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Solution of the Deterministic (One-D) Linear Quadratic Problem

System: xk+1 = axk + buk . Cost function: limN→∞
∑N−1

k=0 (qx2
k + ru2

k )

The min-Bellman eq. is J(x) = minu
[
qx2 + ru2 + J(ax + bu)

]
For linear µ(x) = Lx , the L-Bellman eq. is J(x) = (q + rL2)x2 + J

(
(a + bL)x

)
We try quadratic solutions, J(x) = Kx2, to Bellman eqs. and obtain Riccati eqs.
(after we cancel x2)

K = F (K ) =
a2rK

r + b2K
+ q, K = FL(K ) = (a + bL)2K + q + rL2

If K ∗ > 0 solves min-Riccati eq., then J∗(x) = K ∗x2, and we obtain the optimal
policy from

µ∗(x) = arg min
u

[
qx2 + ru2 + K ∗(ax + bu)2].

It is the linear function of x , µ∗(x) = L∗x , with

L∗ = − abK ∗

r + b2K ∗

Starting with quadratic J0(x) = K0x2, the VI iterates are quadratic: Jk (x) = Kk x2,
where {Kk} is generated by

Kk+1 = F (Kk ) =
a2rKk

r + b2Kk
+ q

Starting with a linear policy µ0 = L0x , the PI iterates are linear: µk = Lk x
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Graphical Solution of the Min-Riccati Equation

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F (P ) P̃ Pk Pk+1 P ⇤ Q 0 P̃ � R
B2

A2R
B2 + Q 45�

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
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n∑

y=1

pxy(u)
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g(x, u, y) + αJ̃(y)

)
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r
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r+αKb2 + 1

Current Partial Folding Moving Obstacle
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pxy(u)
(
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k, u1

k u2
k x2

k dk τ

Q-factor approximation
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E
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Truncated Rollout Policy µ m Steps

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P ) k Q 0 P � R
E{B2} 45�
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System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk
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Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
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⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

r
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = a2rK

r+b2K + q K̃ = 0 K̄ KL̃

L̃ = −r + ab2K̃

abK̃
K1 L̃ = −r + ab2K1

abK1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1

J 0 Jµ = � 1
µ TµJ = �µ + (1 � µ2)J TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + b2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Bellman Equation on Space of Quadratic Functions J(x) = Kx2

F (K)

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1
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Relation of Min-Riccati Equation and L-Riccati Equations

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F (P ) P̃ Pk Pk+1 P ⇤ Q 0 P̃ � R
B2

A2R
B2 + Q 45�

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC
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Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn
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Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle
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ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
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{
g(x, u, w) + αJ̃

(
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Truncated Rollout Policy µ m Steps

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

r
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Assuming |a + bL| < 1, i.e., that the closed loop system is stable, the above summation yields

Jµ(x) = KLx2,

where

KL =
q + rL2

1 − (a + bL)2
.

It follows that KL is the unique solution of the linear equation

K = FL(K),

where

FL(K) = (a + bL)2K + q + rL2;

see Fig. 3.12. This is equivalent to the Bellman equation J = TµJ for the policy µ. On the other hand when

|a + bL| > 1, and the system is unstable, we have Jµ(x) = ∞ for all x ≠ 0.

The preceding one-dimensional problem is well suited for geometric interpretations such as the ones we

gave earlier in this section, because approximation in value space, and the VI, rollout, and PI algorithms,

involve quadratic cost functions J(x) = Kx2, which can be represented by one-dimensional graphs as func-

tions of just the number K. In particular, Bellman’s equation can be replaced by the Riccati equation (3.12).

Similarly, approximation in value space with one-step and multistep lookahead Figs. 3.3-3.4, the region of

stability Figs. 3.5-3.6, and the rollout and PI Figs. 3.8-3.9 can be represented by one-dimensional graphs.

We will next present these graphs and obtain corresponding geometrical insights. In Section 3.5, we will also

obtain similar insights about what happens in exceptional cases where we may have q = 0 or r = 0.

Bellman’s Equation and Value Iteration

Approximation in Value Space with One-Step and Multistep Lookahead

Region of Stability

Rollout and Policy Iteration
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Tµ̃(T m
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µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ
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Tµ̃(T m
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µ J̃) Yields Truncated Rollout Policy µ̃ Defined by
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1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J
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µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)
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Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J
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F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}
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L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}
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L∈ℜ
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q + bL + K(a + bL)2

}
x2
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F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy
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or
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FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)
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Terminal Position Evaluation

1

RICCATI EQUATIONS K ∗ = F (K ∗), KL = FL(KL)

For µ(x) = Lx with |a + bL| < 1, the closed-loop linear system xk+1 = (a + bL)xk

is stable, and we have Jµ(x) = KLx2, where KL solves the L-Riccati equation
For µ(x) = Lx with |a + bL| > 1, the closed-loop linear system is unstable, and we
have Jµ(x) =∞ for all x 6= 0
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Min-Riccati Operator as Lower Envelope of L-Riccati Operators

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F (P ) P̃ Pk Pk+1 P ⇤ Q 0 P̃ � R
B2

A2R
B2 + Q 45�

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn
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System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems
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Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost
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r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ
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Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂
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b2
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Multistep Lookahead Policy Cost J is a function of x
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Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Bellman Equation on Space of Quadratic Functions J(x) = Kx2

F (K) 45 20 40

T2 Cost 28 Cost 27 Cost 13

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy K
LK = − abK

r+b2K

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Bellman Equation on Space of Quadratic Functions J(x) = Kx2

F (K) 45 20 40

T2 Cost 28 Cost 27 Cost 13

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = − abK̃
r+b2K̃

L̃ = − abK̃
r+b2K̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from
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Approximation in Value Space: Linear Quadratic Problems

At current state xk , apply control µ̃(xk ) = arg minu
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

NEWTON STEP

Enhancements to the Starting Point of Newton Step

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

NEWTON STEP

Enhancements to the Starting Point of Newton Step

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

for solving the Bellman Eq. Kx2 = F (K)x2

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

1

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

1

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Bertsekas Reinforcement Learning 9 / 35



Newton’s Method to Solve the Generic Fixed Point Problem y = G(y)
Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1

2 −µ −1
J 0 Jµ = − 1

µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

y∗ U∗(y∗) = {1, 2}

0 y H1(y) H2(y) U1(y) = {1} U2(y) = {2}

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example y∗

Effective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

y∗ U∗(y∗) = {1, 2}

0 y H1(y) H2(y) U1(y) = {1} U2(y) = {2}

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example y∗

Effective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}
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L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation yk yk+1

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

E↵ective Terminal Cost Approximation Observation yk yk+1

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

At the typical iteration k
We linearize the problem at the current iterate yk with a first order expansion of G,

G(y) ≈ G(yk ) +∇G(yk )(y − yk ),

where ∇G(yk ) is the gradient of G at yk

We solve the linearized problem to obtain yk+1:

yk+1 = G(yk ) +∇G(yk )(yk+1 − yk )

Extends to solution of fixed point problem y = min
{

G1(y), . . . ,Gm(y)
}
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Visualization of Approximation in Value Space - One-Step Lookahead -
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(
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and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =
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Given quadratic cost approximation J̃(x) = K̃x2, we find
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FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =
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Visualization of Region of Stability of the One-Step Lookahead Policy

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F (P ) P̃ Pk Pk+1 P ⇤ Q 0 P̃ � R
B2

A2R
B2 + Q 45�

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policy Unstable Policy Region of stability

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policy Unstable Policy Region of stability

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policy Unstable Policy Region of stability

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method

1

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

F (K) 45 20 40 18 2 6 22

T2 Cost 28 Cost 27 Cost 13

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = − abK̃
r+b2K̃

18

L̃ = − abK̃
r+b2K̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1
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Visualization of Rollout with Stable Linear Base Policy µ: J̃ = Jµ

Cost-to-go approximation Expected value approximation

Optimal cost J∗

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ Cost of rollout
policy µ̃

Simplified minimization Value iterations Policy evaluations
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u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent
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αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
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Current Partial Folding Moving Obstacle
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Rollout with Base Policy m-Step Value Network Policy Network
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pxy(u)
(
g(x, u, y) + αJ̃(y)
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1
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Approximation in Value Space: Multistep Lookahead

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN ) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN )

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S! Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3
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s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2
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Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ
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F (i)

)
of

F (i) =
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F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π
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J | J ≥ J+, J(t) = 0

}
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Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J
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NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) Linear Stable Policy to construct the one-step lookahead policy

µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =
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αJk(2) (2αrk, 2αrk)
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(
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min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open
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Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)
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k u2
k x2

k dk τ
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3 ũ1 x̃2 ũ2 x̃3
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Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk Kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk Kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

r
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1

J 0 Jµ = � 1
µ TµJ = �µ + (1 � µ2)J TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + b2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 K∗ K̄ 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = a2rK

r+b2K + q K̃ = 0 K̄ KL̃

L̃ = −r + ab2K̃

abK̃
K1 L̃ = −r + ab2K1

abK1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk)

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk)

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

E↵ective Terminal Cost Approximation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1
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Visualization of Approximation in Value Space - Two-Step Lookahead -
No rollout

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q K̃

L̃ = −r + ab2K̃

abK̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q K̃ KL̃

L̃ = −r + ab2K̃

abK̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost
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TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)
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L∈"
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FL(K̃)

to construct the one-step lookahead policy µ̃(x) = L̃x

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗
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Controls u ∈ U(x)
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F (K) = min
L∈"
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Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃)

to construct the one-step lookahead policy µ̃(x) = L̃x
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FL(K̃) H(y) = G(y) − y G(y)
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and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy
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αJ(2) Controls u ∈ U(x)
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Terminal Position Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}
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F (K) = min
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FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =
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Terminal Position Evaluation
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F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
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F (K) = min
L∈"
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y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)
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Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation
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Visualization of Truncated Rollout - Two-Step Lookahead - Three
Truncated Rollout Steps Starting from K̃
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}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+!−1

E

{
gk(xk, uk, wk) +

k+!−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
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“Future”
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TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J
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min
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}
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“Future”
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Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J
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r+b2K + q K̃
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using an Corresponds to One-Step Lookahead Policy µ̃
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Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ
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min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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ỹk, uk, R(yk+1)
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∈ C
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1 u∗
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x0 u∗
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1 u∗
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2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)
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Multistep Lookahead Policy Cost J is a function of x
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Multistep Lookahead Policy Cost J is a function of x
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Newton iterate starting from K Tangent Line of Unstable Policy
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also Newton Step

using an Corresponds to One-Step Lookahead Policy µ̃
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1
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Policy Iteration for the Linear Quadratic Problem (Repeated Rollout)

Starts with linear policy µ0(x) = L0x , generates sequence of linear policies
µk (x) = Lk x with a two-step process

Policy evaluation:
Jµk (x) = Kk x2

where

Kk =
q + rL2

k

1− (a + bLk )2

Policy improvement:
µk+1(x) = Lk+1x

where
Lk+1 = − abKk

r + b2Kk

Rollout is a single Newton iteration

PI is a full-fledged Newton method for solving the Riccati equation K = F (K )

An important variant, Optimistic PI, consists of repeated truncated rollout iterations

Can be viewed as a Newton-SOR method (repeated application of a Newton step,
preceded by first order VIs)
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Generalization

The Newton step interpretation of approximation in value space generalizes very broadly
See the "Lessons from AlphaZero ..." textbook

Riccati operators —> Bellman operators

Newton’s method for solving the min-Riccati equation —> Newton’s method for
solving the min-Bellman equation

Approximation in value space is a single Newton iteration, enhanced by multistep
lookahead (if any), and by truncated rollout (if any)

Rollout is a single Newton iteration starting from the cost function of the (stable)
base policy

Exact PI is a full-fledged Newton’s method

Multistep lookahead and truncated rollout enhance the stability properties of the
policy produced by approximation in value space
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A Fifteen-Minute Break

Catch our breath and think about issues relating to the first half of the lecture.
Ask questions when you return.
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How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states

Define as state xk something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know xk , all past information is irrelevant.

Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

Some examples
In the traveling salesman problem, we need to include all the relevant info in the
state (e.g., the past cities visited, and the current city). Other info, such as the
costs incurred, need not be included in the state.

In partial or imperfect information problems, we use “noisy" measurements for
control of some quantity of interest yk that evolves over time (e.g., the
position/velocity vector of a moving object). It is correct to use Ik (the collection of
all measurements up to time k ) as state.

It may also be correct to use alternative states; e.g., the conditional probability
distribution Pk (yk | Ik ). This is called belief state, and subsumes all the information
that is useful for the purposes of control choice.
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State Augmentation: Delays

xk+1 = fk (xk , xk−1, uk , uk−1,wk )

Introduce additional state variables yk and sk , where yk = xk−1, sk = uk−1. Thenxk+1

yk+1

sk+1

 =

fk (xk , yk , uk , sk ,wk )
xk

uk


Define x̃k = (xk , yk , sk ) as the new state, we have

x̃k+1 = f̃k (x̃k , uk ,wk )

Reformulated DP algorithm: Start with J∗N(xN) = gN(xN)

J∗k (xk , xk−1, uk−1) = min
uk∈Uk (xk )

Ewk

{
gk (xk , uk ,wk )+J∗k+1

(
fk (xk , xk−1, uk , uk−1,wk ), xk , uk

)}
J∗0 (x0) = min

u0∈U0(x0)
Ew0

{
g0(x0, u0,w0) + J∗1

(
f0(x0, u0,w0), x0, u0

)}

See class notes for other types of state augmentation (e.g., forecasts of future
uncertainty)
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Problems with a Cost-Free and Absorbing Terminal State

Generally, we can view them as infinite horizon problems

Another possibility is to convert to a finite horizon problem: Introduce as horizon an
upper bound to the optimal number of stages (assuming such a bound is known)

Add BIG penalty for not terminating before the end of the horizons t j̄1 j̄2 j̄` j̄`�1 j̄1
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x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤
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3 ũ0 x̃1 ũ1 x̃1
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u1 û1 10 11 12

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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1

Example: Multi-vehicle routing; vehicles move one step at a time
Minimize the number of moves to perform all tasks (i.e., reach the terminal state)

How to formulate as DP? States? Controls? Terminal state? Horizon?

Problem “size"? Astronomical, even for modest number of tasks and vehicles

A good candidate for the multiagent framework to be introduced next
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1

Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

Agent i applies decision u i sequentially in discrete time based on info received

The major mathematical distinction between problem structures
The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by DP

The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it is hard to treat by DP
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Starting Point: A Classical Information Pattern (We Generalize Later)
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagent Sensor Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um�1
k Control um

k u3
k um�1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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Spiders-and-Flies Example
(e.g., Vehicle Routing, Maintenance, Search-and-Rescue, Firefighting)

xk+1 = f(xk, uk, wk)

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud

15 spiders move in 4 directions with perfect vision

3 blind flies move randomly

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy , etc

µ̂k(xk) J̃k(xk) rt rt+1u1 u2 u3 u4 u5

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector φ(x)

Approximator r′φ(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
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Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy
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Objective is to Catch the flies in minimum time

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
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1

At each time we must select one out of ≈ 515 joint move choices

We will reduce to 5 · 15 = 75 (while maintaining good properties)

Idea: Break down the control into a sequence of one-spider-at-a-time moves

For more discussion, including illustrative videos of spiders-and-flies problems,
see https://www.youtube.com/watch?v=eqbb6vVlN38&t=1654s

Bertsekas Reinforcement Learning 30 / 35



Reformulation Idea: Trading off Control and State Complexity

...

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃
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Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations
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x0 x1 xk xN x0
N x00
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k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)
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(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)
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x
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k+1 x
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k+1 xk+1 ✓1 ✓2 Next States Final States

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂ Base Policy

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T
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1

An equivalent reformulation - “Unfolding" the control action
The control space is simplified at the expense of m − 1 additional layers of states,
and corresponding m − 1 cost functions

J1(x , u1), J2(x , u1, u2), . . . , Jm−1(x , u1, . . . , um−1)

Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem (so it involves a Newton step)

The increase in size of the state space does not adversely affect rollout (only one
state and its successors are looked at each stage during on-line play)

Complexity reduction: The one-step lookahead branching factor is reduced from
nm to n ·m, where n is the number of possible choices for each component u i
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Parking with a Deadline: An Example of Partial State Observation
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Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

n 0 1 i � 1 C c(1) c(i) c(n)
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�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from
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1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

At each time step, move one spot in either direction. Decide to park or not at spot
m (if free) at cost c(m). If we have not parked by time N there is a large cost C

We observe the free/taken status of only the spot we are in. Parking spots may
change status at the next time step with some probability.

The free/taken status of the spots is “estimated" in a “probabilistic sense" based
on the observations (the free/taken status of the spots visited ... when visited)

What should the “state" be? It should summarize all the info needed for the
purpose of future optimization

First candidate for state: The set of all observations so far.

Another candidate: The “belief state", i.e., the conditional probabilities of the
free/taken status of all the spots: p(1), p(2), . . . , p(M), conditioned on all the
observations so far
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Partial State Observation Problems: Reformulation via Belief State

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from
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Improper policy µ
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(x)
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1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations
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(x) Fµk+1

(x)

Improper policy µ

Proper policy µ
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Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations
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x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
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J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN ) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN )

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN ) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN )

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP
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uk = rpek + rizk + rddk ξij(u) pij(u)
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Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm
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Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k
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Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
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zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Spider 1 Spider 2 Fly 1 Fly 2 n � 1 n n + 1 n � 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2
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Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
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1
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zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)
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J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)
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y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find
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to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy
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1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

The reformulated DP algorithm has the form

J∗k (bk ) = min
uk∈Uk

[
ĝk (bk , uk ) + Ezk+1

{
J∗k+1

(
Fk (bk , uk , zk+1)

) ∣∣ bk , uk

}]
J∗k (bk ) denotes the optimal cost-to-go starting from belief state bk at stage k

Uk is the control constraint set at time k

ĝk (bk , uk ) denotes expected cost of stage k : expected stage cost gk (xk , uk ,wk ),
with distribution of (xk ,wk ) determined by bk and the distribution of wk

Belief estimator: Fk (bk , uk , zk+1) is the next belief state, given current belief state
bk , uk is applied, and observation zk+1 is obtained
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About the Next Lecture

We will discuss adaptive and model predictive control

We will start a more in-depth discussion of rollout

HOMEWORK 2 (DUE IN ONE WEEK): EXERCISE 1.2 OF THE CLASS NOTES

READ AHEAD CHAPTER 2 OF CLASS NOTES

This is a good time to watch the summary videolecture at
https://www.youtube.com/watch?v=A7OGgpuRnuo (1-hour version)

of the book
Lessons for AlphaZero for Optimal, Model Predictive, and Adaptive Control

Also the multiagent videolecture at
https://www.youtube.com/watch?v=eqbb6vVlN38
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