Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 12
Off-Line Training by Aggregation
1 Introduction to Aggregation

2 Aggregation with Representative States: A Form of Discretization

3 Aggregation with Representative Features

4 Examples of Feature-Based Aggregation

5 What is the Aggregate Problem and How Do We Solve It?

6 Simulation-Based Solution of the Aggregate Problem

7 Variants of Aggregation
Aggregation within the Approximation in Value Space Framework

Approximate minimization

\[
\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha \tilde{J}(j))
\]

Computation of \(\tilde{J} \):
- Problem approximation
- Rollout
- Approximate PI
- Parametric approximation
- Aggregation

Approximations:
- Replace \(E\{\cdot\} \) with nominal values (certainty equivalence)
- Adaptive simulation
- Monte Carlo tree search

- Aggregation is a form of problem approximation. We approximate our DP problem with a "smaller/easier" version, which we solve optimally to obtain \(\tilde{J} \).
- Is related to feature-based parametric approximation (e.g., when \(\tilde{J} \) is piecewise constant, the features are 0-1 membership functions).
- Can be combined with (global) parametric approximation (like a neural net) in two ways. Either use the neural net to provide features, or add a local parametric correction to a \(\tilde{J} \) obtained by a neural net.
- Several versions: multistep lookahead, finite horizon, etc ...
Approximate the state space with a coarse grid of states

- Introduce a “small” set of “representative” states to form a coarse grid.
- Approximate the original DP problem with a coarse-grid DP problem, called aggregate problem (need transition probs. and cost from rep. states to rep. states).
- Solve the aggregate problem by exact DP.
- “Extend” the optimal cost function of the aggregate problem to an approximately optimal cost function for the original fine-grid DP problem.
- For example, extend the solution by a nearest neighbor/piecewise constant scheme (a fine grid state takes the cost value of the “nearest” coarse grid state).
Introduce a finite subset of "representative states" \(\mathcal{A} \subset \{1, \ldots, n\} \). We denote them by \(x \) and \(y \).

Original system states \(j \) are related to rep. states \(y \in \mathcal{A} \) with aggregation probabilities \(\phi_{jy} \) ("weights" satisfying \(\phi_{jy} \geq 0, \sum_{y \in \mathcal{A}} \phi_{jy} = 1 \)).

Aggregation probabilities express "similarity" or "proximity" of original to rep. states.

Aggregate dynamics: Transition probabilities between rep. states \(x, y \)

\[
\hat{p}_{xy}(u) = \sum_{j=1}^{n} p_{xj}(u) \phi_{jy}
\]

Expected cost at rep. state \(x \) under control \(u \):

\[
\hat{g}(x, u) = \sum_{j=1}^{n} p_{xj}(u) g(x, u, j)
\]
If r^*_x, $x \in \mathcal{A}$, are the optimal costs of the aggregate problem, approximate the optimal cost function of the original problem by

$$
\tilde{J}(j) = \sum_{y \in \mathcal{A}} \phi_{jy} r^*_y, \quad j = 1, \ldots, n, \quad \text{ (interpolation)}
$$

If $\phi_{jy} = 0$ or 1 for all j and y, $\tilde{J}(j)$ is piecewise constant. It is constant on each set

$$
S_y = \{j \mid \phi_{jy} = 1\}, \quad y \in \mathcal{A}, \quad \text{ (called the footprint of } y)$$
The approximate cost function $\tilde{J} = \sum_{y \in A} \phi_{jy} r_y^*$ is constant within $S_y = \{ j \mid \phi_{jy} = 1 \}$.

Approximation error for the piecewise constant case ($\phi_{jy} = 0$ or 1 for all j, y)

Consider the footprint sets

$$S_y = \{ j \mid \phi_{jy} = 1 \}, \quad y \in A$$

The $(J^* - \tilde{J})$ error is small if J^* varies little within each S_y. In particular,

$$|J^*(j) - \tilde{J}(j)| \leq \frac{\epsilon}{1 - \alpha}, \quad j \in S_y, \ y \in A,$$

where $\epsilon = \max_{y \in A} \max_{i,j \in S_y} |J^*(i) - J^*(j)|$ is the max variation of J^* within the S_y.

The Piecewise Constant Case ($\phi_{jy} = 0$ or 1 for all j, y)
Data of aggregate problem (it is stochastic even if the original is deterministic):

\[
\hat{p}_{xy}(u) = \sum_{j=1}^{n} p_{xj}(u) \phi_{jy}, \quad \hat{g}(x, u) = \sum_{j=1}^{n} p_{xj}(u) g(x, u, j), \quad \tilde{J}(j) = \sum_{y \in \mathcal{A}} \phi_{jy} r_y^*
\]

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage), any exact DP method can be used: VI, PI, optimistic PI, or linear programming.

Model-free simulation methods - Needed for large \(n \), even if model is available

Given a simulator for the original problem, we can obtain a simulator for the aggregate problem. Then use an (exact) model-free method to solve the aggregate problem.
Continuous state space

- The rep. states approach applies with no modification to continuous spaces discounted problems.
- The number of rep. states should be finite.
- The cost per stage should be bounded for the “good”/contraction mapping-based theory to apply to the original DP problem.
- A simulation/model-free approach may still be used for the aggregate problem.
- We thus obtain a general discretization method for continuous-spaces discounted problems.

Discounted POMDP with a belief state formulation

- Discounted POMDP models with belief states, fit neatly into the continuous state discounted aggregation framework.
- The aggregate/rep. states POMDP problem is a finite-state MDP that can be solved for r^* with any (exact) model-based or model-free method (VI, PI, etc).
- The optimal aggregate cost r^* yields an approximate cost function
 $$\tilde{J}(j) = \sum_{y \in A} \phi_j y^* r^*_y,$$
 which defines a one-step or multistep lookahead suboptimal control scheme for the original POMDP.
Discretizing Continuous Motion

- A self-driving car wants to drive from A to B through obstacles. Find the fastest route.
- Car speed is 1 m/sec in any direction.
- We discretize the space with a fine square grid; restrict directions of motion to horizontal and vertical.
- We take the discretized shortest path solution as an approximation to the continuous shortest path solution.
- Is this a good approximation?
Discretizing Continuous Motion

- The discretization is FLAWED.
- **Example**: Assume all motion costs 1 per meter, and no obstacles.
 - The continuous optimal solution (the straight A-to-B line) has length $\sqrt{2}$ kilometers.
 - The discrete optimal solution has length 2 kilometers regardless of how fine the discretization is.
- Here the state space is discretized finely **but the control space is not**.
- This is not an issue in POMDP (the control space is finite).
The main difficulty with rep. states/discretization schemes:

- It may not be easy to find a set of rep. states and corresponding piecewise constant or linear functions that approximate well J^*.
- Too many rep. states may be required for good approximate costs $\tilde{J}(j)$.

Suppose we have a good feature vector $F(i)$: We discretize the feature space

- We introduce representative features that span adequately the feature space $\mathcal{F} = \{F(i) \mid i = 1, \ldots, n\}$
- We aim for an aggregate problem whose states are the rep. features.
- We associate each rep. feature x with a subset of states I_x that nearly map onto feature x, i.e.,
 $$F(i) \approx x, \quad \text{for all } i \in I_x$$
- This is done with the help of weights d_{xi} (called disaggregation probabilities) that are 0 outside of I_x.
- As before, we associate each state j with rep. features y using aggregation probabilities ϕ_{jy}.
- We construct an aggregate problem using d_{xi}, ϕ_{jy}, and the original problem data.
Representative feature formation

Original System States

\[i \in I_x \]

Disaggregation Probabilities \(d_{xi} \)

\[d_{xi} = 0 \text{ for } i \notin I_x \]

\[p_{ij}(u), g(i, u, j) \]

Representative Features Aggregate States

\[x \]

\[j \in I_y \]

Aggregation Probabilities \(\phi_{jy} \)

\[\phi_{jy} = 1 \text{ for } j \in I_y \]

Transition diagram for the aggregate problem
Question 1: Why is the rep. states model a special case of the rep. features model?

Assume the following general principle for feature-based aggregation:

Choose features so that states \(i \) with similar features \(F(i) \) have similar \(J^*(i) \), i.e., \(J^*(i) \) changes little within each of the “footprint” sets \(I_x = \{ i \mid d_{xi} > 0 \} \) and \(S_y = \{ j \mid \phi_{jy} > 0 \} \).

Question 2: Can you think of examples of useful features for aggregation schemes?
Feature Formation Using Scoring Functions

Idea: Suppose that we have a scoring function $V(i)$ with $V(i) \approx J^*(i)$. Then group together states with similar score.

- We partition the range of values of V into m disjoint intervals R_1, \ldots, R_m.
- We define a feature vector $F(i)$ according to
 \[F(i) = \ell, \quad \text{all } i \text{ such that } V(i) \in R_\ell, \quad \ell = 1, \ldots, m \]
- Defines a partition of the state space into the footprints $S_\ell = I_\ell = \{i \mid F(i) = \ell\}$.
Examples of Scoring Functions

- Cost functions of heuristics or policies.

Let the scoring function be the cost function J_μ of a policy μ

Let’s compare with rollout:
- Rollout uses as cost approximation $\tilde{J} = J_\mu$.
- Score-based aggregation uses J_μ as scoring function to form features. The resulting \tilde{J} is a “nonlinear function of J_μ” that aims to approximate J^*.
- If the scoring function quantization were so fine as to have a single feature value per interval R_ℓ, we would have $\tilde{J} = J^*$ (much better than rollout).
- Score-based aggregation can be viewed as a more sophisticated form of rollout.
- Score-based aggregation is more computation-intensive, less suitable for on-line implementation.

It is possible to use multiple scoring functions to generate more complex feature maps.
Suppose we have trained a NN that provides an approximation $\hat{J}(i) = r' \phi(i, v)$

- Features from the NN can be used to define rep. features.
- Training of the NN yields lots of state-feature pairs.
- Rep. features and footprint sets of states can be obtained from the NN training set data, perhaps supplemented with additional (state, feature) pair data.
- NN features may be supplemented by handcrafted features.
- Feature-based aggregation yields a nonlinear function \tilde{J} of the features that approximates J^* (not \hat{J}).
Several options for implementation of mixed NN/aggregation-based PI

- The NN-based feature construction process may be performed multiple times, each time followed by an aggregate problem solution that constructs a new policy.

- Alternatively: The NN training and feature construction may be done only once with some "good" policy.

- After each cycle of NN-based feature formation, we may add problem-specific handcrafted features, and/or features from previous cycles.

- Note: Deep NNs may produce fewer and more sophisticated final features
A Simple Version of the Aggregate Problem

Aggregate dynamics and costs

- **Aggregate dynamics**: Transition probabilities between rep. features \(x, y \)

 \[
 \hat{p}_{xy}(u) = \sum_{i \in I_x} d_{xi} \sum_{j=1}^{n} p_{ij}(u) \phi_{jy}
 \]

- **Expected cost per stage**:

 \[
 \hat{g}(x, u) = \sum_{i \in I_x} d_{xi} \sum_{j=1}^{n} p_{xj}(u) g(x, u, j)
 \]

Patterned after the simpler rep. states model.
The Flaw of the Simple Version of the Aggregate Problem

There is an implicit assumption in the aggregate dynamics and cost formulas

\[\hat{p}_{xy}(u) = \sum_{i \in I_x} d_{xi} \sum_{j=1}^{n} p_{ij}(u) \phi_{jy}, \quad \hat{g}(x, u) = \sum_{i \in I_x} d_{xi} \sum_{j=1}^{n} p_{xj}(u) g(x, u, j) \]

For a given rep. feature \(x \), the same control \(u \) is applied at all states \(i \) in the footprint \(I_x \).

So the simple aggregate problem is legitimate, but the approximation \(\tilde{J} \) of \(J^* \) may not be very good. We will address this issue in the next lecture.
More Accurate Version: The Enlarged Aggregate Problem

Bellman equations for the enlarged problem

\[r_x^* = \sum_{i=1}^{n} d_{xi} \tilde{J}_0(i), \quad x \in A, \]
\[\tilde{J}_0(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}_1(j) \right), \quad i = 1, \ldots, n, \]
\[\tilde{J}_1(j) = \sum_{y \in A} \phi_{jy} r_y^*, \quad j = 1, \ldots, n \]

\(r^* \) solves uniquely the composite Bellman equation \(r^* = Hr^* \):

\[r_x^* = (Hr^*)(x) = \sum_{i=1}^{n} d_{xi} \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \sum_{y \in A} \phi_{jy} r_y^* \right), \quad x \in A \]
Approximation error for the piecewise constant case ($\phi_{jy} = 0$ or 1 for all j, y)

Consider the footprint sets

$$S_y = \{j \mid \phi_{jy} = 1\}, \quad y \in A$$

The ($J^* - \tilde{J}$) error is small if J^* varies little within each S_y. In particular,

$$|J^*(j) - r^*_y| \leq \frac{\epsilon}{1 - \alpha}, \quad j \in S_y, \ y \in A,$$

where $\epsilon = \max_{y \in A} \max_{i, j \in S_y} |J^*(i) - J^*(j)|$ is the max variation of J^* within S_y.

Implication

Choose representative features x so that J^* varies little over the footprint of x.

This is a generally valid qualitative guideline

Holds for the more general piecewise linear interpolation case.
Simulation-Based Asynchronous Value Iteration for the Aggregate Problem

A sampled version of VI for solving $r^* = Hr^*$: $r^{k+1} \approx (1 - \gamma^k) r^k + \gamma^k H(r^k)$ with

$$(Hr)(x) = \sum_{i=1}^{n} d_{x_i} \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \sum_{y \in A} \phi_{jy} r^k_y \right), \quad x \in A$$

Note that H is a contraction.

At time k iterate for a single rep. feature x_k, and keep all other r^k_x unchanged:

$$r^{k+1}_{x_k} = (1 - \gamma^k) r^k_{x_k} + \gamma^k \min_{u \in U(i)} \sum_{j=1}^{n} p_{ikj}(u) \left(g(i_k, u, j) + \alpha \sum_{y \in A} \phi_{jy} r^k_y \right)$$

where i_k is a sample from I_{x_k} selected according to $d_{x_k i}$, and γ^k is a stepsize.

Convergence result [Tsitsiklis and Van Roy (1995)]

With $\gamma^k \to 0$ and other technical conditions, this iteration converges to the unique solution r^*. Some similarity with (exact) Q-learning proofs.
Simulation-Based Policy Iteration

Uses policy evaluation/policy improvement to generate policy/cost pairs \(\{(\mu^k, r^k)\} \). Converges monotonically \((r^{k+1} \leq r^k) \) and finitely \((r^k = r^* \text{ for sufficiently large } k) \).

Policy evaluation of current policy \(\mu^k \)

Solve the (linear) composite Bellman equation \(r^k = H_{\mu^k} r^k \) for \(\mu^k \), where

\[
(H_{\mu^k} r)(x) = \sum_{i=1}^{n} d_i x_i \sum_{j=1}^{n} p_{ij}(\mu^k(i)) \left(g(i, \mu^k(i), j) + \alpha \sum_{y \in A} \phi_{jy} r^k_y \right), \quad x \in A
\]

Two possibilities:

- **Iteratively**: Using a sampled version of VI with sampling for both \(i \) and for \(j \).
- **By matrix inversion**: Write the equation \(r^k = H_{\mu^k} r^k \) in matrix form as \(r^k = A^k r^k + b^k \). Evaluate \(A^k \) and \(b^k \) by simulation, and set \(r^k = (I - A^k)^{-1} b^k \).

Policy improvement by one-step lookahead

\[
\mu^{k+1}(i) = \arg \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \sum_{y \in A} \phi_{jy} r^k_y \right), \quad i = 1, \ldots, n
\]
Biased Aggregation - Suppose we Know a Good Approximation $V \approx J^*$; How do we Correct it?

We add a “bias” function V to the cost structure of the enlarged aggregate problem.
Some Results for Biased Aggregation

Let $(r^*, \tilde{J}_0, \tilde{J}_1)$ be the solution [note that $\tilde{J}_1(j) = V(j) + \sum_{y \in A} \phi_{jy} r^*_y$]

- When $V = J^*$ then $r^* = 0$, $\tilde{J}_0 = \tilde{J}_1 = J^*$, and any optimal policy for the aggregate problem is optimal for the original problem.

- When $V = J_\mu$ for some policy μ, the policy produced by aggregation is a rollout policy based on μ, when there is a single rep. feature. Suggests that with multiple rep. features the aggregation/rollout policy should be much better than rollout.

- Error bounds similar to the ones for the case $V = 0$ suggest to choose rep. features and footprint sets within which $V - J^*$ varies little.

- We do not know J^*, but we may use $T^k V$ (k value iterations on V) as an approximation. Then use $V - T^k V$ as a scoring function to form rep. features.
The composite system consists of \(N + 2 \) stochastic Bellman equations.

Simulation-based version of VI is hard to implement.

Simulation-based version of PI is possible, but policies are multistep.

A simpler case: Deterministic problem and representative states (no features)

Then each VI iteration involves solution of an \(N \)-stage deterministic DP (shortest path) problem: \(r^{k+1} = H_N(r^k) \), where \(H_N \) is the \(N \)-stage DP operator.

This algorithm embodies the idea of aggregation in both space and time.
WE WILL GIVE AN OVERVIEW OF THE ENTIRE COURSE