Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2023

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 11
More on off-line training, parametric architectures, and
their use in approximate value and policy iteration
Aggregation - A different type of parametric architecture

Bertsekas Reinforcement Learning 1/30

0 Review of Off-Line Training with Parametric Architectures
e Off-Line Training in Finite Horizon DP

e Infinite Horizon - Approximate Policy lteration

0 Introduction to Aggregation

e Aggregation with Representative States: A Form of Discretization/Interpolation

Bertsekas Reinforcement Learning 2/30

Recall Approximation in Value Space

Approximate Min . B .,
Multiagent Min First Step Future

Uk

\. N
min E{gk(xk, Uk, Wi)+ (41)}
N

Approximate E{-} Approximate Cost-to-Go Jy11
Problem approximation

Rollout, Model Predictive Control
Parametric approximation

Neural nets

Aggregation

ONE-STEP LOOKAHEAD

Certainty equivalence
Adaptive simulation
Monte Carlo tree search

At State zy

DP minimization

!

kb1
min E {!lk(iﬂkwuk. wy) + Z Gk (T pom (Tm), W) + Jk'+[(-’ﬂk+é)}

Uk s Hg4-150 3 B4£—1 m=k+1

First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 4/30

Parametric Approximation of a Target Cost Function

Target Cost
Function

J(x)

Training Data

(zs, J(x%)) i
s=1,

Approximation
Architecture
Parameter r

Approximating
Function

J(x,7)

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE
SUCH AS
GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Bertsekas

Reinforcement Learning

5/30

Cost Function Parametric Approximation Generalities

@ We select a class of functions J(x, r) that depend on x and a vector
r=(n,...,rm) of m“unable" scalar parameters.

@ We adjust r to change J and “match” the training data from the target function.
@ Architectures are called linear or nonlinear, if J(x, r) is linear or nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x) that
captures “major characteristics" of x,

Jx,r) = J(s(x),r),

where J is some function. Intuitive idea: Features capture dominant nonlinearities.

@ A linear feature-based architecture: J(x, r) = 30, rege(x) = r'$(x), where r, and
¢e(x) are the £th components of r and ¢(x).

v

Feature Vector Linear Cost
State Z | Feature Extraction o(x) Linear Approximator ' ¢(z)
: > . —
Mapping Mapping

Bertsekas Reinforcement Learning 6/30

Neural Nets: An Architecture that Automatically Con ts Features

A Cost
pproximation
State x y(2) (e v)
——
State .] -
Encoding II:lnear Ncinhnear Linear
ightin
(May Include (ayert ayer Weighting
“Problem-Specific” vaiu(lf IE)E; Parameter
Features) ’ FEATURES "
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

@ Incremental (backpropagation) methods play a critical role.
@ Universal approximation; with large enough size, we can approximate “anything.”
@ Deep neural network advantage; overparametrization helps.

Bertsekas Reinforcement Learning 7130

Finite Horizon Sequential DP Approximation - Parametric

Approximation at Every Stage (Also Called

Train cost approximations Jy, Jy_1 . . ., Jo, sequentially going backwards

@ Start with Jy = g

@ Given a cost-to-go approximation Jki1, We use one-step lookahead to construct a
large number of state-cost pairs (xi, 85), s =1, ..., q, where

/8;: min E{g(xlfa[*h Wk)+‘]k+1 (fk(X[f,U, Wk)vrk+1)}7 S:1)"'7q

u€ Uy (x§)

@ We “train" an architecture Jx on the training set (x§, 55), s =1,...,q.
@ Each sample involves minimization of an expected value E{-}

Typical approach: We minimize over r

q
> (Jelx@,) — 5)% (+ regularization)
s=1

4

Important advantage: Can be combined with on-line play/approximation in value space,
so the Newton step interpretation applies. However, min, E{-} operation complicates
the collection of samples.

Bertsekas Reinforcement Learning 9/30

Fitted Value lteration with Q-Factors - Model-Free Possibilities

@ Consider sequential DP approximation of Q-factor parametric approximations

@k(xk, U, Fic) ~ E{gk(Xk~, Uy, Wk) + min ék+1 (Xk41, U, I’k+1)}
U€ Uk 41 (Xk41)

@ We obtain Qk(x«, U, r) by training with many pairs ((x§, uf), 5), where 5 is a
sample of the approximate Q-factor of (x¢, uy).

@ A mathematical trick: The order of E{-} and min have been reversed. Each 3; can
use a few-samples approximation of the expected value E{-}.

@ Samples 3; can be obtained in model-free fashion. Sufficient to have a simulator
that generates state-control-cost-next state random samples

((xk, Uk), (Gk (Xi, Uk, W), Xk11))
@ Having computed rx, the one-step lookahead control can be obtained on-line as
fi(x) € arg min Qu(x, U, 1)
u€ Uy (xx)
without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

@ However, the Newton step property is lost. Also on-line replanning is lost.
To address these issues: Use approximation in value space with

Jki1(Xki1) = (or =) muin Qi (Xis1, U, Tt

Bertsekas Reinforcement Learning 10/30

Should we Approximate Q-Factors or Q-Factor Differences?

To compare controls at x, we only need Q-factor differences Q(x, u) — Q(x, u') J

An example of what can happen if we approximate Q-factors:
@ Scalar system and cost per stage:

X1 = X + Uk, g(x,u) = §(x* + 1?), 8 > 0is very small;

think of discretization of continuous-time problem involving dx(t)/dt = u(t)
@ Consider policy u(x) = —2x. Its cost function can be calculated to be

2
Ju(x) = 5%(1 +6)+O(), HUGE relative to g(x, u)

Its Q-factor can be calculated to be

2 2
Qu(x,u) = E D (. S A 0(6%)
4 4 2
@ The important part for policy improvement is §(u® + 3xu). When Q. (x, u) is
approximated by Q,.(x, u; r), it will be dominated by 5x2/4 and will be “lost"
@ |f we approximate Q-factor differences this problem does not arise

Bertsekas Reinforcement Learning 11/30

A More General Issue: Disproportionate Terms in Q-Factor Calculations

Remedy: Subtract state-dependent constants from Q-factors (“baselines")
The constants subtracted should affect the offending terms

Example: Consider (truncated) rollout with policy 1 and terminal cost function
approximation, so J = J,

@ At x, we minimize over u
E{g(x,u, w) + J(f(x,u, w))}

@ Question: How to deal with g(x, u, w) being tiny relative to J(f(x, u, w))? This
happens when we time-discretize continuous-time systems. Another case is when
costs are “sparse"” (e.g., all cost is incurred upon termination).

@ Aremedy: Subtract J(x) from J((x, u, w)).

Other possibilities (see Sections 3.3.4, 3.3.5 of class notes)

@ Learn directly the cost function differences D, (x, X") = J,.(x) — J.(x") with an
approximation architecture. This is known as differential training.

@ Methods known as advantage updating. [Work with relative Q-factors, i.e., subtract
the state-dependent baseline min, Q(x, u’) from Q(x, u).]

y
Bertsekas Reinforcement Learning 12/30

Approximate Policy lteration - a-Discounted Finite-State Problems

Exact Pl in finite-state transition probability notation

@ Policy evaluation: We compute the cost function J,, of current policy p and its
Q-factors,

Qu(i,u) = Zp,,(u) (iyu.f) +adu(f)), i=1,....n, ue U

@ Policy improvement: We compute the new policy iz according to

(i) = arg min j i=1,...,n.
N(’) gUE(IJ(/) Q}A(I7u)7 /))

Approximate Pl

@ Approximate policy evaluation: Introduce a parametric architecture Q,.(/, u, r). We
determine r by generating a large number of training triplets (i°, u®, 5°),
s=1,...,q, and using a least squares fit:

q

7 = argmin > (Qu(i°, %, r) — 5°)
s=1

2

@ Policy improvement: We compute the new policy fi according to

f(i) = arg min Q.(i,u,T), i=1,...,n
A(i) = arg i Qu()

Bertsekas Reinforcement Learning 14/30

Implementation Issues in Approximate Policy lteration

BIG challenges to overcome - Rollout is a piece of cake by comparison J

Architectural issues:
@ To use a linear feature-based architecture, we need to have good features
@ To use a neural network, we need to face harder training issues

@ For problems with changing system parameters, we need on-line replanning,
which may affect the architecture and/or waste the off-line training effort

Inadequate exploration issues:

@ To evaluate a policy 1, we must simulate it, so samples of J,.(x) are obtained
starting from states x frequently visited by .

@ This underrepresents states x that are unlikely to occur under ., and throws off
the policy improvement.

@ Imperfect remedies to this include the use of many short trajectories for generating
samples, and occasionally sample with an “off-policy” (a policy other than)

Oscillation issues: Policies tend to repeat in cycles

Fascinating phenomena may arise, like “chattering” (convergence in the space of
parameters, but oscillation in the space of policies) - they do not arise in aggregation.
_—

Bertsekas Reinforcement Learning 15/30

Aggregation within the Approximation in Value Space Framework

Approximate minimization

First Step “Future”
n B
min ii(w)(g(,u,5) +ad(j
ueU@)j;pU()9(i .) + (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Adaptive simulation Approximate PI

Monte Carlo tree search Parametric approximation

Aggregation

@ Aggregation is a form of problem approximation. We approximate our DP problem
with a “smaller/easier" version, which we solve optimally to obtain J.

@ |s related to feature-based parametric approximation (e.g., when Jis piecewise
constant, the features are 0-1 set membership functions).

@ Several versions: finite horizon, multistep lookahead, multiagent, etc ...

@ Can be combined with parametric approximation (like a neural net) in two ways.
Either use the neural net to provide features, or add a local parametric correction
to a J obtained by a neural net (see the class notes).

Bertsekas Reinforcement Learning 17/30

lllustration: A Simple Classical Example of Approximation

Approximate the state space with a coarse grid of states

\ . .
|—— States (Fine Grid)

| — Representative States
(Coarse Grid)

@ Introduce a “small" set of “representative” states to form a coarse grid.

@ Approximate the original DP problem with a coarse-grid DP problem, called
aggregate problem (need transition probs. and cost from rep. states to rep. states).

@ Solve the aggregate problem by exact DP.

@ “Extend" the optimal cost function of the aggregate problem to the original fine-grid
DP problem, i.e., use some form of interpolation.

@ For example extend the solution by a nearest neighbor/piecewise constant
scheme (a fine grid state takes the cost value of the “nearest" coarse grid state).

Bertsekas Reinforcement Learning 18/30

Constructing the Aggregate Problem

Representative States -

Aggregation Probabilities
by
Relate
Original States to

Original State Space - Representative States

@ Introduce a finite subset of “representative states" .4 C {1, ..., n}. We denote
them by x and y.

@ Original system states j are related to rep. states y € A with aggregation
probabilities ¢;, (‘weights" satisfying ¢, >0, >°, 4 ¢ = 1).

@ Aggregation probabilities express “similarity” or “proximity" of original to rep.
states. Can be viewed as interpolation coefficients.

@ Aggregate problem dynamics: Transition probabilities between rep. states x, y
n
Py (U) = py(u)dy
i=1
@ Aggregate problem stage cost at rep. state x under control u:

Q(X, U) = ZPX/(U)Q(X> U,j)

Bertsekas Reinforcement Learning

The Aggregate Problem - A Reduced State Space DP Problem

Original States

pij(u), 9(i,u, 5)
Aggregation

Probabilities
Pjy

| |
| |
| [)”/ Il Z[),/ Il ()/1/ |
| |
| |

n J=1

gz, u) gpn,u g(z,u,j)

o If ry, x € A, are the optimal costs of the aggregate problem, approximate the
optimal cost function of the original problem by

Z dyty, i=1,...,n, (interpolation)
yEA

@ Hard aggregation case: ¢;, = 0 or 1 for all jand y. Then J(j) is piecewise
constant: It is constant on each set

S ={iléy=1}, ye€A (calledthe footprint of y)

Bertsekas Reinforcement Learning 21/30

The Hard Aggregation Case (¢ = 0 or 1 for all /, y)

J(j) = Z,,(A DjyTy

¢jy =0o0r1
for all j and y

Each j connects
to a single x

Footprint Sets

The approximate cost fn J = > yea Piyly is constant at ry within Sy = {j [¢, = 1}. J

Approximation error for the piecewise constant case (¢;, = 0 or 1 for all /, y)
Consider the footprint sets
Sy={jloy=1} yeA
Then the (J* — J) error is small if J* varies little within each S,. In particular,
D) -ID < 5. JjeS.yeA

where € = maxyc.a4 max;jes, |J* (1) — J*(j)| is the max variation of J* within the S,.

Bertsekas Reinforcement Learning 22/30

Solution of the Aggregate Problem

Aggregation
Probabilities
Py

Data of aggregate problem (it is stochastic even if the original is deterministic)
n n

Py(u) =Y py(u)dy, 9(x.u)=>_ py(ualx,u.j), JG) =D eyl

j=1 j=1 yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

Model-free simulation methods

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.

Bertsekas Reinforcement Learning 23/30

Extension: Continuous State Space - POMDP Discretization

Continuous state space - discounted/bounded cost per stage model
@ The rep. states approach applies with no modification.
@ The number of rep. states should be finite.
@ A simulation/model-free approach may still be used for the aggregate problem.

@ We thus obtain a general discretization method for continuous-spaces discounted
problems.

@ Extension to continuous-state stochastic shortest path problems is more delicate
mathematically.

Discounted POMDP with a belief state formulation

@ Discounted POMDP models with belief states, fit neatly into the continuous state
discounted aggregation framework.

@ The aggregate/rep. states POMDP problem is a finite-state MDP that can be
solved for r* with any (exact) model-based or model-free method (VI, PI, etc).

@ The optimal aggregate cost r* yields an approximate cost function
JO) =2 ecatily

@ J defines a one-step or multistep lookahead suboptimal control scheme for the
original POMDP.

Bertsekas Reinforcement Learning 24/30

Continuous Control Space Discretization

Travel spe¢d ‘ ':::

1 m/se i

EyS]
A A TTIITT
1000 m 1000 m

An example: Discretizing Continuous Motion

@ A self-driving car wants to drive from A to B through obstacles. Find the fastest
route.

@ Car speed is 1 m/sec in any direction.

@ We discretize the space with a fine square grid. Suppose we restrict the directions
of motion to horizontal and vertical.

@ We solve the discretized shortest path problem as an approximation to the
continuous shortest path problem.

@ A challenge question: Is this a good approximation?

Bertsekas Reinforcement Learning 25/30

Answer to the Challenge Question

B B
TTIT

T
Travel spe¢d ‘ ':::

.

1 m/se i

EyS |

s ¢ C o) -
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion
@ The discretization is FLAWED.
@ Example: Assume all motion costs 1 per meter, and no obstacles.
@ The continuous optimal solution (the straight A-to-B line) has length /2 kilometers.

@ The discrete optimal solution has length 2 kilometers regardless of how fine the
discretization is.

@ The difficulty here is that the state space is discretized finely but the control space
is not.

@ This is not an issue in POMDP (the control space is finite).

Bertsekas Reinforcement Learning 26/30

Aggregation with Representative Features

The main difficulty with rep. states/discretization schemes:

@ |t may not be easy to find a set of rep. states and corresponding piecewise
constant or linear functions that approximate well J*.

@ Too many rep. states may be required for good approximate costs J(j).

Suppose we have a good feature vector F(i): We discretize the feature space
@ We introduce representative features that span adequately the feature space
@ We aim for an aggregate problem whose states are the rep. features.

@ This is a more complicated but also more flexible construction (see the class
notes, Section 3.5).

Bertsekas Reinforcement Learning 27/30

We Reached the End of the Last Lecture for this Course

Some words of caution

@ There are challenging implementation issues in all approaches that involve off-line
training, and no fool-proof methods.

@ Problem approximation and hand-crafted feature selection require domain-specific
knowledge.

@ Training algorithms are not as reliable as you might think by reading the literature.

@ Approximate Pl and approximation in policy space do not deal well with on-line
replanning (approximation in value space does, and involves a Newton step).

@ Recognizing success or failure can be a challenge!

@ The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state).

@ Problems with partial state observation remain a big challenge.

On the positive side
@ Approximation in value space and rollout are relatively simple and reliable.
@ Massive computational power and distributed computation are a source of hope.
@ Silver lining: We can begin to address practical problems of unimaginable difficulty!
@ There is an exciting long journey ahead!

Bertsekas Reinforcement Learning 28/30

Some Words of Relevance

Some old quotations ...

@ The book of the universe is written in the language of mathematics. Gallileo

@ Learning without thought is labor lost; thought without learning is perilous.
Confucius (In the language of Confucius’ day: learning ~ obtaining knowledge;
thought ~ ideas on how to do things)

@ Many arts have been discovered through practice, empirically; for experience
makes our life proceed deliberately, but inexperience unpredictably. Plato

@ White cat or black cat it is a good cat if it catches mice. Deng Xiaoping

.. and some more recent ones

@ Machine learning is the new electricity. Andrew Ng
(Electricity changed how the world operated. It upended transportation,
manufacturing, agriculture and health care. Al is poised to have a similar impact.)

@ Machine learning is the new alchemy. Ali Rahimi and Ben Recht

(We do not know why some algorithms work and others don’t, nor do we have
rigorous criteria for choosing one architecture over another ...)

Bertsekas Reinforcement Learning 29/30

Thank you for your attendance!

Good luck with your term papers and projects!

Bertsekas Reinforcement Learning 30/30

	Review of Off-Line Training with Parametric Architectures
	Off-Line Training in Finite Horizon DP
	Infinite Horizon - Approximate Policy Iteration
	Introduction to Aggregation
	Aggregation with Representative States: A Form of Discretization/Interpolation

