Topics in Reinforcement Learning: Lessons from AlphaZero for (Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 5
Rollout for Deterministic and Stochastic Problems
Rollout: A Special Case of Approximation in Value Space

At State x_k

DP minimization

\[\min_{u_k, \mu_{k+1}, \ldots, \mu_{k+\ell-1}} E \left\{ g_k(x_k, u_k, w_k) + \sum_{i=k+1}^{k+\ell-1} g_i(x_i, \mu_i(x_i), w_i) + \tilde{J}_{k+\ell}(x_{k+\ell}) \right\} \]

Rollout Control \tilde{u}_k

Rollout Policy $\tilde{\mu}_k$

First ℓ Steps

"Future"

$\tilde{J}_{k+\ell}(x_{k+\ell})$ is the Cost Function of Some Policy or Heuristic

- The policy used for rollout is called **base policy**
- The policy obtained by lookahead minimization is called **rollout policy**

Approximate variant

- $\tilde{J}_{k+\ell}(x_{k+\ell})$ may also approximate the cost function of the base policy
- Possibility of truncated rollout
Role of Rollout

- It provides important options for cost function approximation in the context of value space methods
- It is the basic building block of the fundamental PI algorithm (and approximate variants)

Reasons why it will be important:

- Rollout, in its pure form, is the RL method that is **easiest to understand and apply**
- Rollout is **the most reliably successful** (with “correct" implementation)
- **It is very general:** Applies to deterministic and stochastic problems, to finite horizon and infinite horizon
- As a special case of approximation in value space, **it relates to Newton’s method**
- It provides a useful alternative to reoptimization in **indirect adaptive control**
- It relates to **model predictive control**, one of the most important control system design methods (it is used to bring \tilde{J} within the region of stability)
- **It forms a building block for many of the RL methods used in practice** [including Q-learning, self-learning (approximate PI), and others]
At state x_k, for every pair (x_k, u_k), $u_k \in U_k(x_k)$, we generate a Q-factor

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k))$$

using the base heuristic [$H_{k+1}(x_{k+1})$ is the heuristic cost starting from x_{k+1}]

- We select the control u_k with minimal Q-factor
- We move to next state x_{k+1}, and continue
- Multistep lookahead versions
- Is rollout cost improving? (Performs no worse than the base heuristic, from x_0)
Cost improvement is not automatic: Special conditions must hold to guarantee that the rollout policy has no worse performance than the base heuristic.

Two such conditions are sequential consistency and sequential improvement.

The base heuristic is sequentially consistent if at a given state it chooses control that depends only on that state (and not on how we got to that state).

- If the heuristic generates the sequence

\[\{x_k, x_{k+1}, \ldots, x_N\} \]

starting from state \(x_k \), it also generates the sequence

\[\{x_{k+1}, \ldots, x_N\} \]

starting from state \(x_{k+1} \).

- The base heuristic is sequentially consistent if and only if it can be implemented with a legitimate DP policy \(\{\mu_0, \ldots, \mu_{N-1}\} \).

- “Greedy” heuristics are sequentially consistent (e.g., nearest neighbor for TS).

We will focus on a less restrictive condition: sequential improvement.
Sequential Improvement Condition

Definition: Best heuristic Q-factor \leq Heuristic cost, i.e.,

$$\min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)) \right] \leq H_k(x_k), \quad \text{for all } x_k$$

where $H_k(x_k)$: cost of the trajectory generated by the heuristic starting from x_k

Justification: Rollout, upon reaching \tilde{x}_k, has obtained a “current” trajectory R_k. Sequential improvement implies monotonicity: Cost of $R_k \geq$ Cost of R_{k+1}

R_0 is the cost of the base heuristic, R_N is the cost of the rollout, so $R_0 \geq R_N$

Note that Sequential consistency (i.e., heuristic is a DP policy) \rightarrow Sequential improvement
Base heuristic: Nearest neighbor (sequentially consistent and sequentially improving)

Cost of $R_0 \geq$ Cost of $R_1 \geq$ Cost of R_2
Simplified algorithm: Instead of control w/ minimal Q-factor, use any control with Q-factor \(\leq \) heuristic cost \(H_k(x_k) \)

- At any \(x_k \), choose as rollout control any \(\tilde{\mu}_k(x_k) \) such that

\[
g_k(x_k, \tilde{\mu}_k(x_k)) + H_{k+1}(f_k(x_k, \tilde{\mu}_k(x_k))) \leq H_k(x_k),
\]

where \(H_k(x_k) \) is the cost of the trajectory generated by the heuristic from \(x_k \).

- May save lots of computation (case of multiagent rollout, where \(u_k \) has multiple components)

Cost improvement for the simplified algorithm:

Let the rollout policy under the simplified algorithm be \(\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\} \), and let \(J_{k,\tilde{\pi}}(x_k) \) denote its cost starting from \(x_k \). Then for all \(x_k \) and \(k \), \(J_{k,\tilde{\pi}}(x_k) \leq H_k(x_k) \).

Proof: The monotonicity property

\[
H_0(x_0) = \text{Cost of } R_0 \geq \cdots \geq \text{Cost of } R_k \geq \text{Cost of } R_{k+1} \geq \cdots \geq \text{Cost of } R_N = J_{0,\tilde{\pi}}(x_0)
\]
is maintained.
Consider combining several heuristics in the context of rollout

- The idea is to construct a superheuristic, which runs all the heuristics at each state encountered, and selects the best out of the trajectories produced.
- The superheuristic can be viewed as the base heuristic for a rollout algorithm.
- It can be verified using the definitions, that if all the heuristics are sequentially improving, the same is true for the superheuristic.

Proof: Write the sequential improvement condition for each of the M heuristics

\[
\min_{u_k \in U_k(x_k)} \tilde{Q}_k^m(x_k, u_k) \leq H_k^m(x_k), \quad m = 1, \ldots, M,
\]

and all x_k and k, where $\tilde{Q}_k^m(x_k, u_k)$ and $H_k^m(x_k)$ are Q-factors and heuristic costs that correspond to the mth heuristic. By taking minimum over m, and interchanging the order of the minimization $\min_{m=1,\ldots,M} \min_{u_k \in U_k(x_k)}$,\n
\[
\min_{u_k \in U_k(x_k)} \min_{m=1,\ldots,M} \tilde{Q}_k^m(x_k, u_k) \leq \min_{m=1,\ldots,M} H_k^m(x_k),
\]

which is the sequential improvement condition for the superheuristic.
Suppose at x_0 there is a unique optimal trajectory $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$.

Suppose the base heuristic produces this optimal trajectory starting at x_0.

Rollout uses the base heuristic to construct a trajectory starting from x_1^* and \tilde{x}_1.

Suppose the heuristic’s trajectory starting from x_1^* is “bad” (has high cost).

Then $(Q$-factor of $u_0^*) > (Q$-factor of $\tilde{u}_0)$. So the rollout algorithm selects \tilde{u}_0, and moves to a nonoptimal next state $\tilde{x}_1 = f_0(x_0, \tilde{u}_0)$.

So in the absence of sequential improvement, the rollout can deviate from an already available good “current” trajectory.

This suggests a possible remedy: Follow the best “current” trajectory found even if rollout suggests following a different (but inferior) trajectory.
Fortified Rollout: Restores Cost Improvement for Base Heuristics that are not Sequentially Improving

Idea: At each step, follow the best trajectory computed thus far

- At state x_k: In addition to the permanent rollout trajectory $\overline{P}_k = \{ x_0, u_0, \ldots, u_{k-1}, x_k \}$, also store a tentative best trajectory

$$\overline{T}_k = \{ x_0, \ldots, x_k, \overline{u}_k, \overline{x}_{k+1}, \overline{u}_{k+1}, \ldots, \overline{u}_{N-1}, \overline{x}_N \}$$

\overline{T}_k is the best end-to-end trajectory computed up to stage k

- We reject the minimum Q-factor choice \tilde{u}_k if its complete trajectory is more costly than the current tentative best; otherwise we accept \tilde{u}_k, and update the tentative best trajectory.
At x_0, the fortified rollout stores as initial tentative best trajectory the unique optimal trajectory $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$ generated by the base heuristic.

In the first rollout step, it computes the Q-factors of u_0^* and \tilde{u}_0 by running the heuristic from x_1^* and \tilde{x}_1.

Even though the rollout prefers \tilde{u}_0 to u_0^*, it discards \tilde{u}_0 in favor of u_0^*, which is dictated by the tentative best trajectory.

It then sets the permanent trajectory to (x_0, u_0^*, x_1^*) and keeps the tentative best trajectory unchanged to $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$.
Model-Free Rollout with an Expert for the General Discrete Optimization

\[
\min_{u_0 \in U_0, \ldots, u_{N-1} \in U_{N-1}} G(u_0, \ldots, u_{N-1})
\]

- Assume we do not know \(G\), and/or the constraint sets \(U_k\)
- Instead we have a base heuristic, which given a partial solution \((u_0, \ldots, u_k)\),
 outputs all next controls \(\tilde{u}_{k+1}\), and generates from each a complete solution

\[
S_k(u_0, \ldots, u_k, \tilde{u}_{k+1}) = (u_0, \ldots, u_k, \tilde{u}_{k+1}, \ldots, \tilde{u}_{N-1})
\]
- Also, we have a human or software “expert" that can rank any two complete solutions without assigning numerical values to them.
- Deterministic rollout can be applied to this problem; we have all we need.
Consider deterministic rollout with multistep lookahead

- How would the rollout algorithm work?
- What is the main computational difficulty in applying multistep rollout?
Stochastic Rollout with MC Simulation: Multistep Approximation in Value Space with $\tilde{J}_{k+\ell}(x_{k+\ell})$ the Cost Function of Some Policy

At State x_k

DP minimization

\[
\min_{u_k, \mu_{k+1}, \ldots, \mu_{k+\ell-1}} E \left[g_k(x_k, u_k, w_k) + \sum_{i=k+1}^{k+\ell-1} g_i(x_i, \mu_i(x_i), w_i) + \tilde{J}_{k+\ell}(x_{k+\ell}) \right]
\]

Rollout Control \tilde{u}_k

Rollout Policy $\tilde{\mu}_k$

First ℓ Steps

Lookahead Minimization

Base Policy Cost

“Future”

Consider the pure case (no truncation, no terminal cost approximation)

- Assume that the base heuristic is a legitimate policy $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$ (i.e., is sequentially consistent, in the context of deterministic problems)

- Let $\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$ be the rollout policy. Then cost improvement is obtained

 \[J_{k, \tilde{\pi}}(x_k) \leq J_{k, \pi}(x_k), \quad \text{for all } x_k \text{ and } k \]

- A simple induction proof

- **The big issue:** How do we save in simulation effort?
Truncated rollout with cost function approximation provided by TD-Gammon (a 1992 program, involving a neural network trained by a form of approximate policy iteration that uses “Temporal Differences”).

The truncated rollout program (1996) plays better than TD-Gammon, and better than any human.

It is slow due to excessive Monte Carlo simulation time.
We assumed equal effort for evaluation of Q-factors of all controls at a state x_k

Drawbacks:
- Some controls may be clearly inferior to others and may not be worth as much sampling effort.
- Some controls that appear to be promising may be worth exploring better through multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead

- MCTS involves **adaptive simulation** (simulation effort adapted to the perceived quality of different controls).
- Aims to balance **exploitation** (extra simulation effort on controls that look promising) and **exploration** (adequate exploration of the potential of all controls).
- MCTS does not directly improve performance; it just tries to save in simulation effort.
MCTS provides an economical sampling policy to estimate the Q-factors

\[\tilde{Q}_k(x_k, u_k) = E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\}, \quad u_k \in U_k(x_k) \]

Assume that \(U_k(x_k) \) contains a finite number of elements, say \(u = 1, \ldots, m \)

- After the \(n \)th sampling period we have \(Q_{u,n} \), the empirical mean of the Q-factor of each control \(u \) (total sample value divided by total number of samples corresponding to \(u \)). We view \(Q_{u,n} \) as an exploitation index.
- How do we use the estimates \(Q_{u,n} \) to select the control to sample next?
MCTS balances **exploitation** (sample controls that seem most promising, i.e., a small $Q_{u,n}$) and **exploration** (sample controls with small sample count).

- A popular strategy: Sample next the control u that minimizes the sum $Q_{u,n} + R_{u,n}$ where $R_{u,n}$ is an exploration index.

- $R_{u,n}$ is based on a confidence interval formula and depends on the sample count S_u of control u (which comes from analysis of multiarmed bandit problems).

- The UCB rule (upper confidence bound) sets $R_{u,n} = -c \sqrt{\log n / S_u}$, where c is a positive constant, selected empirically (values $c \approx \sqrt{2}$ are suggested, assuming that $Q_{u,n}$ is normalized to take values in the range $[-1, 0]$).

- MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero has used a different (semi-heuristic) rule.
REGULATION PROBLEM
Keep the state near the origin

PATH PLANNING
Must Deal with
State and Control Constraints
Linear-Quadratic Formulation is
Often Inadequate

Fixed Obstacles
Moving Obstacle
Acceleration Constraints
Velocity Constraints
On-Line Rollout for Deterministic Infinite-Spaces Problems

Suppose the control space is infinite (so the number of Q-factors is infinite)

- One possibility is discretization of $U_k(x_k)$; but excessive number of Q-factors.
- Another possibility is to use optimization heuristics that look $(\ell - 1)$ steps ahead.
- Seemlessly combine the kth stage minimization and the optimization heuristic into a single ℓ-stage deterministic optimization.
- Can solve it by nonlinear programming/optimal control methods (e.g., quadratic programming, gradient-based). Constraints can be readily accommodated.
- This is the idea underlying model predictive control (MPC).
About the Next Lecture

We will cover:
- Model predictive control; relation to rollout
- Rollout for multiagent problems

Homework to be announced next week

Watch videolecture 6 from the 2021 ASU course offerings