Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2023

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 5
Reuvisit Finite Horizon DP Problems - Deterministic Rollout

Bertsekas Reinforcement Learning 1/30

0 Finite Horizon Problems - Relation to Infinite Horizon
@ Rollout in General

© Rollout for Deterministic Finite-State Problems

0 Cost Improvement Property of Rollout

e Deterministic Rollout Variants and Extensions

Bertsekas Reinforcement Learning 2/30

Review: The Generic Finite Horizon DP Problem

Random Transition

Th1 = fe(@r, up, wi)

O O DO D
Random Cost

gk(lIm Uk, wk)

@ System xx+1 = fi(Xk, Uk, wik) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: E {gN(xN) + 50 gk, Uk, Wk)}

@ Policies m = {uo, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ For given initial state xo, minimize over all 7 = {uo, . .., un—1} the cost

N—1
Jr(X0) = E {QN(XN) + > 9k (X 1k (Xk), Wk)}

k=0

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J-=(x0) = J*(x0)

We will be focusing on finite horizon: It's most convenient for our algorithmic
purposes (e.g., rollout) ... but nearly everything applies to infinite horizon

Bertsekas Reinforcement Learning 4/30

Review: The DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gnv(xn), and fork =0,...,N —1, let

Ji (x) = Ukenpjikr(lxk) Ewk{gk(xln Uk, W) + Jir (T (X, Uk, Wk))}, for all xx.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).
@ The optimal policy is to use the minimizing u; = p(xx) above.

Approximation in Value Space - Use of Ji. 1 in Place of it
Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Uy € arg ngﬂuik'?xk) Ewk{gk(xm Uk, i) + Jis1 (fie(Xi, Uk, W) }

There is also a multistep version.

There are many different ways to compute Jx+1 (€.g., on-line rollout, off-line
training, problem approximation, heuristics, etc)

Bertsekas Reinforcement Learning 5/30

An Important Conceptual Idea: Finite Horizon can be Transformed to

Infinite Horizon

S OO0~ ~0—O

e ° @ @ @ Q
Ty (x
/\ e)

e H
R 88
ces

Optimal ¢ l<—> 4—» 4—»
,11 Olicy

As a result:

@ The Bellman equation of the infinite horizon problem is the DP algorithm for the
finite horizon problem

@ Policy iteration/Newton step ideas apply to finite horizon problems

Bertsekas Reinforcement Learning 6/30

Rollout:

At State zy,
DP minimization First £ Steps “Future”

l b kt0—1 "
min E {gk(mk,uk, wy) + Z gi (@, pizi), wi) + Jk+g(:£;€+g)}

Uk, LK yeesMk4£—1
Hht1see ket k11

Rollout Control iy Lookahead Minimization = Base Policy Cost
Rollout Policy fix

Jk+e(Xky0) is the Cost Function of Some Policy or Heuristic J

@ The policy used for rollout is called base policy
@ The policy obtained by lookahead minimization is called rollout policy

Approximate variants

@ Jie(xk.e) may also approximate the cost function of the base policy
@ Possibility of truncated rollout

Bertsekas Reinforcement Learning 8/30

Rollout is Important for this Course

Role of Rollout

@ It provides important options for cost function approximation in the context of value
space methods (a “good" option because Ji < Jk, based on visualizations)

@ lt is the basic building block of the fundamental Pl algorithm (and approximate
variants)

Reasons why it will be important:
@ Rollout, in its pure form, is the RL method that is easiest to understand and apply
@ Rollout is by far the most reliable

@ ltis very general: Applies to deterministic and stochastic problems, to finite
horizon and infinite horizon

@ As a special case of approximation in value space, it relates to Newton’s method

@ Deals well with on-line replanning, and provides a useful alternative to
reoptimization in adaptive control

@ It relates to model predictive control, and can be used to improve the stability of
MPC schemes

@ Truncated rollout can be combined with many of the RL methods used in practice
[including self-learning (approximate PI), Q-learning, aggregation, and others]

Bertsekas Reinforcement Learning 9/30

Review: Finite Horizon Deterministic Optimal Control Model

Control ug
O @ @ (O—-
Cost gi (g, uk)

>

Stage k Future Stages

@ System
Xiet = Fe(Xk, Uk), k=0,1,...,N—1

where xi: State, ux: Control chosen from some set Uk (xx)
@ Cost function:

N—1
gn(xn) + Z G (X, Uk)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(X0i Uo, - - Uun—1) = n(XN) + D Gk(X, Uk)
k=0
@ Optimal cost function J*(xp) = min E UG8 J(Xo; Ug, .-, UN—1)
—1

Bertsekas Reinforcement Learning 11/30

Review: Generic Finite-State Deterministic Finite Horizon Problem

State Transition
Cost g1(x1,u1) _ 2= fi(z1,u1)
Terminal Arcs
Cost gn(zn)

‘Artificial Terminal
Node

Stage 0 Stage 1 Stage 2 .- Stage N —1 Stage N
xo x1 Z2 TN-1 TN
@ Nodes correspond to states xx
@ Each arc corresponds to a state-control pair (xk, ux) (start node is xx; end node is
Xi+1 = Fie(Xk, Uk)
@ An arc corresponding to (xx, Ux) has a cost gk (X, Uk).

@ The cost to optimize is the sum of the arc costs from the initial node/state x, to a
terminal node t.

@ The problem is equivalent to finding @ minimum cost/shortest path from x, to .

Bertsekas Reinforcement Learning 12/30

A Combinatorial Example: The N Queens Problem

Bertsekas

Starting Position
Root Node s

Cost =0 Cost =0
[£
Dead-End Positio/
[7 | w
W ‘gl [/
]
Dead-End [Position
L4 |
4 L4
L4 L4
Cost =1 Cost =1
W
|
L4
L4
Cost =0
Artificial
Terminal
Node ¢

ement Learning

13/30

General Structure of Deterministic Rollout with Some Base Heuristic

Next States

Current State euristic

Heuristic

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor

Qk (X, Uk) = Gk (Xk, Uk) + Higt (Fe(Xk, Uk))

using the base heuristic [Hx+1(Xk+1) is the heuristic cost starting from xy.1]
@ We select the control ux with minimal Q-factor
@ We move to next state xx.1, and continue
@ Multistep lookahead versions

@ An important question: Is rollout cost improving? (Performs no worse than the
base heuristic, from xo)

Bertsekas Reinforcement Learning 14/30

A Multivehicle Routing Example

1 3 5 9 Vehicle 2

Optimal
Solution

Vehicle 1
o g

9 6 3 1
Base heuristic

Move each vehicle one step towards its closest task

Base heuristic moves both vehicles to node 4 and moves them together after that J

Rollout operation at each stage, given the current pair of vehicle positions
@ Consider all the possible pairs of moves from the current position
@ Run the base heuristic from each pair
@ Select the move of min total vehicle moves

@ Rollout finds the optimal solution (in this example). A total of 6 moves compared
with 10 for the base heuristic.

Bertsekas Reinforcement Learning 15/30

An Example: Search for an N-Arc Breakthrough Path in a Tree (e.g.,

Search Through a Maze)

Root

Greedy base heuristic: If one arc is free use it; if both arcs are free use the right arc)

@ Complexity of the DP algorithm is O(N2") (size of tree grows exponentially)
@ Complexity of the greedy and rollout algorithms is O(N) and O(N?), respectively

@ Assuming arcs are blocked with given probability, the rollout algorithm has O(N)
times higher probability of breakthrough; see the literature.

@ This is qualitatively typical: Rollout improves performance of base heuristic
substantially at the expense of polynomial amount of extra computation.

Bertsekas Reinforcement Learning 16/30

Criteria for Cost Improvement of a Rollout Algorithm

@ Cost improvement is not automatic: Special conditions must hold to guarantee that
the rollout policy has no worse performance than the base heuristic

@ Two such conditions are sequential consistency and sequential improvement.

The base heuristic is sequentially consistent if at a given state it chooses
control that depends only on that state (and not on how we got to that state)

@ If the heuristic generates the sequence
{Xk, X1, oo, xn}
starting from state x, it also generates the sequence
{Xks1, -y XN}

starting from state X+

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, ..., un—1}

@ “Greedy" heuristics are sequentially consistent (e.g., nearest neighbor for TSP)

@ We will focus on a less restrictive condition: sequential improvement

Bertsekas Reinforcement Learning 18/30

Sequential Improvement Condition

Current Trajectory Ry

Base Heuristic Cost Hy () J

Monotonicity Property
Under Sequential Improvement

To T T2 Th-1 Tk Cost of Ry, > Cost of Rj41

Tht1
e

Base Heuristic Cost Hyq1(Zr41)

Current Trajectory Ry41
Implies cost improvement: (Cost of Rollout Policy) < (Cost of Base Heuristic)
@ Sequential improvement definition: Best heuristic Q-factor < Heuristic cost, i.e.,

min : [gk(xk, Uk) + Hie1 (fe (X uk))] < Hi(xx), forall x,

Uk € Uk (X

where Hi(xx): cost of the trajectory generated by the heuristic starting from xi

@ Justification: Rollout, upon reaching Xx, has obtained a “current” trajectory Rx.
Sequential improvement implies: Cost of Rx > Cost of Ry 1

@ Thus the current trajectory cannot get worse. Since Ry corresponds to the base
heuristic, Ry corresponds to the rollout, Cost of Ry > Cost of Ry

@ Note that sequential consistency —> sequential improvement

Bertsekas Reinforcement Learning 19/30

Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Initial State zo

Rollout 13

1\’,2\

Matrix of Intercity
Travel Costs

Cost of Ry > Cost of Ry > Cost of Ro

Base heuristic: Nearest neighbor (sequentially consistent and sequentially improving) J

Bertsekas Reinforcement Learning

20/30

A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.

Bertsekas Reinforcement Learning 21/30

Simplified Rollout Algorithm - Assuming Sequential Improvement

Simplified algorithm: Instead of control w/ minimal Q-factor, use any control
with Q-factor < heuristic cost Hi(xk)

@ When at xx, choose as rollout control any &k = fix(xx) such that
9k (X, U) + Hicpr (T (Xk, Ti) < Hie(X«),

where Hi(xx) is the cost of the trajectory generated by the heuristic from x.
@ Can focus on a small subset of “promising” controls (save lots of computation)

Cost improvement for the simplified algorithm:

Let the rollout policy under the simplified algorithm be # = {jio, . . ., fin—1}, and let
Jk=(xk) denote its cost starting from x,. Then for all x,x and k, Jk = (xx) < Hi(Xx).

Proof: Again, the current trajectory cannot get worse,

Ho(xo) = Cost of Ry > --- > Cost of Rx > Cost of Rx.1 > --- > Cost of Ry

Bertsekas Reinforcement Learning

23/30

Rollout with Superheuristic/Multiple Heuristics

Consider combining several heuristics in the context of rollout

@ The idea is to construct a superheuristic, which runs all the heuristics at each state
encountered, and selects the best out of the trajectories produced

@ The superheuristic can be viewed as the base heuristic for a rollout algorithm

@ It can be verified using the definitions, that if all the heuristics are sequentially
improving, the same is true for the superheuristic

Proof: Write the sequential improvement condition for each of the M heuristics

min = QF (X, ux) < H'(xx), m=1,.... M,
Uy € U (X¢)

and all xx and k, where Q"(x, ux) and H{"(x¢) are Q-factors and heuristic costs that
correspond to the mth heuristic. By taking minimum over m, and interchanging the
order of the minimization minm—1,... » MiNy, cu, (x>

min ~ min Q7 (x, ux) < min H™(x
U €Uk (xi) m=1,...,M ke (X)—m:1,4..,M e (%),

Superheuristic Q-factor Superheuristic cost

which is the sequential improvement condition for the superheuristic.

Bertsekas Reinforcement Learning 24/30

A Counterexample to Cost Improvement (w/out Sequential

Improvement Condition)

Optimal Trajectory
Chosen by Base Heuristic at zg

* *
7; High Cost Transition
Chosen by Heuristic at 7

Rollout
Choice

Violates
Sequential Improvement

@ The optimal trajectory (xo, Ug, X7, U, X5).

@ Assume the heuristic produces (ug, uy) at xo, and Uy at xy".

@ Rollout uses the base heuristic to construct a trajectory starting from x;* and X;.

@ Then (Q-factor of ug)>(Q-factor of ip). So the rollout algorithm selects &y, and
moves to a nonoptimal next state X1 = f(xo, o).

@ Thus in the absence of sequential improvement, the rollout can deviate from an
already available good “current" trajectory.

@ This suggests a possible remedy: Follow the best “current” trajectory found even if
rollout suggests following a different (but inferior) trajectory.

Bertsekas Reinforcement Learning 25/30

Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Improving

Tentative Best Trajectory T

’ Heuristic
Permanent trajectory Py @

Min Q-factor choice

Idea: At each step, follow the best trajectory computed thus far

@ At state xx: In addition to the permanent rollout trajectory
Px = {Xo, Up, - .., Uk—1, Xk }, @lso store a tentative best trajectory

Tk ={Xo, ..., Xk, Uky Xks1, Uk41, - - -, UN—1, XN}

T is the best end-to-end trajectory computed up to stage k

@ We reject the minimum Q-factor choice U if its complete trajectory is more costly
than the current tentative best; otherwise we accept ik, and update the tentative
best trajectory.

Bertsekas Reinforcement Learning 26/30

lllustration of Fortified Algorithm

Initial
Tentative Best
Trajectory

High Cost Transition

Chosen by Heuristic at 7}
Violates

Sequential Improvement

@ At X, the fortified rollout stores as initial tentative best trajectory the unique
optimal trajectory (xo, U3, X7, UT, X5) generated by the base heuristic.

@ In the first rollout step, it computes the Q-factors of ug and & by running the
heuristic from x;" and X;.

@ Even though the rollout prefers i to ug, it discards i in favor of ug, which is
dictated by the tentative best trajectory.

@ It then sets the permanent trajectory to (xo, Ug, X{') and keeps the tentative best
trajectory unchanged to (xo, Ug, X7, U7, X5).

Bertsekas Reinforcement Learning 27/30

Model-Free Rollout with an Expert for the General Discrete Optimization

minUoEUo,...,UNqEUNq G(Uo, ceey UN_1)

Current
Partial Solution

Base
Heuristic
Complete
Solutions N1

Expert Ranks Complete Solutions
Sk(uo; - - - Uk, Ukt1), Ukt1 € U

@ Assume we do not know G, and/or the constraint sets Uk
@ Instead we have a base heuristic, which given a partial solution (uo, . . ., Ux),
outputs all next controls k.1, and generates from each a complete solution
Sk(Uo, - . , Uk, Tk 1) = (Uos - - - , Uy Dy, - - -, Un—1)

@ Also, we have a human or software “expert" that can rank any two complete
solutions without assigning numerical values to them.

@ Deterministic rollout can be applied to this problem; we have all we need.

Bertsekas Reinforcement Learning 28/30

Rollout with an Expert - RNA Folding Application (see [LPS21])

Complete Folding

‘il Folding_O! 1e00040 |
>artial Foldine 0S¢
- Partial Folding N ' Expert
- Partial Software

Software| Compares
Complete

0b0d0és [o60ved |

Complete Folding
Corresponding to Open

@ Given a sequence of nucleotides (molecules of “types" A,C,G,U), “fold" it in an
“interesting" way (introduce pairings that result in an “interesting" structure).

@ Make a pairing decision at each nucleotide in sequence (open, close, do nothing).

@ Base heuristic: Given a partial folding, generates a complete folding (this is the
partial folding software).

@ Two complete foldings can be compared by the expert software.

@ There is no explicit cost function here (it is internal to the expert software).

Bertsekas Reinforcement Learning 29/30

About the Next Lecture

We will cover:
@ Rollout with multistep lookahead
@ Rollout for constrained problems
@ Applications in integer programming

Homework (due in two weeks): Exercise 1.3)

Bertsekas Reinforcement Learning 30/30

	Finite Horizon Problems - Relation to Infinite Horizon
	Rollout in General
	Rollout for Deterministic Finite-State Problems
	Cost Improvement Property of Rollout
	Deterministic Rollout Variants and Extensions

