Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 6
Deterministic Problems: Multistep Approximation in Value Space, Constrained
Rollout, Rollout for Discrete Optimization

Bertsekas Reinforcement Learning 1/27

0 Deterministic Problems: Approximation in Value Space with Multistep Lookahead
e Constrained Rollout for Deterministic Optimal Control

Q Discrete Optimization Applications

Bertsekas Reinforcement Learning 2/27

Multistep Approximation in Value Space - The General Case

cfemmm e e
Terminal Cost _
Approximation .J

Multistep Lookahead

I e @

Cuprent State Rollout

Base Policy
B R ----r@

States zp42

@ Special case: No rollout. The general multistep approximation in value space
scheme.

@ Special case: Pure multistep rollout. No terminal cost and no truncation.

@ WE TAKE IT AS FACT: Longer lookahead improves performance (but is costly).
@ OUR STRATEGY: Extend the lookahead as much as the comp. budget allows.
@ One idea: Truncated rollout (a cheap extension of the lookahead length).

@ Another computation-saving idea: Selectively prune the lookahead tree.

Bertsekas Reinforcement Learning 4/27

Multistep Lookahead in Deteministic Problems

Move Chosen 2k (Current State)

IAVAVAN)
Terminal Cost Approximation 4J(2x+¢) (may be the cost of a heuristic)

l Thtt

We obtain a trajectory {Xi, Xk+1, - - -, Xk+e} that minimizes the shortest distance from xi
to Xk+e PLUS J(Xk+¢). We then use the first move xx — Xk1.

@ All the shortest path problems from xx to xx+. can be solved simultaneously by
backward DP (start from layer £ go towards xx).

@ An important alternative is the forward DP algorithm.

@ It is the same as the backwards DP algorithm with the direction of the arcs
reversed (start from xix go towards layer /¢ - see the next slide).

Bertsekas Reinforcement Learning 5/27

Forward DP Algorithm and lterative Deepening [

o (Current State)

Dy (aa): Shortest distanc
from xo to state x,
of layer n

ayer n
Layer n + 1

— Layer /

PAVAN
Torminal Cost Approsimation }(re) (may be the cost of a heuistic

|

@ The “forward" DP algorithm: The shortest distances Dy11(Xn+1) to layer n+ 1
states are obtained from the shortest distances D,(x,) to layer n states as follows:

Dyi1(Xny1) = min [(Cost Xn — Xni1) + Dn(xn)]
@ Solution of the /-step lookahead problem: The shortest path to the state x; of
layer ¢ that minimizes De(x;) + J(x¢).

@ lterative deepening: Solve the n-step lookahead problem before solving the
(n+ 1)-step lookahead problem.

@ This is an “anytime" algorithm (returns a feasible solution even if it is interrupted).

Bertsekas Reinforcement Learning 6/27

Iterative Deepening with Tree Pruning

xo (Current State)

Pruned States

In — Layern

— Layern+1

Ty — Layer ¢

Terminal Cost Approximation J(@¢) (may be the cost of a heuristic)

l 2

o lterative deepening can be “enhanced” by pruning states X, such that the n-step
lookahead cost Dy(Xn) + J(Xn) is “far from the minimum" over x.

@ We prune as we go: Prune states in layer n before pruning states in layer n+ 1.
@ Runs the risk of overpruning: Some pruned states may be “good" in hindsight.
@ Should we go back and check for overpruning? How?

Bertsekas Reinforcement Learning 7127

An Alternative Form of Pruning - Double Rollout

0 (Current State)

— Layer ¢

J(z¢) (may be the cost of a heuristic)

Terminal Cost Approximation

> 1y

@ Instead of solving the ¢-step lookahead shortest path problem by iterative
deepening and pruning, solve it approximately using rollout as in the figure.

@ The base heuristic used from layer 2 to layer ¢ need not be related to the terminal
cost approximation J(x¢).

@ For 7 = 0 we obtain one-step lookahead truncated rollout. For ¢ = ¢ — 1 we obtain
(-step lookahead approximation in value space (in effect no rollout).

@ Variants of double rollout: Simplified, fortified, parallel, iterative deepening, etc.

Bertsekas Reinforcement Learning 8/27

Incremental Multistep Rollout - Flexible Pruning/Iterative Deepening

z0 (Current State)

Difference from double rollout: In place of the graph of the first 7 layers, we
use a less regular graph, which is expanded at each iteration based on a
shortest path computation.
@ At the start of an iteration, we have an acyclic connected subgraph S rooted at xp.
@ We compute the shortest distance D(x) from xp to all x € S, going through S.

@ We find a leaf node x* € S that minimizes D(x) + H(x), where H(x) is a “heuristic
distance" from x to layer .

@ Expand x™* to enlarge S and start the next iteration (or stop if x* is in layer £).

Bertsekas Reinforcement Learning 9/27

Incremental Multistep Rollout - Some Details

z0 (Current State)

2* minimizes D(z) + H(z)
over the leaf nodes = € S

@ At the start of an iteration, we have an acyclic connected subgraph S rooted at x.
@ We minimize D(x) + H(x) over all leaf nodes x € S.
@ We expand the minimizing node x* to form the new subgraph.

@ Example of H(x): The cost of a base heuristic that starts from x and ends at some
node x, of layer ¢, plus J(x;), plus an extra term that favors paths with few hops;
e.g., 6 - (number of hops from xo to x), where § > 0.

@ The computation of the shortest distances D(x) is done progressively with the
forward DP algorithm as the subgraph S expands.

@ Note: The § term allows the algorithm to “backtrack.”

@ For ¢ = 0, we get max pruning: S ends up being “long and skinny". For § ~ oo, we
get min pruning: S ends up being as “fat" as possible.

Bertsekas Reinforcement Learning 10/27

A Ten-Minute Break y

Bertsekas Reinforcement Learning 11/27

Constrained Rollout - Main Ideas

Applies to problems with additional constraints on the entire optimal trajectory

@ Greatly expands the range of applications of rollout

@ For example it applies to intractable discrete optimization problems (e.g., shortest
path problems with a limit on the number of hops).

@ It is similar to unconstrained rollout: As we expand the rollout path, we exclude
from consideration the Q-factors that correspond to constraint violation.

@ Guarantees cost improvement over the base heuristic under appropriate
conditions (modified versions of sequential consistency, sequential improvement,
or use of a fortified version).

Bertsekas Reinforcement Learning 13/27

Traveling Salesman: Example of a Trajectory Constraint

Initial State xq
Unconstrained
Min Cost Tour

4 3

[acB| [acp] [apB] [ADC]
1 3 4 4 20 20
[ancn| [rco| [xpBd fpCH|
20
Safety Costs of
Matrix of Intercit; Complete Tours
e ¥ A
Travel Costs ABCDA| 5
Terminal State ¢ ABDCA| 20
Constraint: ACBDA| 4
Tour Safety < 10
ACDBA| 3
ADBCA| 1
IADCBA| 15

Find a minimum cost tour subject to a safety constraint |

Bertsekas Reinforcement Learnii 14/27

Deterministic Rollout with Trajectory Constraint: Basic Idea

Trajectory Ry

Base Heuristic Cost Hy (2) 1

Th+1

Base Heuristic Cost Hy41(Zx41)

Trajectory Ry41
Review of the unconstrained rollout algorithm:
@ Construct sequence of trajectories {To, T1, . . ., Ty} with monotonically
nonincreasing cost (assuming a sequential improvement condition).

@ For each k, the trajectories Tk, Tk+1, ..., In Share the same initial portion
(Xo, l.~107 000y l~lk,1,)N(k).

@ The base heuristic is used to generate candidate trajectories that correspond to
the controls ux € Ux(x«).

@ The next trajectory T+ is the candidate trajectory that has min cost.

To deal with a trajectory constraint T € C, we discard all the candidate trajectories that
violate the constraint, and we choose Ti1 to be the best of the remaining trajectories.
S —— S — S — T — T —

Bertsekas Reinforcement Learning 15/27

Deterministic Problems with Constraints: Definition

@ Consider a deterministic optimal control problem with system Xx:+1 = fi(Xk, Uk).

@ A complete trajectory is a sequence
T = (Xo,Uo,X1,U1,. ..,UN_1,XN)

@ Problem:

HIREi)

where G is a given cost function and C is a given constraint set of trajectories.

State augmentation idea for rollout
@ Redefine the state to be the partial trajectory

Yk = (X(_)7 Uo, X1,..., Uk_1,Xk)
@ Partial trajectory evolves according to a redefined system equation:
Vit = (Vies Uk, (X, Uk))

@ The problem becomes to minimize G(yn) subject to the constraint yy € C.

Bertsekas Reinforcement Learning

16/27

Rollout Algorithm - Partial Trajectory-Dependent Base Heuristic

Uk+1 UN -1

O—»0
Oo—»0
O—»0
Yk TE+1 Th42 TN-1 TN
Yk+1 o R(yr+1)
T (G u) = (T uk, R(yrt1)) € C
@ Given yx = {Xo, Uo, X1, Uh, ..., Ux—1, Xk } consider all controls ux and corresponding

next states X 1-
@ Extend j to obtain the partial trajectories yixi1 = (¥, Uk, Xk+1), for ux € Uk(X«).
@ Run the base heuristic from each yj.1 to obtain the partial trajectory R(yk+1).
@ Join the partial trajectories yx+1 and R(yx+1) to obtain complete trajectories

denoted by Tk(Jk, uk) = (¥, Uk, R(Yk+1))
@ Find the set of controls U () for which Ti (¥, ux) is feasible, i.e., Tk(Jk, uk) € C
@ Choose the control i € Uk(ji«) according to the minimization

dx carg min G(Tk(Jx, uk))

Uk € Uk (V)

Bertsekas Reinforcement Learning 17/27

Constrained Traveling Salesman Example

Initial State xg

Rollout Choice
Heuristic
from AB~_

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3
ADBCA| 1
Terminal State ¢ ADCBA| 15

Constraint:
Tour Safety < 10

Matrix of Intercity
Travel Costs

@ Rollout at A: Considers partial tours AB, AC, and AD; Obtains the complete tours
ABCDA, ACBDA, and ADCBA; Discards ADCBA as being infeasible; Compares
ABCDA and ACBDA, finds ABCDA to have smaller cost, and selects AB.

@ Rollout at AB: Considers the partial tours ABC and ABD; Obtains the complete
tours ABCDA and ABDCA; Discards ABDCA as being infeasible; Selects the
complete tour ABCDA.

Bertsekas Reinforcement Learning 18/27

Constrained Rollout Algorithm Properties

U1 UN-—1
Oo0—»O
Oo—»0
Yk Tk+1 Thk42 TN-1 TN
T
Yk+1 R(yr+1)

T (G u) = (G, wr, R(yes1)) € C

@ The notions of sequential consistency and sequential improvement apply. Their
definition includes that the set of “feasible" controls Uk(j«) is nonempty for all k.

@ Sequential improvement condition: The min heuristic Q-factor over U (j%) is no
larger than the heuristic cost at yx (see the notes).
@ Fortified version (if sequential improvement does not hold; see the notes):

Maintains the “tentative best" trajectory, and follows it up to generating a better
trajectory through rollout.

Has the cost improvement property, assuming the base heuristic generates a feasible
trajectory starting from the initial condition y = Xo.

@ Multiagent version: Selects one-control-component-at-a-time (apply constrained
rollout to the equivalent reformulation, i.e., the one with control space “unfolded").

Bertsekas Reinforcement Learning 19/27

Example of Sequential Consistency and Sequential Improvement

Rollout Choice

Heuristic 1

from AB~.

Rollout Choice

Matrix of Intercity
Travel Costs

Initial State xo

Heuristic
from A

Heuristic
/3 from AD

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3

ADBCA| 1
Terminal State t ADCBA| 15

Constraint:
Tour Safety < 10

@ The heuristic is not sequentially consistent at A, but it is sequentially improving.

@ If we change the D—A cost to 25, the heuristic is not sequentially improving at A,
and the cost improvement property is lost.

@ If we change the D—A cost to 25 and we add fortification, the rollout algorithm at
A sticks with the initial tentative best trajectory ACDBA, and rejects ABCDA.

Bertsekas

Reinforcement Learning

20/27

A Five-Minute Break y

Bertsekas Reinforcement Learning 21/27

A Retrospective Summary on Deterministic Constrained Rollout

Structural components

(1) Trajectories T consisting of a sequence of decisions defined by a layered/optimal
control graph

(2) A cost function G(T) to rank trajectories
(3) A constraint T € C to determine feasibility of trajectories

(4) A base heuristic that starts from a partial trajectory and generates a complete
trajectory

Given (1)
The choices of (2), (3), and (4) are independent of each other

In particular, given (1)-(3):
We can try several different base heuristics or a superheuristic

Bertsekas Reinforcement Learning 22/27

General Discrete Optimization Problem: Minimize G(u) Subject to

ue C,where u=(up,...,Un_1)

Stage 3 cee Stage N

States u2 > e
(o) States States B States
(uo,u1) (ug,ur,uz) = (uo,..., un_1)
Cost G(u)

@ This is a special case of the constrained deterministic optimal control problem
where each state xx can only take a single value, i.e., xx = “artificial” xo.

@ A very broad range of problems, e.g., combinatorial, integer programming, etc.

@ Solution by constrained rollout applies. Provides entry point to the use of RL ideas

in discrete optimization through DP and approximation in value space.

@ Competing methods: local/random search, genetic algorithms, integer
programming/branch and bound, etc. Rollout is different.

Bertsekas Reinforcement Learning

24/27

Facility Location: A Prototype Integer Programming Problem

Clients

C': Set of (ug,...,un—1) such that uy € {0,1}
and can satisfy the demand and other constraints
(e.g., public policy constraints)

M N-1

L uUN-1) = . min Z Z QikYik + Z brug

koi,k)EH
(Wik-i-k)€H (uo,-un—1) = (=0

Locations
up=0or1
H(uo,...,un-1): Set of feasible demand allocations, i.e.

Set of y;r > 0 such that

>k vik = di for all 4,

> vik < ugey, for all k

Clients

@ Place facilities at some of the given candidate locations to serve M “clients."

@ Clienti=1,..., M has a demand d; for services that may be satisfied at a location
k=0,...,N—1 atacost ax per unit.

@ A facility placed at location k has capacity cx and cost bx. Here ux € {0, 1}, with
ux = 1 if a facility is placed at k

@ Problem: Minimize >°", S"0" " aiyik + > 3o bxUx subject to total demand
satisfaction constraints (yj > 0, oy Yik = d; for all i, and Y=, yik < ukck for all k).

@ There may be additional constraints on u, but we will ignore for the moment.

@ Note: If the placement variables ux are known, the remaining problem is easily
solvable (it is a linear “transportation” problem).

Bertsekas Reinforcement Learning 25/27

Facility Location Problem: Formulation for Constrained Rollout

Clients

C': Set of (uo,...,un—1) such that u; € {0,1}
and can satisfy the demand and other constraints

e.g., public policy constraints)

M N-1 N-1
G(ug, ..., un—1) = min Z Z ikYix + Z bruy
ikt)€ g 1) S 4 =
Locations O
up =0or1
H(uo,...,un-1): Set of feasible demand allocations, i.e.

Set of y;x > 0 such that

> yir = d; for all 4,

i vik < ugey, for all k

@ Consider placements one location at a time.

@ Stage k = Placement decision ux € {0, 1} at location k (N stages).

@ Base heuristic: Having fixed wy, . . ., Uk, place a facility in all remaining locations.
@ Rollout: Having fixed wp, . . ., ux, compare two possibilities:

Set ux1 = 1 (place facility at location k + 1), set ux1 o = --- = uy_1 = 1 (as per the
base heuristic), and solve the remaining problem.
Set vk 1 = 0 (don'’t place facility at location k + 1), set ux, 0 = --- = uy_1 = 1 (as per

the base heuristic), and solve the remaining problem.
@ Select ux1 = 1 or ux1 = 0 depending on which yields feasibility and min cost.
@ Sequential improvement is satisfied in the absence of additional constraints.

@ Transportation problems are similar; solved efficiently with the auction algorithm
(see literature on network optimization).

Bertsekas Reinforcement Learning 26/27

Final Notes

The material of today’s lecture is covered in the "Lessons from AlphaZero ..." text)

In the next lecture we will cover:
@ Stochastic Rollout.
@ Monte Carlo Tree Search.
@ Rollout for infinite spaces problems.

About your project:
@ Send me email (dbertsek@asu.edu)
@ Make appointment to talk by zoom (there are no fixed office hours in this course)

@ Please send me by the end of the spring break a one-page-or-less proposal about
your term paper, be it a read-and-report type or a mini-research project

v

Bertsekas Reinforcement Learning 27/27

	Deterministic Problems: Approximation in Value Space with Multistep Lookahead
	Constrained Rollout for Deterministic Optimal Control
	Discrete Optimization Applications

