) Global convergence, which addresses modifications that are necessary
to ensure that the method is valid and is likely to converge to a
solution when started far from all solutions. Such modifications may
include changes in the starting point y0 to bring it within the region
of convergence (the set of starting points from which convergence to
a solution is assured), or changes in the method itself to improve its
stability properties.

Of course there are other questions of interest, which relate to the con-
vergence and rate of convergence aspects of the method. The literature of
the subject is very extensive, and is covered in several books and research
papers.

In this appendix, we will only consider local convergence questions,
and we will focus on a single nonsingular solution, i.e., a vector y∗ such
that H(y∗) = 0 and ∇H(y∗) is invertible. The principal result here is
that the Newton method (A.1) converges superlinearly when started close
enough to y∗. For a simple argument that shows this fact, suppose that
the method generates a sequence {yk} that converges to y∗. Let us use a
first order expansion around yk to write

0 = H(y∗) = H(yk) +∇H(yk)′(y∗ − yk) + o
(

‖yk − y∗‖
)

.

and then computes yk+1 as the solution of the linearized system

H(yk) +∇H(yk)
′(y − yk) = 0.

Equivalently, in terms of the original fixed point problem y = G(y), Newton’s
method first linearizes G at the current point yk via a first order Taylor series
expansion,

G(y) ≈ G(yk) +∇G(yk)
′(y − yk),

where ∇G(yk)
′ is the Jacobian matrix of G evaluated at yk. It then computes

yk+1 as the solution of the linearized fixed point problem

y = G(yk) +∇G(yk)
′(y − yk).

Thus,
yk+1 = G(yk) +∇G(yk)

′(yk+1 − yk),

or, by subtracting yk from both sides and collecting terms,

(

I −∇G(yk)
′
)

(yk+1 − yk) = G(yk)− yk.

By using H(y) = G(y)−y, this equation can be written in the form of the Newton
iteration (A.1).

Sec. A.1 Newton’s Method for Differentiable Fixed Point Problems 205

By multiplying this relation with
(

∇H(yk)′
)−1

we have

yk − y∗ −
(

∇H(yk)′
)−1

H(yk) = o
(

‖yk − y∗‖
)

,

so for the Newton iteration (A.1), we obtain

yk+1 − y∗ = o
(

‖yk − y∗‖
)

.

Thus, if yk)= y∗ for all k,

lim
k→∞

‖yk+1 − y∗‖

‖yk − y∗‖
= lim

k→∞

o
(

‖yk − y∗‖
)

‖yk − y∗‖
= 0,

implying superlinear convergence. This argument can also be used to show
convergence to y∗ if the initial vector y0 is sufficiently close to y∗.

We will prove a more detailed version of this result, which includes a
local convergence assertion ({yk} converges to y∗ when started near y∗).

Proposition A.1: Consider a function H : !n "→ !n, and a vector y∗

such that H(y∗) = 0. For any δ > 0, we denote by Sδ the open sphere
{x | ‖y − y∗‖ < δ}, where ‖ · ‖ denotes the Euclidean norm. Assume
that within some sphere S

δ
, H is continuously differentiable, ∇H(y∗)

is invertible, and
∥

∥

∥

(

∇H(y)′
)−1
∥

∥

∥
is bounded by some scalar B > 0:

∥

∥

∥

(

∇H(y)′
)−1
∥

∥

∥
≤ B, for all y ∈ Sδ.

Assume also that for some L > 0,

∥

∥∇H(x)−∇H(y)
∥

∥ ≤ L‖x− y‖, for all x, y ∈ Sδ, (A.2)

Then there exists δ ∈ (0, δ] such that if y0 ∈ Sδ, the sequence {yk}
generated by the iteration

yk+1 = yk −
(

∇H(yk)′
)−1

H(yk)

belongs to Sδ, and converges monotonically to y∗, i.e.

‖yk − y∗‖ → 0, ‖yk+1 − y∗‖ ≤ ‖yk − y∗‖, k = 0, 1, (A.2)

Moreover, we have

‖yk+1 − y∗‖ ≤
LB

2
‖yk − y∗‖2, k = 0, 1, (A.3)

206 Newton’s Method and Error Bounds Appendix A

Proof: We first note that if yk ∈ Sδ, by using the relation

H(yk) =

∫ 1

0

∇H
(

y∗ + t(yk − y∗)
)′
dt(yk − y∗),

we have

‖yk+1 − y∗‖ =
∥

∥

∥
yk − y∗ −

(

∇H(yk)′
)−1

H(yk)
∥

∥

∥

=

∥

∥

∥

∥

∥

(

∇H(yk)′
)−1
(

∇H(yk)′(yk − y∗)−H(yk)
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(

∇H(yk)′
)−1

(

∇H(yk)′ −

∫ 1

0

∇H
(

y∗ + t(yk − y∗)
)′
dt

)

(yk − y∗)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(

∇H(yk)′
)−1

(

∫ 1

0

[

∇H(yk)′ −∇H
(

y∗ + t(yk − y∗)
)′
]

dt

)

(yk − y∗)

∥

∥

∥

∥

∥

≤ B

(

∫ 1

0

∥

∥

∥
∇H(yk)−∇H

(

y∗ + t(yk − y∗)
)

∥

∥

∥
dt

)

‖yk − y∗‖

≤ B

(
∫ 1

0

Lt‖yk − y∗‖dt

)

‖yk − y∗‖

=
LB

2
‖yk − y∗‖2,

thus showing Eq. (A.3). Assume that y0 ∈ S
δ
. By continuity of ∇H , we

can take δ ∈ (0, δ] such that LBδ < 1, so if y0 ∈ Sδ, from the preceding
relation we obtain

‖y1 − y∗‖ ≤
1

2
‖y0 − y∗‖ <

δ

2
.

By repeating this argument with y1 in place of y0, we obtain ‖y2 − y∗‖ ≤
1

2
‖y1 − y∗‖ < δ

4
, and similarly

‖yk+1 − y∗‖ ≤
1

2
‖yk − y∗‖ <

δ

2k+1
, k = 0, 1,

The monotonic convergence property (A.2) follows. Q.E.D.

Sec. A.2 Newton’s Method Without Differentiability 207

A.2 NEWTON’S METHOD WITHOUT DIFFERENTIABILITY
OF THE BELLMAN OPERATOR

As we noted in Chapter 3, there has been a lot of work on extensions
of Newton’s method for the fixed point problem y = G(y), which relax
the differentiability requirement on G by using alternative notions from
nonsmooth analysis. Relevant works include Josephy [Jos79], Robinson
[Rob80], [Rob88], [Rob11], Kojima and Shindo [KoS86], Kummer [Kum88],
[Kum00], Pang [Pan90], Qi and Sun [Qi93], [QiS93], Facchinei and Pang
[FaP03], Ito and Kunisch [ItK03], Bolte, Daniilidis, and Lewis [BDL09],
Dontchev and Rockafellar [DoR14], and additional references cited therein.

These extensions have strong relevance to our context. In particu-
lar, the proof of Prop. A.1 can be simply extended to the case where G is
nondifferentiable and has the minimization structure of the Bellman oper-
ator (with finite control space). The idea is that when the kth iterate yk
is sufficiently close to the fixed point y∗ of G, the kth Newton iteration
can be viewed as a Newton iteration for some continuously differentiable
mapping Ĝk, which also has y∗ as fixed point, and is obtained from G by
a minimization operation. Then Prop. A.1, applied to Ĝk, shows that the
distance ‖yk − y∗‖ decreases monotonically at a quadratic rate.

In the nondifferentiable case discussed in this appendix, we focus on
solution of the equation H(y) = 0 where the mapping H : #n $→ #n again
has real-valued n components, denoted by H1(y), . . . , Hn(y):

H(y) =

H1(y)
...

Hn(y)

.

The component mappings H1, . . . , Hn : #n → #, involve minimization
over a parameter u (as the notation suggests, the parameter corresponds
to control in the DP context), and have the form†

Hi(y) = min
u=1,...,m

Hi,u(y), i = 1, . . . , n. (A.4)

The mappings Hi,u : #n → # are given by

Hi,u(y) = Gi,u(y)− yi, i = 1, . . . , n, u = 1, . . . ,m,

where Gi,u : #n $→ # is a given real-valued function for each i and u, and
yi is the ith component of y. Given a vector y∗ such that H(y∗) = 0, we
denote by U∗(i) ⊂ {1, . . . ,m} the set of indexes that attain the minimum
in Eq. (A.4) when y = y∗:

U∗(i) = arg min
u=1,...,m

Hi,u(y∗), i = 1, . . . , n.

† We focus on this form for simplicity of presentation. The references cited
above provide convergence analyses for far more general cases.

Dimitri Bertsekas Migrated

208 Newton’s Method and Error Bounds Appendix A

We assume that within some sphere Sδ centered at y∗ with radius δ, the
mappings Hi,u(·) are continuously differentiable for all i and u ∈ U∗(i),
while all the n× n matrices with columns

∇H1,u1
(y), . . . ,∇Hn,un

(y),

are invertible, where for every i, ui can take any value from the set U∗(i).
Thus all the Jacobian matrices of the mappings, which correspond to
(u1, . . . , un) that are “active” at y∗ [i.e., ui ∈ U∗(i) for all i], are assumed
invertible.

Given the iterate yk, Newton’s method operates as follows: It finds
for each i = 1, . . . , n, the set of indexes U(i, k) ⊂ {1, . . . ,m} that attain
the minimum in Eq. (A.4) when y = yk:

U(i, k) = arg min
u=1,...,m

Hi,u(yk).

Then it generates the next iterate yk+1 with the following three steps:

(a) It selects arbitrarily an index u(i, k) from within U(i, k), for each
i = 1, . . . , n.

(b) It forms the n× n matrix

Mk =
(

∇H1,u(1,k)(yk) · · · ∇Hn,u(n,k)(yk)
)

,

that has columns ∇H1,u(1,k)(yk), . . . ,∇Hn,u(n,k)(yk), and the column
vector

Gk =

H1,u(1,k)(yk)
...

Hn,u(n,k)(yk)

that has components H1,u(1,k)(yk), . . . , Hn,u(n,k)(yk):

(c) It sets
yk+1 = yk − (M ′

k)
−1Gk. (A.5)

For our convergence proof, we argue as follows: When the iterate yk

is sufficiently near to y∗, the index set U(i, k) is a subset of U∗(i) for each
i = 1, . . . , n; see Fig. A.2 for a case where n = 1 and m = 3. The reason is
that there exists an ε > 0 such that for all i = 1, . . . , n and u = 1, . . . ,m,

u /∈ U∗(i) ⇒ Hi,u(y∗) ≥ ε.

Therefore, there is a sphere centered at y∗ such that for all yk within that
sphere and all i, we have

u /∈ U∗(i) ⇒ Hi,u(yk) ≥ ε/2,

Sec. A.2 Newton’s Method Without Differentiability 209

y∗

y H1(y)

) H2(y)

0

0 y H

) H3(y)

H(y) = min
{

H1(y), H2(y), H3(y)
}

y0 y1

) Region of Attraction
) Region of Attraction of y∗

Figure A.2 Illustration of a one-dimensional nondifferentiable equation

H(y) = 0,

where H is obtained by minimization of three differentiable mappings H1,H2,H3:

H(y) = min
{

H1(y), H2(y), H3(y)
}

, y ∈ &.

Here m = 3 and n = 1 [so the index i is omitted from U∗(i) and U(i, k)]. At
the solution y∗, the index set U∗ consists of u = 1 and u = 2, and for yk '= y∗,
we have U(k) = {1} or U(k) = {2}. Newton’s method applied to H consists of a
Newton iteration applied to H1 when y < y∗ and |y − y∗| is small enough, and
consists of a Newton iteration applied to H2 when y > y∗. Since at y∗ we have

H1(y
∗) = H2(y

∗) = 0,

both iterations, at y < y∗ and at y > y∗, approach y∗ superlinearly.

and
u ∈ U∗(i) ⇒ Hi,u(yk) < ε/2,

which implies that if u /∈ U∗(i) then u /∈ U(i, k), or equivalently U(i, k) ⊂
U∗(i). It follows that the iteration (A.5) can be viewed as a Newton it-
eration applied to a system of differentiable equations that has y∗ as its
solution. This system is

Hi,u(i,k)(y) = 0, i = 1, . . . , n,

and corresponds to the set of indexes

u(1, k), . . . , u(n, k).

210 Newton’s Method and Error Bounds Appendix A

Thus, near y∗, by Prop. A.1, the iteration (A.5) is attracted at a quadratic
rate to y∗ regardless of which indexes u(i, k) ∈ U(i, k) are selected for
iteration k.

Finally, note that while the sphere within which U(i, k) ⊂ U∗(i) for
all i was constructed for a single iteration k, we can take the sphere small
enough to ensure that the distance from the current iterate to y∗ is reduced
for all subsequent iterations, similar to the proof of Prop. A.1. We can thus
conclude that after yk gets close enough to y∗, each subsequent iteration is
a Newton step applied to one of a finite number of differentiable systems
of equations that have y∗ as their common solution, and for which the
convergence properties of Prop. A.1 hold.

A.3 LOCAL AND GLOBAL ERROR BOUNDS FOR
APPROXIMATION IN VALUE SPACE

In approximation in value space, an important analytical issue is to quantify
the level of suboptimality of the one-step or multistep lookahead policy
obtained. In this section, we focus on an #-step lookahead scheme that
produces a policy µ̃ according to

Tµ̃T "−1J̃ = T "J̃ ,

where J̃ is the terminal cost function approximation. We will try to esti-
mate the difference Jµ̃ − J*, where Jµ̃ is the cost function of µ̃ and J* is
the optimal cost function, assuming that T "−1J̃ lies within the region of
stability, so that µ̃ is well-defined as a stable policy and Jµ̃ is finite-valued.

There is a classical error bound for the case where the Bellman op-
erator T is a contraction mapping with respect to the sup-norm (‖J‖ =
supx∈X |J(x)|) with modulus α ∈ (0, 1). It is given by

‖Jµ̃ − J*‖ ≤
2α

1− α
‖T "−1J̃ − J*‖; (A.6)

see [Ber19a], Prop. 5.1.1, for the finite-state discounted case, and [Ber22a],
Section 2.2, for more general abstract DP cases. This bound also applies
to the case where T is a contraction over a subset J of functions, as long
as T maps J into itself.

Unfortunately, however, this error bound is very conservative, and
does not reflect practical reality. The reason is that this is a global error
bound, i.e., it holds for all J̃ , even the worst possible. In practice, J̃ is
often chosen sufficiently close to J*, so that the error Jµ̃ − J* behaves
consistently with the convergence rate of the Newton step that starts at
T "−1J̃ , which is superlinear. In other words, for J̃ relatively close to J*,
we have the local estimate

‖Jµ̃ − J*‖ = o
(

‖T "−1J̃ − J*‖
)

. (A.7)

Sec. A.3 Error Bounds for Approximation in Value Space 211

In practical terms, there is often a huge difference, both quantitative and
qualitative, between the error bounds (A.6) and (A.7), as illustrated by the
following example.

Example A.3.1 (One-Dimensional Linear Quadratic Problem)

Consider an undiscounted one-dimensional linear quadratic problem such as
the one considered in Chapter 4. The system is

xk+1 = axk + buk,

and the cost per stage is
qx2

k + ru2
k.

We will consider one-step lookahead (! = 1), and a quadratic cost function
approximation

J̃(x) = K̃x2,

with K̃ within the region of stability, which is some open interval of the form
(S,∞). As in Chapter 4, the Riccati operator is

F (K) =
a2rK

r + b2K
+ q,

and the one-step lookahead policy µ̃ has cost function

Jµ̃(x) = Kµ̃x
2,

where Kµ̃ is obtained by applying one step of Newton’s method for solving
the Riccati equation K = F (K), starting at K = K̃.

Let S be the boundary of the region of stability, i.e., the value of K at
which the derivative of F with respect to K is equal to 1:

∂F (K)

∂K

∣

∣

∣

K=S
= 1.

Then the Riccati operator F is a contraction within any interval [S,∞) with
S > S, with a contraction modulus α that depends on S. In particular, α is
given by

α =
∂F (K)

∂K

∣

∣

∣

K=S

and satisfies 0 < α < 1 because S > S, and the derivative of F is positive
and monotonically decreasing to 0 as K increases to ∞.

The error bound (A.6) can be rederived for the case of quadratic func-
tions and can be rewritten in terms of quadratic cost coefficients as

Kµ̃ −K∗ ≤
2α

1− α
|K̃ −K∗|, (A.8)

where Kµ̃ is the quadratic cost coefficient of the lookahead policy µ̃ [and
also the result of a Newton step for solving the fixed point Riccati equation

212 Newton’s Method and Error Bounds Appendix A

1 2 3 4 5 6 7 8 9
0

5

10

15

Line Global error bound Actual error

Line Global error bound Actual error

Figure A.3 Illustration of the global error bound (A.8) for the one-step looka-
head error Kµ̃ − K∗ as a function of K̃, compared with the true error obtained
by one step of Newton’s method starting from K̃.

The problem data are a = 2, b = 2, q = 1, and r = 5. With these numerical
values, we have K∗ = 5 and the region of stability is (S,∞) with S = 1.25.
The modulus of contraction α used in the figure is computed at S = S + 0.5.
Depending on the chosen value of S, α can be arbitrarily close to 1, but decreases
as S increases. Note that the error Kµ̃ − K∗ is much smaller when K̃ is larger
than K∗ than when it is lower, because the slope of F diminishes as K increases.
This is not reflected by the global error bound (A.8).

F = F (K) starting from K̃]. A plot of (Kµ̃−K∗) as a function of K̃, compared
with the bound on the right side of this equation is shown in Fig. A.3. It can
be seen that (Kµ̃−K∗) exhibits the qualitative behavior of Newton’s method,
which is very different than the bound (A.8). An interesting fact is that the
bound (A.8) depends on α, which in turn depends on how close K̃ is to the
boundary S of the region of stability, while the local behavior of Newton’s
method is independent of S.

A.4 LOCAL AND GLOBAL ERROR BOUNDS FOR
APPROXIMATE POLICY ITERATION

In an approximate PI method that generates a sequence of policies {µk},
it is important to estimate the asymptotic error

lim sup
k→∞

‖Jµk − J*‖.

Sec. A.4 Error Bounds for Approximate Policy Iteration 213

In this section we will consider the case where the policy evaluation step
is approximate, while the policy improvement step is exact (so that it is
equivalent to a Newton step for solving the Bellman equation J = TJ). In
particular, we focus on a method that generates a sequence of policies {µk}
and a corresponding sequence of approximate cost functions {Jk} satisfying

Tµk+1Jk = TJk, ‖Jk+1 − Jµk+1‖ ≤ δ, k = 0, 1, . . . ,

for some δ > 0. Here J0 is some initial cost function approximation, µ1

is the first policy, obtained from J0 by a one-step lookahead/Newton step,
and δ is some scalar quantifying the level of approximation in the policy
evaluation step (i.e., replacing Jµ1 with J1, and more generally replacing
Jµk+1 with Jk+1).

A prerequisite for this method to be well defined is that the generated
sequence {Jk} stays within the region of stability of the problem, since
otherwise the policy improvement step, Tµk+1Jk = TJk, is not well-defined.
This difficulty does not arise in problems where T is a contraction mapping,
such as in discounted problems with bounded cost per stage, but suggests
that in general the size of δ should be small enough to bring Jk relatively
close to J*, and keep it close.

For the remainder of this section, we assume that T is a contrac-
tion mapping with modulus α ∈ (0, 1). The main global error bound for
approximate PI under this assumption is

lim sup
k→∞

‖Jµk − J*‖ ≤
2αδ

(1− α)2
. (A.9)

It was first given in the book [BeT96] for finite-state discounted problems,
and a proof that applies to general abstract DP mappings was given in
the book [Ber22a], Section 2.4.1. The essence of the proof is the following
inequality, which quantifies the amount of approximate policy improvement
at each iteration:

‖Jµk+1 − J*‖ ≤ α‖Jµk − J*‖+
2αδ

1− α
.

It states that the error is reduced geometrically by a factor α, plus an
additive constant term 2αδ

1−α , which over time accumulates to 2αδ
(1−α)2

.

Unfortunately, the error bound (A.9) is very conservative, and does
not reflect practical reality. In applications of approximate PI, the iterates
Jk often get sufficiently close to J*, for the error Jµk+1 − J* to have the
superlinear convergence rate of Newton’s method:

‖Jµk+1 − J*‖ = o
(

‖Jk − J*‖
)

.

This suggests that Jµk+1 − J* converges to a neighborhood of J* of size
O(δ) once ‖Jk−J*‖ becomes small. An extreme manifestation of this arises

214 Newton’s Method and Error Bounds Appendix A

when the number of policies is finite, in which case J* is piecewise linear,
as in the case of a finite-spaces α-discounted problem. Then it can be
shown that once ‖Jk − J*‖ becomes sufficiently small, approximate policy
iteration produces an optimal policy at the next iteration, a property not
captured by the global error bound (A.9). A related property is that when
the number of policies is finite and δ is sufficiently small, then approximate
policy iteration produces an optimal policy in a finite number of iterations,
something that is also not captured by Eq. (A.9).

For another view of this phenomenon, let us use the triangle inequality
and the definition of δ as a bound of the policy evaluation error to write

‖Jk+1 − J*‖ ≤ ‖Jµk+1 − J*‖+ ‖Jk+1 − Jµk+1‖ ≤ ‖Jµk+1 − J*‖+ δ,

which in view of the superlinear convergence rate of Newton’s method,
‖Jµk+1 − J*‖ = o

(

‖Jk − J*‖
)

, yields

‖Jk+1 − J*‖ ≤ o
(

‖Jk − J*‖
)

+ δ. (A.10)

This relation suggests again that once Jk gets within a neighborhood of
size that is comparable to δ, it tends to stay within that neighborhood. As
an indication of this, note that when T is linear, then the o

(

‖Jk − J*‖
)

term in Eq. (A.10) is equal to 0, so the error bound becomes

‖Jk+1 − J*‖ ≤ δ,

regardless of the modulus of contraction α. Moreover, the same is true
when T is piecewise linear and δ is sufficiently small. We can also argue
that a similar behavior occurs within a small neighborhood of J∗ when δ is
small, but a detailed analysis will not be presented here. Instead, we will
illustrate the behavior of the error Jµk+1−J* for linear quadratic problems.

Example A.4.1 (Approximate PI for a One-Dimensional
Linear Quadratic Problem)

We consider the linear quadratic problem of Example A.3.1, and the approx-
imate PI algorithm with approximate policy evaluation within δ, in the sense
that

|Kk −K
µ
k | ≤ δ.

We will compute the asymptotic error

lim sup
k→∞

(K
µ
k −K∗), (A.11)

as a function of δ, and we will then compare it to the version of the global
error bound (A.9) for linear quadratic problems, which takes the form

lim sup
k→∞

(K
µ
k −K∗) ≤

2αδ
(1− α)2

, (A.12)

with α being a suitable contraction modulus.
Figure A.4 provides the comparison for the same problem data, a = 2,

b = 2, q = 1, and r = 5, as in Fig. A.3. Note that the true error is roughly
equal to δ as suggested by the discussion that precedes the present example.

Sec. A.4 Error Bounds for Approximate Policy Iteration 215

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

Line Global error bound Actual error

Line Global error bound Actual error

Figure A.4 Illustration of the asymptotic global error bound (A.9) for PI with
approximate policy evaluation as a function of δ, compared with the true asymp-
totic error.

Exact Convergence Property of Approximation in Value Space

An interesting result, given as Prop. 2.3.1 of the abstract DP book [Ber22a],
is that when there are a finite number of policies and the Bellman operator
is a contraction, there is a neighborhood N∗ of the unique solution of
Bellman’s equation such that one-step lookahead minimization with an
approximate cost function that lies within N∗, yields an optimal policy,
that is,

J ∈ N∗ and TµJ = TJ ⇒ Jµ = J∗. (A.13)

To visuallize this result, one may think of a finite-state discounted problem,
in which case the Bellman operator T is piecewise linear, i.e., the function
(TJ)(x) is a piecewise linear function of J (cf. Fig. A.2).

There is a simple extension of this result to approximation in value
space with mulltistep lookahead. It states that for any J , there exists an
integer ! such that

TµT !−1J = T !J ⇒ Jµ = J∗.

The proof follows by replacing J with T !−1J in Eq. (2.13), and by using the
convergence property of VI when T is a contraction. In words, the multistep
lookahead policy is exactly optimal provided the lookahead is long enough.
The required value of ! depends on the cost function approximation J .

References

[ADB17] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A.
A., 2017. “A Brief Survey of Deep Reinforcement Learning,” arXiv preprint
arXiv:1708.05866.

[Arg08] Argyros, I. K., 2008. Convergence and Applications of Newton-Type
Iterations, Springer, N. Y.

[AsH95] Aström, K. J., and Hagglund, T., 1995. PID Controllers: Theory, Design,
and Tuning, Instrument Society of America, Research Triangle Park, NC.

[AsH06] Aström, K. J., and Hagglund, T., 2006. Advanced PID Control, Instru-
ment Society of America, Research Triangle Park, N. C.

[AsW08] Aström, K. J., and Wittenmark, B., 2008. Adaptive Control, Dover
Books; also Prentice-Hall, Englewood Cli↵s, N. J, 1994.

[BBB22] Bhambri, S., Bhattacharjee, A., and Bertsekas, D. P., 2022. “Reinforce-
ment Learning Methods for Wordle: A POMDP/Adaptive Control Approach,”
arXiv preprint arXiv:2211.10298.

[BBD10] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Rein-
forcement Learning and Dynamic Programming Using Function Approximators,
CRC Press, N. Y.

[BBM17] Borrelli, F., Bemporad, A., and Morari, M., 2017. Predictive Control
for Linear and Hybrid Systems, Cambridge Univ. Press, Cambridge, UK.

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Real-Time Learn-
ing and Control Using Asynchronous Dynamic Programming,” Artificial Intelli-
gence, Vol. 72, pp. 81-138.

[BDL09] Bolte, J., Daniilidis, A., and Lewis, A., 2009. “Tame Functions are
Semismooth,” Math. Programming, Vol. 117, pp. 5-19.

[BDT18] Busoniu, L., de Bruin, T., Tolic, D., Kober, J., and Palunko, I., 2018.
“Reinforcement Learning for Control: Performance, Stability, and Deep Approx-
imators,” Annual Reviews in Control, Vol. 46, pp. 8-28.

[BKB20] Bhattacharya, S., Kailas, S., Badyal, S., Gil, S., and Bertsekas, D. P.,
2020. “Multiagent Rollout and Policy Iteration for POMDP with Application
to Multi-Robot Repair Problems,” in Proc. of Conference on Robot Learning
(CoRL); also arXiv preprint, arXiv:2011.04222.

[BLW91] Bittanti, S., Laub, A. J., and Willems, J. C., eds., 2012. The Riccati
Equation, Springer.

217

218 References

[BMZ09] Bokanowski, O., Maroso, S., and Zidani, H., 2009. “Some Convergence
Results for Howard’s Algorithm,” SIAM J. on Numerical Analysis, Vol. 47, pp.
3001-3026.

[BPW12] Browne, C., Powley, E., Whitehouse, D., Lucas, L., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., 2012.
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. on Computational
Intelligence and AI in Games, Vol. 4, pp. 1-43.

[BSW99] Beard, R. W., Saridis, G. N., and Wen, J. T., 1998. “Approximate
Solutions to the Time-Invariant Hamilton-Jacobi-Bellman Equation,” J. of Op-
timization Theory and Applications, Vol. 96, pp. 589-626.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algo-
rithms for Combinatorial Optimization,” Heuristics, Vol. 3, pp. 245-262.

[BeC99] Bertsekas, D. P., and Castañon, D. A., 1999. “Rollout Algorithms for
Stochastic Scheduling Problems,” Heuristics, Vol. 5, pp. 89-108.

[BeI96] Bertsekas, D. P., and Io↵e, S., 1996. “Temporal Di↵erences-Based Policy
Iteration and Applications in Neuro-Dynamic Programming,” Lab. for Info. and
Decision Systems Report LIDS-P-2349, MIT, Cambridge, MA.

[BeK65] Bellman, R., and Kalaba, R. E., 1965. Quasilinearization and Nonlinear
Boundary-Value Problems, Elsevier, N.Y.

[BeR71] Bertsekas, D. P., and Rhodes, I. B., 1971. “On the Minimax Reachability
of Target Sets and Target Tubes,” Automatica, Vol. 7, pp. 233-247.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control:
The Discrete Time Case, Academic Press, N. Y.; republished by Athena Scientific,
Belmont, MA, 1996 (can be downloaded from the author’s website).

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, Engl. Cli↵s, N. J. (can be
downloaded from the author’s website).

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, MA.

[BeT08] Bertsekas, D. P., and Tsitsiklis, J. N., 2008. Introduction to Probability,
2nd Edition, Athena Scientific, Belmont, MA.

[BeY10] Bertsekas, D. P., and Yu, H., 2010. “Distributed Asynchronous Policy
Iteration in Dynamic Programming,” Proc. of Allerton Conf. on Communication,
Control and Computing, Allerton Park, Ill, pp. 1368-1374.

[BeY12] Bertsekas, D. P., and Yu, H., 2012. “Q-Learning and Enhanced Policy
Iteration in Discounted Dynamic Programming,” Math. of Operations Research,
Vol. 37, pp. 66-94.

[BeY16] Bertsekas, D. P., and Yu, H., 2016. “Stochastic Shortest Path Problems
Under Weak Conditions,” Lab. for Information and Decision Systems Report
LIDS-2909, Massachusetts Institute of Technology.

[Bea95] Beard, R. W., 1995. Improving the Closed-Loop Performance of Nonlin-
ear Systems, Ph.D. Thesis, Rensselaer Polytechnic Institute.

[Bel57] Bellman, R., 1957. Dynamic Programming, Princeton University Press,
Princeton, N. J.

[Ber71] Bertsekas, D. P., 1971. “Control of Uncertain SystemsWith a Set-Member-
ship Description of the Uncertainty,” Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, MA (can be downloaded from the author’s website).

References 219

[Ber72] Bertsekas, D. P., 1972. “Infinite Time Reachability of State Space Regions
by Using Feedback Control,” IEEE Trans. Automatic Control, Vol. AC-17, pp.
604-613.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans.
Aut. Control, Vol. AC-27, pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed
Points,” Math. Programming, Vol. 27, pp. 107-120.

[Ber97] Bertsekas, D. P., 1997. “Di↵erential Training of Rollout Policies,” Proc.
of the 35th Allerton Conference on Communication, Control, and Computing,
Allerton Park, Ill.

[Ber05] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control:
A Survey from ADP to MPC,” European J. of Control, Vol. 11, pp. 310-334.

[Ber11] Bertsekas, D. P., 2011. “Approximate Policy Iteration: A Survey and
Some New Methods,” J. of Control Theory and Applications, Vol. 9, pp. 310-
335.

[Ber12] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, Vol.
II, 4th Ed., Athena Scientific, Belmont, MA.

[Ber15] Bertsekas, D. P., 2015. “Lambda-Policy Iteration: A Review and a New
Implementation,” arXiv preprint arXiv:1507.01029.

[Ber16] Bertsekas, D. P., 2016. Nonlinear Programming, Athena Scientific, Bel-
mont, MA.

[Ber17a] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control,
Vol. I, 4th Ed., Athena Scientific, Belmont, MA.

[Ber17b] Bertsekas, D. P., 2017. “Value and Policy Iteration in Deterministic
Optimal Control and Adaptive Dynamic Programming,” IEEE Trans. on Neural
Networks and Learning Systems, Vol. 28, pp. 500-509.

[Ber17c] Bertsekas, D. P., 2017. “Regular Policies in Abstract Dynamic Program-
ming,” SIAM J. on Optimization, Vol. 27, pp. 1694-1727.

[Ber18a] Bertsekas, D. P., 2018. Abstract Dynamic Programming, 2nd Ed., Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber18b] Bertsekas, D. P., 2018. “Feature-Based Aggregation and Deep Rein-
forcement Learning: A Survey and Some New Implementations,” Lab. for In-
formation and Decision Systems Report, MIT; arXiv preprint arXiv:1804.04577;
IEEE/CAA Journal of Automatica Sinica, Vol. 6, 2019, pp. 1-31.

[Ber18c] Bertsekas, D. P., 2018. “Biased Aggregation, Rollout, and Enhanced Pol-
icy Improvement for Reinforcement Learning,” Lab. for Information and Decision
Systems Report, MIT; arXiv preprint arXiv:1910.02426.

[Ber18d] Bertsekas, D. P., 2018. “Proximal Algorithms and Temporal Di↵erence
Methods for Solving Fixed Point Problems,” Computational Optimization and
Applications, Vol. 70, pp. 709-736.

[Ber19a] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control,
Athena Scientific, Belmont, MA.

[Ber19b] Bertsekas, D. P., 2019. “Multiagent Rollout Algorithms and Reinforce-
ment Learning,” arXiv preprint arXiv:1910.00120.

[Ber19c] Bertsekas, D. P., 2019. “Constrained Multiagent Rollout and Multidi-
mensional Assignment with the Auction Algorithm,” arXiv preprint, arxiv.org/-
abs/2002.07407.

220 References

[Ber19d] Bertsekas, D. P., 2019. “Robust Shortest Path Planning and Semicon-
tractive Dynamic Programming,” Naval Research Logistics, Vol. 66, pp. 15-37.

[Ber20a] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Rein-
forcement Learning, Athena Scientific, Belmont, MA.

[Ber20b] Bertsekas, D. P., 2020. “Multiagent Value Iteration Algorithms in Dy-
namic Programming and Reinforcement Learning,” Results in Control and Op-
timization J., Vol. 1, 2020.

[Ber21a] Bertsekas, D. P., 2021. “On-Line Policy Iteration for Infinite Horizon
Dynamic Programming,” arXiv preprint arXiv:2106.00746.

[Ber21b] Bertsekas, D. P., 2021. “Multiagent Reinforcement Learning: Rollout
and Policy Iteration,” IEEE/ CAA J. of Automatica Sinica, Vol. 8, pp. 249-271.

[Ber21c] Bertsekas, D. P., 2021. “Distributed Asynchronous Policy Iteration for
Sequential Zero-Sum Games and Minimax Control,” arXiv preprint arXiv:2107.-
10406.

[Ber22a] Bertsekas, D. P., 2022. Abstract Dynamic Programming, 3rd Edition,
Athena Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber22b] Bertsekas, D. P., 2022. “Newton’s Method for Reinforcement Learning
and Model Predictive Control,” Results in Control and Optimization J., Vol. 7,
2022, pp. 100-121.

[Ber22c] Bertsekas, D. P., 2022. “Rollout Algorithms and Approximate Dynamic
Programming for Bayesian Optimization and Sequential Estimation,” arXiv pre-
print arXiv:2212.07998v3.

[Bit91] Bittanti, S., 1991. “Count Riccati and the Early Days of the Riccati
Equation,” in The Riccati Equation (pp. 1-10), Springer.

[Bla65] Blackwell, D., 1965. “Positive Dynamic Programming,” Proc. Fifth Berke-
ley Symposium Math. Statistics and Probability, pp. 415-418.

[BoV79] Borkar, V., and Varaiya, P. P., 1979. “Adaptive Control of Markov
Chains, I: Finite Parameter Set,” IEEE Trans. Automatic Control, Vol. AC-24,
pp. 953-958.

[Bod20] Bodson, M., 2020. Adaptive Estimation and Control, Independently Pub-
lished.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems
Viewpoint, Cambridge Univ. Press.

[Bor09] Borkar, V. S., 2009. “Reinforcement Learning: A Bridge Between Nu-
merical Methods and Monte Carlo,” in World Scientific Review, Vol. 9, Ch. 4.

[Bra21] Brandimarte, P., 2021. From Shortest Paths to Reinforcement Learning:
A MATLAB-Based Tutorial on Dynamic Programming, Springer.

[CFH13] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2013. Simulation-
Based Algorithms for Markov Decision Processes, 2nd Edition, Springer, N. Y.

[CaB07] Camacho, E. F., and Bordons, C., 2007. Model Predictive Control, 2nd
Ed., Springer, New York, N. Y.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-
Based Approach, Springer, N. Y.

[DNP11] Deisenroth, M. P., Neumann, G., and Peters, J., 2011. “A Survey on
Policy Search for Robotics,” Foundations and Trends in Robotics, Vol. 2, pp.
1-142.

[DeF04] De Farias, D. P., 2004. “The Linear Programming Approach to Approxi-

References 221

mate Dynamic Programming,” in Learning and Approximate Dynamic Program-
ming, by J. Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), IEEE Press, N. Y.

[DoS80] Doshi, B., and Shreve, S., 1980. “Strong Consistency of a Modified Max-
imum Likelihood Estimator for Controlled Markov Chains,” J. of Applied Prob-
ability, Vol. 17, pp. 726-734.

[DoR14] Dontchev, A. L., and Rockafellar, R. T., 2014. Implicit Functions and
Solution Mappings, 2nd Edition, Springer, N. Y.

[FaP03] Facchinei, F., and Pang, J.-S., 2003. Finite-Dimensional Variational In-
equalities and Complementarity Problems, Vols I and II, Springer, N. Y.

[FeS04] Ferrari, S., and Stengel, R. F., 2004. “Model-Based Adaptive Critic De-
signs,” in Learning and Approximate Dynamic Programming, by J. Si, A. Barto,
W. Powell, and D. Wunsch, (Eds.), IEEE Press, N. Y.

[GBL12] Grondman, I., Busoniu, L., Lopes, G. A. D., and Babuska, R., 2012.
“A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy
Gradients,” IEEE Trans. on Systems, Man, and Cybernetics, Part C, Vol. 42, pp.
1291-1307.

[GSD06] Goodwin, G., Seron, M. M., and De Dona, J. A., 2006. Constrained
Control and Estimation: An Optimisation Approach, Springer, N. Y.

[GoS84] Goodwin, G. C., and Sin, K. S. S., 1984. Adaptive Filtering, Prediction,
and Control, Prentice-Hall, Englewood Cli↵s, N. J.

[Gos15] Gosavi, A., 2015. Simulation-Based Optimization: Parametric Optimiza-
tion Techniques and Reinforcement Learning, 2nd Edition, Springer, N. Y.

[HWL21] Ha, M., Wang, D., and Liu, D., 2021. “O✏ine and Online Adaptive
Critic Control Designs With Stability Guarantee Through Value Iteration,” IEEE
Transactions on Cybernetics.

[HaR21] Hardt, M.. and Recht, B., 2021. Patterns, Predictions, and Actions: A
Story About Machine Learning, arXiv preprint arXiv:2102.05242.

[Hay08] Haykin, S., 2008. Neural Networks and Learning Machines, 3rd Ed.,
Prentice-Hall, Englewood-Cli↵s, N. J.

[Hew71] Hewer, G., 1971. “An Iterative Technique for the Computation of the
Steady State Gains for the Discrete Optimal Regulator,” IEEE Trans. on Auto-
matic Control, Vol. 16, pp. 382-384.

[Hey17] Heydari, A., 2017. “Stability Analysis of Optimal Adaptive Control Un-
der Value Iteration Using a Stabilizing Initial Policy,” IEEE Trans. on Neural
Networks and Learning Systems, Vol. 29, pp. 4522-4527.

[Hey18] Heydari, A., 2018. “Stability Analysis of Optimal Adaptive Control Using
Value Iteration with Approximation Errors,” IEEE Transactions on Automatic
Control, Vol. 63, pp. 3119-3126.

[Hyl11] Hylla, T., 2011. Extension of Inexact Kleinman-Newton Methods to a
General Monotonicity Preserving Convergence Theory, Ph.D. Thesis, Univ. of
Trier.

[IoS96] Ioannou, P. A., and Sun, J., 1996. Robust Adaptive Control, Prentice-
Hall, Englewood Cli↵s, N. J.

[ItK03] Ito, K., and Kunisch, K., 2003. “Semi-Smooth Newton Methods for Vari-
ational Inequalities of the First Kind,” Mathematical Modelling and Numerical
Analysis, Vol. 37, pp. 41-62.

222 References

[JiJ17] Jiang, Y., and Jiang, Z. P., 2017. Robust Adaptive Dynamic Program-
ming, J. Wiley, N. Y.

[Jos79] Josephy, N. H., 1979. “Newton’s Method for Generalized Equations,”
Wisconsin Univ-Madison, Mathematics Research Center Report No. 1965.

[KAC15] Kochenderfer, M. J., with Amato, C., Chowdhary, G., How, J. P.,
Davison Reynolds, H. J., Thornton, J. R., Torres-Carrasquillo, P. A., Ore, N.
K., Vian, J., 2015. Decision Making under Uncertainty: Theory and Application,
MIT Press, Cambridge, MA.

[KKK95] Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and
Adaptive Control Design, J. Wiley, N. Y.

[KKK20] Kalise, D., Kundu, S., and Kunisch, K., 2020. “Robust Feedback Con-
trol of Nonlinear PDEs by Numerical Approximation of High-Dimensional Hamil-
ton-Jacobi-Isaacs Equations.” SIAM J. on Applied Dynamical Systems, Vol. 19,
pp. 1496-1524.

[KLM96] Kaelbling, L. P., Littman, M. L., and Moore, A. W., 1996. “Reinforce-
ment Learning: A Survey,” J. of Artificial Intelligence Res., Vol. 4, pp. 237-285.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal Infinite-Horizon Feed-
back Laws for a General Class of Constrained Discrete-Time Systems: Stability
and Moving-Horizon Approximations,” J. Optimization Theory Appl., Vo. 57,
pp. 265-293.

[Kle67] Kleinman, D. L., 1967. Suboptimal Design of Linear Regulator Systems
Subject to Computer Storage Limitations, Doctoral dissertation, M.I.T., Elec-
tronic Systems Lab., Rept. 297.

[Kle68] Kleinman, D. L., 1968. “On an Iterative Technique for Riccati Equation
Computations,” IEEE Trans. Automatic Control, Vol. AC-13, pp. 114-115.

[KoC16] Kouvaritakis, B., and Cannon, M., 2016. Model Predictive Control:
Classical, Robust and Stochastic, Springer, N. Y.

[KoS86] Kojima, M., and Shindo, S., 1986. “Extension of Newton and Quasi-
Newton Methods to Systems of PC1 Equations,” J. of the Operations Research
Society of Japan, Vol. 29, pp. 352-375.

[Kok91] Kokotovic, P. V., ed., 1991. Foundations of Adaptive Control, Springer.

[Kor90] Korf, R. E., 1990. “Real-Time Heuristic Search,” Artificial Intelligence,
Vol. 42, pp. 189-211.

[Kri16] Krishnamurthy, V., 2016. Partially Observed Markov Decision Processes,
Cambridge Univ. Press.

[Kum88] Kummer, B., 1988. “Newton’s Method for Non-Di↵erentiable Func-
tions,” Mathematical Research, Vol. 45, pp. 114-125.

[Kum00] Kummer, B., 2000. “Generalized Newton and NCP-methods: Conver-
gence, Regularity, Actions,” Discussiones Mathematicae, Di↵erential Inclusions,
Control and Optimization, Vol. 2, pp. 209-244.

[KuK21] Kundu, S., and Kunisch, K., 2021. “Policy Iteration for Hamilton-
Jacobi-Bellman Equations with Control Constraints,” Computational Optimiza-
tion and Applications, pp. 1-25.

[KuV86] Kumar, P. R., and Varaiya, P. P., 1986. Stochastic Systems: Estimation,
Identification, and Adaptive Control, Prentice-Hall, Englewood Cli↵s, N. J.

[KuL82] Kumar, P. R., and Lin, W., 1982. “Optimal Adaptive Controllers for
Unknown Markov Chains,” IEEE Trans. Automatic Control, Vol. AC-27, pp.

References 223

765-774.

[Kum83] Kumar, P. R., 1983. “Optimal Adaptive Control of Linear-Quadratic-
Gaussian Systems,” SIAM J. on Control and Optimization, Vol. 21, pp. 163-178.

[Kum85] Kumar, P. R., 1985. “A Survey of Some Results in Stochastic Adaptive
Control,” SIAM J. on Control and Optimization, Vol. 23, pp. 329-380.

[LAM21] Lopez, V. G., Alsalti, M., and Muller, M. A., 2021. “E�cient O↵-
Policy Q-Learning for Data-Based Discrete-Time LQR Problems,” arXiv preprint
arXiv:2105.07761.

[LJM21] Li, Y., Johansson, K. H., Martensson, J., and Bertsekas, D. P., 2021.
“Data-Driven Rollout for Deterministic Optimal Control,” arXiv preprint arXiv:-
2105.03116.

[LLL08] Lewis, F. L., Liu, D., and Lendaris, G. G., 2008. Special Issue on Adap-
tive Dynamic Programming and Reinforcement Learning in Feedback Control,
IEEE Trans. on Systems, Man, and Cybernetics, Part B, Vol. 38, No. 4.

[LPS21] Liu, M., Pedrielli, G., Sulc, P., Poppleton, E., and Bertsekas, D. P.,
2021. “ExpertRNA: A New Framework for RNA Structure Prediction,” bioRxiv
2021.01.18.427087; to appear in INFORMS J. on Computing.

[LWW17] Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H., 2017. Adaptive
Dynamic Programming with Applications in Optimal Control, Springer, Berlin.

[LXZ21] Liu, D., Xue, S., Zhao, B., Luo, B., and Wei, Q., 2021. “Adaptive
Dynamic Programming for Control: A Survey and Recent Advances,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 51, pp. 142-160.

[LaR95] Lancaster, P., and Rodman, L., 1995. Algebraic Riccati Equations,
Clarendon Press.

[LaS20] Lattimore, T., and Szepesvari, C., 2020. Bandit Algorithms, Cambridge
Univ. Press.

[LaW13] Lavretsky, E., and Wise, K., 2013. Robust and Adaptive Control with
Aerospace Applications, Springer.

[LeL13] Lewis, F. L., and Liu, D., (Eds), 2013. Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control, Wiley, Hoboken, N.
J.

[LeV09] Lewis, F. L., and Vrabie, D., 2009. “Reinforcement Learning and Adap-
tive Dynamic Programming for Feedback Control,” IEEE Circuits and Systems
Magazine, 3rd Q. Issue.

[Li17] Li, Y., 2017. “Deep Reinforcement Learning: An Overview,” arXiv preprint
ArXiv: 1701.07274v5.

[MDM01] Magni, L., De Nicolao, G., Magnani, L., and Scattolini, R., 2001. “A
Stabilizing Model-Based Predictive Control Algorithm for Nonlinear Systems,”
Automatica, Vol. 37, pp. 1351-1362.

[MKH10] Mayer, J., Khairy, K., and Howard, J., 2010. “Drawing an Elephant
with Four Complex Parameters,” American Journal of Physics, Vol. 78, pp. 648-
649.

[MRR00] Mayne, D., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., 2000.
“Constrained Model Predictive Control: Stability and Optimality,” Automatica,
Vol. 36, pp. 789-814.

[MVB20] Magirou, E. F., Vassalos, P., and Barakitis, N., 2020. “A Policy It-
eration Algorithm for the American Put Option and Free Boundary Control

224 References

Problems,” J. of Computational and Applied Mathematics, vol. 373, p. 112544.

[MaK12] Mausam, and Kolobov, A., 2012. “Planning with Markov Decision Pro-
cesses: An AI Perspective,” Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, Vol. 6, pp. 1-210.

[Mac02] Maciejowski, J. M., 2002. Predictive Control with Constraints, Addison-
Wesley, Reading, MA.

[Man74] Mandl, P., 1974. “Estimation and Control in Markov Chains,” Advances
in Applied Probability, Vol. 6, pp. 40-60.

[May14] Mayne, D. Q., 2014. “Model Predictive Control: Recent Developments
and Future Promise,” Automatica, Vol. 50, pp. 2967-2986.

[Mes16] Mesbah, A., 2016. Stochastic Model Predictive Control: An Overview
and Perspectives for Future Research,” IEEE Control Systems Magazine, Vol.
36, pp. 30-44.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge
Univ. Press, N. Y.

[NaA12] Narendra, K. S., and Annaswamy, A. M., 2012. Stable Adaptive Systems,
Courier Corporation.

[OrR67] Ortega, J. M., and Rheinboldt, W. C., 1967. “Monotone Iterations for
Nonlinear Equations with Application to Gauss-Seidel Methods,” SIAM J. on
Numerical Analysis, Vol. 4, pp. 171-190.

[OrR70] Ortega, J. M., and Rheinboldt, W. C., 1970. Iterative Solution of Non-
linear Equations in Several Variables, Academic Press; republished in 2000 by
the Society for Industrial and Applied Mathematics.

[PaJ21] Pang, B., and Jiang, Z. P., 2021. “Robust Reinforcement Learning: A
Case Study in Linear Quadratic Regulation,” arXiv preprint arXiv:2008.11592v3.

[Pan90] Pang, J. S., 1990. “Newton’s Method for B-Di↵erentiable Equations,”
Math. of Operations Research, Vol. 15, pp. 311-341.

[PoA69] Pollatschek, M., and Avi-Itzhak, B., 1969. “Algorithms for Stochastic
Games with Geometrical Interpretation,” Management Science, Vol. 15, pp. 399-
413.

[PoR12] Powell, W. B., and Ryzhov, I. O., 2012. Optimal Learning, J. Wiley, N.
Y.

[PoV04] Powell, W. B., and Van Roy, B., 2004. “Approximate Dynamic Program-
ming for High-Dimensional Resource Allocation Problems,” in Learning and Ap-
proximate Dynamic Programming, by J. Si, A. Barto, W. Powell, and D. Wunsch,
(Eds.), IEEE Press, N. Y.

[Pow11] Powell, W. B., 2011. Approximate Dynamic Programming: Solving the
Curses of Dimensionality, 2nd Edition, J. Wiley and Sons, Hoboken, N. J.

[PuB78] Puterman, M. L., and Brumelle, S. L., 1978. “The Analytic Theory of
Policy Iteration,” in Dynamic Programming and Its Applications, M. L. Puter-
man (ed.), Academic Press, N. Y.

[PuB79] Puterman, M. L., and Brumelle, S. L., 1979. “On the Convergence of
Policy Iteration in Stationary Dynamic Programming,” Math. of Operations Re-
search, Vol. 4, pp. 60-69.

[Put94] Puterman, M. L., 1994. Markovian Decision Problems, J. Wiley, N. Y.

[Qi93] Qi, L., 1993. “Convergence Analysis of Some Algorithms for Solving Non-
smooth Equations,” Math. of Operations Research, Vol. 18, pp. 227-244.

References 225

[QiS93] Qi, L., and Sun, J., 1993. “A Nonsmooth Version of Newton’s Method,”
Math. Programming, Vol. 58, pp. 353-367.

[RMD17] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M., 2017. Model Predic-
tive Control: Theory, Computation, and Design, 2nd Ed., Nob Hill Publishing
(updated in 2019 and 2020).

[Rec18] Recht, B., 2018. “A Tour of Reinforcement Learning: The View from
Continuous Control,” Annual Review of Control, Robotics, and Autonomous
Systems.

[RoB17] Rosolia, U., and Borrelli, F., 2017. “Learning Model Predictive Con-
trol for Iterative Tasks. A Data-Driven Control Framework,” IEEE Trans. on
Automatic Control, Vol. 63, pp. 1883-1896.

[RoB19] Rosolia, U., and Borrelli, F., 2019. “Sample-Based Learning Model Pre-
dictive Control for Linear Uncertain Systems,” 58th Conference on Decision and
Control (CDC), pp. 2702-2707.

[Rob80] Robinson, S. M., 1980. “Strongly Regular Generalized Equations,” Math.
of Operations Research, Vol. 5, pp. 43-62.

[Rob88] Robinson, S. M., 1988. “Newton’s Method for a Class of Nonsmooth
Functions,” Industrial Engineering Working Paper, University of Wisconsin; also
in Set-Valued Analysis Vol. 2, 1994, pp. 291-305.

[Rob11] Robinson, S. M., 2011. “A Point-of-Attraction Result for Newton’s Method
with Point-Based Approximations,” Optimization, Vol. 60, pp. 89-99.

[SGG15] Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M.,
2015. “Approximate Modified Policy Iteration and its Application to the Game
of Tetris,” J. of Machine Learning Research, Vol. 16, pp. 1629-1676.

[SBP04] Si, J., Barto, A., Powell, W., and Wunsch, D., (Eds.) 2004. Learning
and Approximate Dynamic Programming, IEEE Press, N. Y.

[SHM16] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
and Dieleman, S., 2016. “Mastering the Game of Go with Deep Neural Networks
and Tree Search,” Nature, Vol. 529, pp. 484-489.

[SHS17] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez,
A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and Lillicrap, T., 2017.
“Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm,” arXiv preprint arXiv:1712.01815.

[SSS17] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., and Chen, Y., 2017. “Mas-
tering the Game of Go Without Human Knowledge,” Nature, Vol. 550, pp. 354-
359.

[SYL04] Si, J., Yang, L., and Liu, D., 2004. “Direct Neural Dynamic Program-
ming,” in Learning and Approximate Dynamic Programming, by J. Si, A. Barto,
W. Powell, and D. Wunsch, (Eds.), IEEE Press, N. Y.

[SaB11] Sastry, S., and Bodson, M., 2011. Adaptive Control: Stability, Conver-
gence and Robustness, Courier Corporation.

[SaL79] Saridis, G. N., and Lee, C.-S. G., 1979. “An Approximation Theory of
Optimal Control for Trainable Manipulators,” IEEE Trans. Syst., Man, Cyber-
netics, Vol. 9, pp. 152-159.

226 References

[SaR04] Santos, M. S., and Rust, J., 2004. “Convergence Properties of Policy
Iteration,” SIAM J. on Control and Optimization, Vol. 42, pp. 2094-2115.

[Sch15] Schmidhuber, J., 2015. “Deep Learning in Neural Networks: An Overview,”
Neural Networks, pp. 85-117.

[Sha53] Shapley, L. S., 1953. “Stochastic Games,” Proc. of the National Academy
of Sciences, Vol. 39, pp. 1095-1100.

[SlL91] Slotine, J.-J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall,
Englewood Cli↵s, N. J.

[Str66] Strauch, R., 1966. “Negative Dynamic Programming,” Ann. Math. Statist.,
Vol. 37, pp. 871-890.

[SuB18] Sutton, R., and Barto, A. G., 2018. Reinforcement Learning, 2nd Ed.,
MIT Press, Cambridge, MA.

[Sze10] Szepesvari, C., 2010. Algorithms for Reinforcement Learning, Morgan
and Claypool Publishers, San Franscisco, CA.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement
Using Monte Carlo Search,” NIPS, Denver, CO.

[Tes94] Tesauro, G. J., 1994. “TD-Gammon, a Self-Teaching Backgammon Pro-
gram, Achieves Master-Level Play,” Neural Computation, Vol. 6, pp. 215-219.

[Tes95] Tesauro, G. J., 1995. “Temporal Di↵erence Learning and TD-Gammon,”
Communications of the ACM, Vol. 38, pp. 58-68.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for
Large-Scale Dynamic Programming,” Machine Learning, Vol. 22, pp. 59-94.

[VVL13] Vrabie, D., Vamvoudakis, K. G., and Lewis, F. L., 2013. Optimal Adap-
tive Control and Di↵erential Games by Reinforcement Learning Principles, The
Institution of Engineering and Technology, London.

[Van67] Vandergraft, J. S., 1967. “Newton’s Method for Convex Operators in
Partially Ordered Spaces,” SIAM J. on Numerical Analysis, Vol. 4, pp. 406-432.

[Van78] van der Wal, J., 1978. “Discounted Markov Games: Generalized Policy
Iteration Method,” J. of Optimization Theory and Applications, Vol. 25, pp.
125-138.

[WLL16] Wei, Q., Liu, D., and Lin, H., 2016. “Value Iteration Adaptive Dynamic
Programming for Optimal Control of Discrete-Time Nonlinear Systems,” IEEE
Transactions on Cybernetics, Vol. 46, pp. 840-853.

[WLL21] Winnicki, A., Lubars, J., Livesay, M., and Srikant, R., 2021. “The Role
of Lookahead and Approximate Policy Evaluation in Policy Iteration with Linear
Value Function Approximation,” arXiv preprint arXiv:2109.13419.

[WhS92] White, D., and Sofge, D., (Eds.), 1992. Handbook of Intelligent Control,
Van Nostrand, N. Y.

[YuB13] Yu, H., and Bertsekas, D. P., 2013. “Q-Learning and Policy Iteration Al-
gorithms for Stochastic Shortest Path Problems,” Annals of Operations Research,
Vol. 208, pp. 95-132.

[YuB15] Yu, H., and Bertsekas, D. P., 2015. “A Mixed Value and Policy Iteration
Method for Stochastic Control with Universally Measurable Policies,” Math. of
OR, Vol. 40, pp. 926-968.

[ZSG20] Zoppoli, R., Sanguineti, M., Gnecco, G., and Parisini, T., 2020. Neural
Approximations for Optimal Control and Decision, Springer.

Neuro-Dynamic Programming
Dimitri P. Bertsekas and John N. Tsitsiklis

Athena Scientific, 1996
512 pp., hardcover, ISBN 1-886529-10-8

This is the first textbook that fully explains the neuro-dynamic pro-
gramming/reinforcement learning methodology, a breakthrough in the prac-
tical application of neural networks and dynamic programming to complex
problems of planning, optimal decision making, and intelligent control.

From the review by George Cybenko for IEEE Computational Sci-
ence and Engineering, May 1998:

“Neuro-Dynamic Programming is a remarkable monograph that in-
tegrates a sweeping mathematical and computational landscape into a co-
herent body of rigorous knowledge. The topics are current, the writing is
clear and to the point, the examples are comprehensive and the historical
notes and comments are scholarly.”

“In this monograph, Bertsekas and Tsitsiklis have performed a Her-
culean task that will be studied and appreciated by generations to come.
I strongly recommend it to scientists and engineers eager to seriously un-
derstand the mathematics and computations behind modern behavioral
machine learning.”

Among its special features, the book:

• Describes and unifies a large number of NDP methods, including sev-
eral that are new

• Describes new approaches to formulation and solution of important
problems in stochastic optimal control, sequential decision making,
and discrete optimization

• Rigorously explains the mathematical principles behind NDP

• Illustrates through examples and case studies the practical applica-
tion of NDP to complex problems from optimal resource allocation,
optimal feedback control, data communications, game playing, and
combinatorial optimization

• Presents extensive background and new research material on dynamic
programming and neural network training

Neuro-Dynamic Programming is the winner of the 1997 INFORMS
CSTS prize for research excellence in the interface between Op-
erations Research and Computer Science

Reinforcement Learning and Optimal Control
Dimitri P. Bertsekas

Athena Scientific, 2019
388 pp., hardcover, ISBN 978-1-886529-39-7

This book explores the common boundary between optimal control
and artificial intelligence, as it relates to reinforcement learning and simu-
lation-based neural network methods. These are popular fields with many
applications, which can provide approximate solutions to challenging se-
quential decision problems and large-scale dynamic programming (DP).
The aim of the book is to organize coherently the broad mosaic of methods
in these fields, which have a solid analytical and logical foundation, and
have also proved successful in practice.

The book discusses both approximation in value space and approx-
imation in policy space. It adopts a gradual expository approach, which
proceeds along four directions:

• From exact DP to approximate DP: We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

• From finite horizon to infinite horizon problems: We first discuss
finite horizon exact and approximate DP methodologies, which are
intuitive and mathematically simple, and then progress to infinite
horizon problems.

• From model-based to model-free implementations: We first discuss
model-based implementations, and then we identify schemes that can
be appropriately modified to work with a simulator.

The mathematical style of this book is somewhat different from the
one of the author’s DP books, and the 1996 neuro-dynamic programming
(NDP) research monograph, written jointly with John Tsitsiklis. While
we provide a rigorous, albeit short, mathematical account of the theory
of finite and infinite horizon DP, and some fundamental approximation
methods, we rely more on intuitive explanations and less on proof-based
insights. Moreover, our mathematical requirements are quite modest: cal-
culus, a minimal use of matrix-vector algebra, and elementary probability
(mathematically complicated arguments involving laws of large numbers
and stochastic convergence are bypassed in favor of intuitive explanations).

The book is supported by on-line video lectures and slides, as well
as new research material, some of which has been covered in the present
monograph.

Rollout, Policy Iteration, and Distributed
Reinforcement Learning

Dimitri P. Bertsekas

Athena Scientific, 2020
480 pp., hardcover, ISBN 978-1-886529-07-6

This book develops in greater depth some of the methods from the
author’s Reinforcement Learning and Optimal Control textbook (Athena
Scientific, 2019). It presents new research, relating to rollout algorithms,
policy iteration, multiagent systems, partitioned architectures, and dis-
tributed asynchronous computation.

The application of the methodology to challenging discrete optimiza-
tion problems, such as routing, scheduling, assignment, and mixed integer
programming, including the use of neural network approximations within
these contexts, is also discussed.

Much of the new research is inspired by the remarkable AlphaZero
chess program, where policy iteration, value and policy networks, approxi-
mate lookahead minimization, and parallel computation all play an impor-
tant role.

Among its special features, the book:

• Presents new research relating to distributed asynchronous computa-
tion, partitioned architectures, and multiagent systems, with applica-
tion to challenging large scale optimization problems, such as combi-
natorial/discrete optimization, as well as partially observed Markov
decision problems.

• Describes variants of rollout and policy iteration for problems with
a multiagent structure, which allow the dramatic reduction of the
computational requirements for lookahead minimization.

• Establishes connections of rollout algorithms and model predictive
control, one of the most prominent control system design methodol-
ogy.

• Expands the coverage of some research areas discussed in the author’s
2019 textbook Reinforcement Learning and Optimal Control.

• Provides the mathematical analysis that supports the Newton step
interpretations and the conclusions of the present book.

The book is supported by on-line video lectures and slides, as well
as new research material, some of which has been covered in the present
monograph.

