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Review - Finite Horizon Deterministic Problem
Control ug
Gy =) @ @ O—-—)
Cost gx (g, uk)

Stage k

@ System
Xk+1:fk(Xk,Uk)7 k:0,1,...7N71

where xi: State, ux: Control chosen from some set Ux(xx)
@ Arbitrary state and control spaces
@ Cost function:

N—1
an(xn) + Z Gk (X, Uk)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(Xo; Lo, - -, Un—1) = GN(XN) + D Gk(Xk, Uk)
k=0
@ Optimal cost function J*(xp) = min U E et J(Xo; Ug, - -, UN—1)
k=0, ...,
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Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs J; (xx) of the xx-tail subproblems
(off-line training - involves lots of computation)

Start with
In(xn) = gn(xn),  forall xy,

andfork=0,...,N—1, let

J: (Xk) = min |:gk(XK~, Uk) + J;+1 (fk(Xk, Uk))} s for all xk.

Uk € Uy (xk)

Then optimal cost J*(xo) is obtained at the last step: J; (xo) = J*(X0).

v

Go forward to construct optimal control sequence {u;, . .

Start with

Up €arg min [go(xo, Uo) + J1 (fo(xo, uo))], Xi° = fo(Xo, Ug)-
Up € Up(x0)

Sequentially, going forward, for k = 1,2,..., N — 1, set

vi carg min gk, U + i (R0 ua) |, X = O, ).
U €U (x})

., Uf_4} (on-line play)
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Q-Factors for Deterministic Problems

An alternative (and equivalent) form of the DP algorithm
@ Generates the optimal Q-factors, defined for all (xk, ux) and k by

Qi (Xk, Uk) = Gk(Xk, U) + Jier1 (fi( Xk, Uk))

@ The optimal cost function J; can be recovered from the optimal Q-factor Qg

Ji = min M
ik (X) Ukeulk(Xk)Qk(Xkauk)

@ The DP algorithm can be written in terms of Q-factors

QK (Xk, Uk) = gk(Xk, Uk) + min Qi1 (Fe(Xk, Uk ), Ukr1)
Uk 41 € Ugp1 (e (X s Uk )

@ Exact and approximate forms of this and other related algorithms, form an
important class of RL methods known as Q-learning.
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Approximation in Value Space

We replace J;i with an approximation Ji during on-line play

@ Start with )
o € arg  min : {go(xo, Up) + J (fo(xmuo))}

ug€lp(Xo
@ Set ;(1 = fo(Xo, Elo)
@ Sequentially, going forward, for k =1,2,...,N — 1, set

U € arg  min_ [gk()?!n ui) + Jist (fe(Xe, Uk))}, Xicr1 = (X, Uk)
Uk € Uk (Xic)

How do we compute Jx1(xXk+1)? This is one of the principal issues in RL
@ Off-line problem approximation: Use as Jk,1 the optimal cost function of a simpler
problem, computed off-line by exact DP

@ On-line approximate optimization, e.g., solve on-line a shorter horizon problem by
multistep lookahead minimization and simple terminal cost (often done in MPC)

@ Parametric cost approximation: Obtain Jx.1(Xk;1) from a parametric class of
functions J(xk+1, r), where r is a parameter, e.g., training using data and a NN.

@ Rollout with a heuristic: We will focus on this for the moment.
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Rollout for Finite-State Deterministic Problems

k(T uk) + Hip1(2k41) |

Heuristic

Heuristic

Current State uj

Heuristic
Next States

Cost approximation by running a heuristic from states of interest )

We generate a single system trajectory {xo, x1, ..., Xy} by on-line play
@ Upon reaching xx, we compute for all ux € Uk(xk), the corresponding next states
X1 = fi(Xk, Uk)
@ From each of the next states xx1 we run the heuristic and compute the heuristic
cost Hk+1 (Xk+1)
@ We apply ik that minimizes over ux € Uk(x«), the (heuristic) Q-factor

Ik (X, Uk) + Hi1 (Xi1)

@ We generate the next state xx1 = fi(Xk, Ux) and repeat
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Traveling Salesman Example

Initial State xg

1
\Base Heuristic

T Matrix of Intercity
0 25
Cost 28

Travel Costs

Complete Tours

Current

. . Nearest Neighbor
Tnitial City Partial Tour “& .

Heuristic

j

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic
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Stochastic DP Problems - Perfect State Observation (We Know x)

Random Transition

Tr1 = fe(@r, ur, wr)

OO DO )
Random Cost

Gk (Th, Uk, W)

@ System xx1 = fi(Xk, Uk, wik) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: £ {gN(xN) + N Gr(Xiy Uk Wk)}

@ Policies m = {po, ..., un—1}, where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ An important point: Using feedback (i.e., choosing controls with knowledge of the
state) is beneficial in view of the stochastic nature of the problem.

@ For given initial state xo, minimize over all * = {uo, ..., un—1} the cost

N—1
Jr(x0) =E {gN(XN) + Z Ik (xk,uk(xk) Wk)}
k=0

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J.«(x0) = J*(X0)
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The Stochastic DP Algorithm

Produces the optimal costs J{(xx) of the tail subproblems that start at x
Start with Jy(xn) = gnv(xn), and fork =0,...,N —1, let

Ji (X)) = ukerTL]JLTxk) Ewk{gk(m Uk, W) + Jir (Fe (X, Uk, Wk))}7 for all Xx.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

@ The optimal policy component ux can be constructed simultaneously with J;, and
consists of the minimizing u; = pj(xx) above.

Alternative on-line implementation of the optimal policy, given J;, ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

U; €arg min EWk {gk(xk, Uk, Wk) aF J;+1 (fk(Xk., Uy, Wk)) }
Uk € U (Xic)

Issues: Need to know Ji, 1, compute Ey, {-} for each ux, minimize over all ux
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A Very Favorable Case: Linear-Quadratic Problems

One-dimensional linear-quadratic problem
@ Systemis X1 = axx + bux + wi (a and b are given scalars)
@ Cost over N stages: gx3 + Z,’:’;J (gx2 + ru?), where g > 0 and r > 0 are given
scalars

@ The DP algorithm starts with J;;(xy) = gx2, and generates J; according to
Jii (%) = min Ew {Qxk + rug + Jivi(axe + bug + wi)}, k=0,...,N—1
k

@ DP algorithm can be carried out in closed form to yield
Ji (xk) = Kixg + const, i (xx) = Lxxk: Kk and Lx can be explicitly computed

@ 1 (xx) does not depend on the distribution of wix as long as it has 0 mean:
Certainty Equivalence (a common approximation idea for other problems)

These results generalize to multidimensional linear-quadratic problems

xx € R", ux € R™; the scalars a, b, g, r are replaced by matrices A, B, Q, R

Bertsekas Reinforcement Learning 14/34



Derivation - DP Algorithm starting from Terminal Cost J;(xn) = gX&

J,*V,1(XN_1) = LI;\,:’]II“: E{qx,%,,1 + ru,z\,,1 + J,T,(axN_1 + buy—_1 + WN_1)}

= min E{qxR_1 + ruy_+ + q(axn—1 + bun_1 + wn_1)*}
N—1

UN—1

= min [qxN_1 + ruxy—1 + q(axn—1 + bun—1)* +2q E{wn_1}(aXn—1 + bun_1) + q E{wj.
~——1
=0

=

=gk 1+ min [rur_1 + g(axn—1 + bun—1)?] + qo°
IN—1

Minimize by setting to zero the derivative: 0 = 2ruy_1 + 2gb(axy—1 + bun—_1), to obtain

~_abg
r+ b2q

pn—1(Xn—1) = Ln—1xn—1  Wwith Ly_1 =

and by substitution, Ji_(xv 1) = Kn_1xf_; + o, where Ky = Z/2 + g

Similarly, going backwards (starting with Ky = q), we obtain for all k:

J*(X):KX2+02I§K I,*(X):LX K:%—’—q L :—M
'k (Xk k Xk m+1, ek (Xk k Xk k r+ b2Kiiq 7 5 r+ b2Kj 1

Bertsekas Reinforcement Learning 15/34

m=k



Linear-Quadratic Problems in General

Observations and generalizations

@ The solution does not depend on the distribution of wi, only on the mean (which is
0), i.e., we have certainty equivalence (the stochastic problem can be replaced by
a deterministic problem)

@ Generalization to multidimensional problems, nonzero mean disturbances, etc
@ Generalization to infinite horizon

@ Generalization to problems where the state is observed partially through linear
measurements: Optimal policy involves an extended form of certainty equivalence

Lk E{xx | measurements}

where E{xx | measurements} is provided by an estimator (e.g., Kalman filter)
@ Linear systems and quadratic cost are a starting point for other lines of
investigations and approximations:
Problems with safety/state constraints [Model Predictive Control (MPC)]
Problems with control constraints (MPC)
Unknown or changing system parameters (adaptive control)
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Approximation in Value Space - The Three Approximations

Simplified minimization

First Step “Future”

+——p >
min F {gk (.YJk, Uk, U/'k) + jk-‘rl (xk+1 )} “On-Line Play”

Expected value approximation Cost-to-go approximation

Important variants: Use multistep lookahead, use multiagent rollout (for
multicomponent control problems)
v
Multistep lookahead (performance - computational overhead tradeoff)
At State x;
DP minimization
First £ Steps “Future”
l k+£—1 5
min E{gk-(:rk,uk-,u'k-,)+ Z G (o Gy M| +Jk+é(93k+£)}
Uk M415--sHk+4+0—1 ——
L. Cost-to-go
Lookahead Minimization Approximation
v
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Constructing Approximations

Approximate Min

Discretization . X
Selective Minimization First Step “Future’

\?Blk;‘E{gk(-Tk, Uug;, wk)‘i‘jk—&-l‘(\mk—&-l)}

Approximate Cost-to-Go Jy+1
Approximate E{-} Certainty equiva.lenct_e
Adaptive simulation Problem approx1mat} on
Monte Carlo tree search Rollout, Model Predictive Control

Parametric approximation

Neural nets

Aggregation

An example: Truncated rollout with base policy and terminal cost
approximation (however obtained, e.g., off-line training)

Possible States Possible States
Tk+1 B @il
Rollout with
Base Policy
1m-Step Termingl C9st
Truncated Horizon Approximation
- 1 »@ for Stages
Beyond
Truncation
A ’.
V.
19/34
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Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
U = llk (xkv Tk) System State Tk

» >
>

”| Environment

Cpntroller B
P (i) [T

Training Data

Idea: Select the policy by optimization over a suitably restricted class of policies

The restricted class is usually a parametric family of policies jix(X«, rx),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net)

Methods used for optimization/off-line training: Random search, policy gradient,
classification (to be discussed later)

@ Important advantage once the parameters rx are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, rk)

Important disadvantage: It does not allow for on-line replanning ... no Newton step
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An Important Conceptual Difference Between Approximation in Value

and in Policy Space

First Step “Future”

min E{gk(xk,uk7wk)+jk+1(;rkH)}
Up

Approximation in value space is primarily an “on-line play" method

with off-line training used optionally to construct cost function approximations for
one-step or multistep lookahead

Lookahead Tree @~ === === ------------ re
Stages Beyond
Truncation
R (~®
Rollout
with 7
Truncated Horizon

Terminal Cost
Approximation
I »@for Stages
Beyond
Truncation

L e

L e

Possible
States w41

Approximation in policy space is primarily an “off-line training" method
which may be used optionally to provide a policy for on-line rollout
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From Approximation in Value Space to Approximation in Policy Space

The approximate cost-to-go functions Ji.1 define a suboptimal policy fix
through one-step or multistep lookahead minimization

@ Given functions Ji 1, how do we simplify the computation of ji?
@ Idea: Use approximation in policy space to represent jix: Approximate fix using a
training set of a large number g of sample pairs (xg, ui), s=1,...,q, where
Ux = fik(XK):
ug € arg min E{gk Xg, U, wi) + Jii1 (fe(xc, u, Wk))}

ue Uk (x

@ Example: Introduce a parametric family of randomized policies (X, ),
k=0,...,N—1, of some form (e.g., a neural net), where ry is a parameter. Then
estimate the parameters r by least squares fit:

q
re € argmin’y  [|uk — (. oIl

s=1

@ Relation to classification methods ... policy <—> classifier; more on this later.

Bertsekas Reinforcement Learning 23/34



A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.
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Infinite Horizon Problems

Random Transition
Thr1 = f(Tr, ug, wi) Infinite Horizon

Random Cost

akg(@r, uk, wi)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {0, p1, . . .} with ux(x) € U(x) for all x and k.
@ Cost of stage k: g (X, sk (Xk), Wk)-
@ 0 < a < 1 isthe discount factor. If & < 1 the problem is called discounted.
@ Cost of a policy m = {0, i1, .. .}: The limit as N — oo of the N-stage costs

N—1

J7T(XO) = N|E;I’]oo EWk {Z Oékg Xk Ik Xk) Wk)}
k=0

@ Optimal cost function J*(xp) = min, J(Xo).

@ Problems with a = 1 typically include a special cost-free termination state f. The
objective is to reach (or approach) t at minimum expected cost.
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Infinite Horizon Problems - The Three Theorems

k-stages opt. cost — Infinite horizon opt. cost as k — o

@ We have J*(x) = limx_, Jk(X), for all x, where for any k, Jk(x) = k-stages
optimal cost starting from x, and is generated by

Je(X) = mln Ew{g x,u,w) + adk—1 (f(x, u, W))} Jbo(x) =0 (V1)

@ Derivation using DP: Let Viy_x(x) be the optimal cost-to-go starting at x with k
stages to go,

Vn—k(x) = ugﬂg{) EW{akag(X, u,w) + Vn_ki1 (f(x, u, W))}; Vn(x) =0

@ Define Ji(x) = Vi_«(x)/a" ¥ to obtain Eq. (VI)

J* satisfies Bellman’s equation: Take the limit in Eq. (VI)

J(x) = urenlm() Ew{g(x, u, w) + aJ* (f(x, u,w)) }, for all x

Optimality condition: Let p*(x) attain the min in the Bellman equation for all x

The policy {u*, u*, ...} is optimal. (This type of policy is called stationary.)
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Infinite Horizon Problems - The Two Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jx}

Je(x) = min Ew{g(x u, w) + a1 (F(x, u, w))} Jo is “arbitrary” (?)

ueU(x

Policy Iteration (P1): Generates sequences of policies {14} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy . and generates a new policy /i in two steps:
@ Policy evaluation step, which computes J,, the cost function of the (base) policy w

@ Policy improvement step, which computes the improved (rollout) policy i using the
one-step lookahead minimization

fx) € arg min Ew{g(x, u.w) + ad, (F(x.u. w)) |

There are several options for policy evaluation to compute J,

@ Solve Bellman’s equation for . [J,.(x) = E{g(x, u(x), w) + ad.(f(x, u(x), w))}] by
using VI or other method (it is linear in J,,)

@ Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)
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Exact and Approximate Policy lteration

] Policy
Base | Policy Improvement
> Policy >  Evaluation > . -
7 J Bellman Eq. with
H J,, instead of J*

Rollout Policy f

<
<%

Important facts (to be discussed later):
@ Pl yields in the limit an optimal policy (?)
@ Pl is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.
@ Pl can be implemented approximately, with a value and (perhaps) a policy network

Base Approximation Approximation
»| Policy »| in Value Space »{in Policy Space >
H Value Network Policy Network
Value Data Policy Data
Rollout Policy i
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Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system xx,1 = axx + buy; quadratic cost per stage g(x, u) = gx® + ru?
Bellman equation: J(x) = min, {qx® + ru® + J(ax + bu)}

Take the limit as N — oo in the N-step horizon results: Kx — K*, Ly — L*
@ J*(x) = K*x?® where K* is some positive scalar
@ The optimal policy has the form n*(x) = L*x where L* is some scalar
@ To characterize K* and L*, we plug J(x) = Kx? into the Bellman equation

Kx? = min {gx® + i + K(ax + bu)®} = - = F(K)x*

where F(K) = -£1% 1 q with the minimizing u being equal to — 22K x

@ Thus the Bellman equation is solved by J*(x) = K*x2, with K* being a solution of
the Riccati equation
arKk*

K =FKD) = bk

+q
and the optimal policy is linear:

abK*
r+ b2K*
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Graphical Solution of the Riccati Equation

Riccati Equation: K = F(K)
from
Bellman Equation on
Space of Quadratic Functions

N
45°Line J(@ — K2

E

K
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Visualization of VI

Value Iteration: K = F(Ky)
from
Jit1(x) = K122 = F(Ky)2?
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About the Next Lecture

Linear quadratic problems and Newton step interpretations
@ Approximation in value space as a Newton step for solving the Riccati equation
@ Rollout as a Newton step starting from the cost of the base policy
@ Policy lteration as repeated Newton steps

Problem formulations and reformulations
@ How do we formulate DP models for practical problems?
@ Problems involving a terminal state (stochastic shortest path problems)

@ Problem reformulation by state augmentation (dealing with delays, correlations,
forecasts, etc)

@ Problems involving imperfect state observation (POMDP)
@ Multiagent problems - Nonclassical information patterns
@ Systems with unknown or changing parameters - Adaptive control

v

PLEASE READ SECTIONS 1.5-1.6 OF THE CLASS NOTES (as much as you can) )

1ST HOMEWORK (DUE IN ONE WEEK): Exercise 1.1 of the Class Notes
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