Topics in Reinforcement Learning: Lessons from AlphaZero for (Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 7
Constrained Rollout, Rollout for Discrete Optimization, Minimax Rollout
Outline

1. Constrained Rollout for Deterministic Optimal Control
2. Discrete Optimization Applications
3. Rollout for Minimax Control
Traveling Salesman: Example of a Trajectory Constraint

Find a minimum cost tour subject to a safety constraint
Deterministic Rollout with Trajectory Constraint: Basic Idea

Review of the unconstrained rollout algorithm:

- Construct sequence of trajectories \(\{ T_0, T_1, \ldots, T_N \} \) with monotonically nonincreasing cost (assuming a sequential improvement condition).
- For each \(k \), the trajectories \(T_k, T_{k+1}, \ldots, T_N \) share the same initial portion \((x_0, \tilde{u}_0, \ldots, \tilde{u}_{k-1}, \tilde{x}_k)\).
- The base heuristic is used to generate candidate trajectories that correspond to the controls \(u_k \in U_k(x_k) \).
- The next trajectory \(T_{k+1} \) is the candidate trajectory that has min cost.

To deal with a trajectory constraint \(T \in C \), we discard all the candidate trajectories that violate the constraint, and we choose \(T_{k+1} \) to be the best of the remaining trajectories.
Consider a deterministic optimal control problem with system $x_{k+1} = f_k(x_k, u_k)$.

A complete trajectory is a sequence

$$T = (x_0, u_0, x_1, u_1, \ldots, u_{N-1}, x_N)$$

Problem:

$$\min_{T \in C} G(T)$$

where G is a given cost function and C is a given constraint set of trajectories.

State augmentation idea for rollout

Redefine the state to be the partial trajectory

$$y_k = (x_0, u_0, x_1, \ldots, u_{k-1}, x_k)$$

Partial trajectory evolves according to a redefined system equation:

$$y_{k+1} = (y_k, u_k, f_k(x_k, u_k))$$

The problem becomes to minimize $G(y_N)$ subject to the constraint $y_N \in C$.
Given $\tilde{y}_k = \{\tilde{x}_0, \tilde{u}_0, \tilde{x}_1, \tilde{u}_1, \ldots, \tilde{u}_{k-1}, \tilde{x}_k\}$ consider all controls u_k and corresponding next states x_{k+1}.

Extend \tilde{y}_k to obtain the partial trajectories $y_{k+1} = (\tilde{y}_k, u_k, x_{k+1})$, for $u_k \in U_k(x_k)$.

Run the base heuristic from each y_{k+1} to obtain the partial trajectory $R(y_{k+1})$.

Join the partial trajectories y_{k+1} and $R(y_{k+1})$ to obtain complete trajectories denoted by $T_k(\tilde{y}_k, u_k) = (\tilde{y}_k, u_k, R(y_{k+1}))$

Find the set of controls $\tilde{U}_k(\tilde{y}_k)$ for which $T_k(\tilde{y}_k, u_k)$ is feasible, i.e., $T_k(\tilde{y}_k, u_k) \in C$

Choose the control $\tilde{u}_k \in \tilde{U}_k(\tilde{y}_k)$ according to the minimization

$$\tilde{u}_k \in \arg\min_{u_k \in \tilde{U}_k(\tilde{y}_k)} G(T_k(\tilde{y}_k, u_k))$$
Rollout at A: Considers partial tours AB, AC, and AD; Obtains the complete tours ABCDA, ACBDA, and ADCBA; Discards ADCBA as being infeasible; Compares ABCDA and ACBDA, finds ABCDA to have smaller cost, and selects AB.

Rollout at AB: Considers the partial tours ABC and ABD; Obtains the complete tours ABCDA and ABDCA; Discards ABDCA as being infeasible; Selects the complete tour ABCDA.
The notions of **sequential consistency** and **sequential improvement** apply. Their definition includes that the set of “feasible” controls \(\tilde{U}_k(\tilde{y}_k) \) is nonempty for all \(k \).

Sequential improvement condition: The min heuristic Q-factor over \(\tilde{U}_k(\tilde{y}_k) \) is no larger than the heuristic cost at \(\tilde{y}_k \) (see the notes).

Fortified version (if sequential improvement does not hold; see the notes):
- Maintains the “tentative best” trajectory, and follows it up to generating a better trajectory through rollout.
- Has the cost improvement property, assuming the base heuristic generates a feasible trajectory starting from the initial condition \(\tilde{y}_0 = x_0 \).

Multiagent version: Selects one-control-component-at-a-time (apply constrained rollout to the equivalent reformulation, i.e., the one with control space “unfolded”).
The heuristic is not sequentially consistent at A, but it is sequentially improving.

If we change the D→A cost to 25, the heuristic is not sequentially improving at A, and the cost improvement property is lost.

If we change the D→A cost to 25 and we add fortification, the rollout algorithm at A sticks with the initial tentative best trajectory ACDBA, and rejects ABCDA.
A Retrospective Summary on Deterministic Constrained Rollout

Structural components

1. Trajectories T consisting of a sequence of decisions defined by a layered/optimal control graph
2. A cost function $G(T)$ to rank trajectories
3. A constraint $T \in C$ to determine feasibility of trajectories
4. A base heuristic that starts from a partial trajectory and generates a complete trajectory

Given (1)

The choices of (2), (3), and (4) are independent of each other

In particular, given (1)-(3):

We can try several different base heuristics or a superheuristic
General Discrete Optimization Problem: Minimize $G(u)$ Subject to $u \in C$, where $u = (u_0, \ldots, u_{N-1})$

- This is a special case of the constrained deterministic optimal control problem where each state x_k can only take a single value, i.e., $x_k \equiv \text{"artificial" } x_0$.
- A very broad range of problems, e.g., combinatorial, integer programming, etc.
- Solution by constrained rollout applies. Provides entry point to the use of RL ideas in discrete optimization through DP and approximation in value space.
- Competing methods: local/random search, genetic algorithms, integer programming/branch and bound, etc. Rollout is different.
Facility Location: A Prototype Integer Programming Problem

- Place facilities at some of the given candidate locations to serve M “clients.”
- Client $i = 1, \ldots, M$ has a demand d_i for services that may be satisfied at a location $k = 0, \ldots, N - 1$ at a cost a_{ik} per unit.
- A facility placed at location k has capacity c_k and cost b_k. Here $u_k \in \{0, 1\}$, with $u_k = 1$ if a facility is placed at k.
- Problem: Minimize $\sum_{i=1}^{M} \sum_{k=0}^{N-1} a_{ik} y_{ik} + \sum_{k=0}^{N-1} b_k u_k$ subject to total demand satisfaction constraints ($y_{ik} \geq 0$, $\sum_k y_{ik} = d_i$ for all i, and $\sum_i y_{ik} \leq u_k c_k$ for all k).
- There may be additional constraints on u, but we will ignore for the moment.
- Note: If the placement variables u_k are known, the remaining problem is easily solvable (it is a linear “transportation” problem).
Consider placements one location at a time.

Stage $k =$ Placement decision $u_k \in \{0, 1\}$ at location k (N stages).

Base heuristic: Having fixed u_0, \ldots, u_k, place a facility in all remaining locations.

Rollout: Having fixed u_0, \ldots, u_k, compare two possibilities:

- Set $u_{k+1} = 1$ (place facility at location $k + 1$), set $u_{k+2} = \cdots = u_{N-1} = 1$ (as per the base heuristic), and solve the remaining problem.
- Set $u_{k+1} = 0$ (don’t place facility at location $k + 1$), set $u_{k+2} = \cdots = u_{N-1} = 1$ (as per the base heuristic), and solve the remaining problem.

Select $u_{k+1} = 1$ or $u_{k+1} = 0$ depending on which yields feasibility and min cost.

Sequential improvement is satisfied in the absence of additional constraints.

Transportation problems are similar; solved efficiently with the auction algorithm (see literature on network optimization).
A worst case point of view of the uncertainty

- The disturbances w_k are chosen by an adversarial and omniscient decision maker
- Instead of a probabilistic description of w_k, assume a set membership description $w_k \in W_k$; think of a minimax version of the principle of optimality
A worst case point of view of the uncertainty

The disturbances w_k are chosen by an adversarial and omniscient decision maker
Instead of a probabilistic description of w_k, assume a set membership description $w_k \in W_k(x_k, u_k)$ [it may depend on (x_k, u_k)]

The minimax control problem is to find a policy $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$ with $\mu_k(x_k) \in U_k(x_k)$ for all x_k and k, which minimizes the cost function

$$J_{\pi}(x_0) = \max_{w_k \in W_k(x_k, \mu_k(x_k))} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right]$$

The DP algorithm (max in place of $E\{\cdot\}$): Starting with $J_N^*(x_N) = g_N(x_N)$,

$$J_k^*(x_k) = \min_{u_k \in U(x_k)} \max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + J_{k+1}^*(f_k(x_k, u_k, w_k)) \right]$$

Similar to the stochastic case ... but the max operation is nonlinear and Monte Carlo simulation is unavailable (this affects rollout/policy iteration)

Approximation in value space with one-step lookahead applies at state x_k a control

$$\tilde{u}_k \in \arg\min_{u_k \in U(x_k)} \max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right]$$

Approximation in value space with multistep lookahead is similar
At State x_k

\[
\min_{u_k, \mu_{k+1}, \ldots, \mu_{k+\ell-1}} \max_{w_k, \ldots, w_{k+\ell-1}} \quad \text{First } \ell \text{ Steps} \\
\begin{bmatrix}
g_k(x_k, u_k, w_k) + \sum_{t=k+1}^{k+\ell-1} g_t(x_t, \mu_t(x_t), w_t) + \tilde{J}_{k+\ell}(x_{k+\ell})
\end{bmatrix}
\]

Minimax Control Problem with ℓ-Step Horizon

- Any cost function approximation $\tilde{J}_{k+\ell}(x_{k+\ell})$ is permissible
- Terminal cost approximation $\tilde{J}_{k+\ell}(x_{k+\ell})$ may be obtained by off-line training
- The “three approximations" view is valid (min approx, max approx, $\tilde{J}_{k+\ell}$ approx)
- The ℓ-step minimax control problem is solved by DP
- Its solution is facilitated by a special technique, called "alpha-beta pruning"
- There are variants with selective step lookahead
- This is the algorithm that most chess programs use for on-line play (including AlphaZero)
One-Step Rollout for Minimax Control in Discrete Spaces Problems

At State x_k

$\min_{u_k \in U_k(x_k)} \max_{w_k, \ldots, w_{N-1}} \left[g_k(x_k, u_k, w_k) + \bar{J}_{\pi, k+1}(f_k(x_k, u_k, w_k), w_{k+1}, \ldots, w_{N-1}) \right]$

Cost of Base Policy
Corresponding to $x_{k+1} = f_k(x_k, u_k, w_k)$ and w_{k+1}, \ldots, w_{N-1}

LONGEST PATH PROBLEM
Optimal Control with
Control Variables w_k, \ldots, w_{N-1}

- At state x_k: For $u_k \in U_k(x_k)$, compute the Q-factor of the base policy π
 \[\tilde{Q}_k(x_k, u_k) = \max_{w_k, \ldots, w_{N-1}} \left[g_k(x_k, u_k, w_k) + \bar{J}_{\pi, k+1}(f_k(x_k, u_k, w_k), w_{k+1}, \ldots, w_{N-1}) \right] \]
 This is a longest path problem.
- Rollout control: $\tilde{u}_k \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k)$
- Any policy can be used as base policy (must be a legitimate policy, not a heuristic)
- Sequential consistency holds (assuming no terminal cost approximation)
- Sequential consistency implies cost improvement
- Variants: Terminal cost approx., extra constraints (no cost improvement guarantee)
Minimax Rollout Subject to Trajectory Constraint
\((x_0, u_0, \ldots, u_{N-1}, x_N) \in C\)

At trajectory \(\tilde{y}_k = (\tilde{x}_0, \tilde{u}_0, \ldots, \tilde{u}_{k-1}, \tilde{x}_k)\)
\[
\min_{u_k \in \tilde{U}_k(\tilde{y}_k)} \max_{w_k, \ldots, w_{N-1}} \left[g_k(\tilde{x}_k, u_k, w_k) + \tilde{J}_{\pi, k+1}(f_k(\tilde{x}_k, u_k, w_k), w_{k+1}, \ldots, w_{N-1}) \right]
\]
Rollout Control \(\tilde{u}_k\)

Cost of Base Policy
Corresponding to \(x_{k+1} = f_k(\tilde{x}_k, u_k, w_k)\)
and \(w_{k+1}, \ldots, w_{N-1}\)

\(\tilde{Q}_k(\tilde{x}_k, u_k)\)

LONGEST PATH PROBLEM
Optimal Control with
Control Variables \(w_k, \ldots, w_{N-1}\)

- At partial trajectory \(\tilde{y}_k = (\tilde{x}_0, \tilde{u}_0, \ldots, \tilde{u}_{k-1}, \tilde{x}_k)\): Compute the Q-factor
 \[
 \tilde{Q}_k(\tilde{x}_k, u_k) = \max_{w_k, \ldots, w_{N-1}} \left[g_k(\tilde{x}_k, u_k, w_k) + \tilde{J}_{\pi, k+1}(f_k(\tilde{x}_k, u_k, w_k), w_{k+1}, \ldots, w_{N-1}) \right]
 \]
 for each \(u_k\) in the set \(\tilde{U}_k(\tilde{y}_k)\) that guarantee feasibility. A longest path problem.
- Once the set of “feasible controls" \(\tilde{U}_k(\tilde{y}_k)\) is computed, we can obtain the rollout control: \(\tilde{u}_k \in \arg\min_{u_k \in \tilde{U}_k(\tilde{y}_k)} \tilde{Q}_k(\tilde{x}_k, u_k)\)
- Fortified version guarantees that the algorithm leads to a feasible cost-improved rollout policy, assuming the base heuristic at the initial state produces a trajectory that is feasible for all possible disturbance sequences
Zero-sum game problems involve two players and a cost function; one player aims to minimize the cost and the other aims to maximize the cost.

- They involve **TWO** minimax control problems:
 - The **min-max problem** where the minimizer chooses policy first and the maximizer chooses policy second with knowledge of the minimizer’s policy.
 - The **max-min problem** where the maximizer chooses policy first and the minimizer chooses policy second with knowledge of the maximizer’s policy.
 - We have Max-Min optimal value \leq Min-Max optimal value.

- Game theory is particularly interested on conditions that guarantee that Max-Min value $= \text{Min-Max value}$. This question is beyond the range of practical RL (but may still be of theoretical interest in many contexts).

- An interesting question: How do various algorithms work when approximations are used in the min-max and max-min problems?

- We can certainly improve either the minimizer’s policy or the maximizer’s policy by rollout, assuming a fixed policy for the opponent.

- Can the policies be improved simultaneously? In practice this seems to work “often” ... but there is no reliable theory on this question ...

- In symmetric games like chess: What if both players train w/ a common policy?
The material on constrained and minimax rollout of today's lecture is covered in the "Lessons from AlphaZero ..." text

In the next lecture we will cover:
- Parametric approximation architectures.
- Neural networks and how we use them.
- Approximation in value space and policy space using neural nets.
- We will use material from videolecture 8 of the 2021 ASU class.

About your project:
- Send me email (dbertsek@asu.edu)
- Make appointment to talk by zoom (there are no fixed office hours in this course)
- Please send me by the end of the spring break a one-page-or-less proposal about your term paper, be it a read-and-report type or a mini-research project