Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University

Course CSE 691, Spring 2023

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 7
Rollout and Approximation in Value Space for Stochastic and Other Problems

Bertsekas Reinforcement Learning

1/28

@ Rollout for Stochastic Problems - One-step Lookahead
e Rollout for Stochastic Problems - Multistep Lookahead
e Monte Carlo Tree Search

@ Rollout for Deterministic Infinite Spaces Problems

e Stochastic Programming

Bertsekas Reinforcement Learning 2/23

Stochastic Rollout: A Special Case of Approximation in Value Space

At State z;,

min E{gk(xk, Uk, Wi) + Jhg1,x (fk(xka Uk wk))}

up €U () T
Rollout Control uy Base Policy Cost
Jx+1.-(Xk11) is the cost function of some policy = J

@ The policy 7 used for rollout is called base policy
@ The policy 7 obtained by lookahead minimization is called rollout policy
@ Cost improvement property: Jx = (Xx) < Jk,»(Xk) for all xx and k

Approximate variants: Try to approximate Jk“ﬁ(xk“)

@ Possibility of truncated rollout

@ Use limited simulation)

Bertsekas Reinforcement Learning 4/23

Stochastic Rollout for Backgammon (Tesauro, 1996)
ULER R E
L

Possible Moves

Av. Score by Av. Score by Av. Score by Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ States are the (board position, dice roll) pairs, controls are the different ways to
play the dice roll, stochastic disturbance is the dice roll.

@ The 1996 version of TD-Gammon uses truncated rollout with cost function
approximation provided by a neural network.

@ The neural network is trained off-line by a form of approximate policy iteration that
used a temporal differences algorithm for policy evaluation.

@ The truncated rollout program (1996) plays better than the one without rollout, and
better than any human.

@ ltis too slow for on-line play due to the excessive on-line Monte Carlo simulation.

v

Bertsekas Reinforcement Learning 5/23

Cost Improvement Property of the Nontruncated Version of Rollout:

Ji 7 (Xk) < Jk(xk) for all x, and k

We prove this inequality by induction. Clearly it holds for kK = N, since
JIn,7 = In,» = gn. Assuming that it holds for index k + 1, we have for all x,

Iz (xr) = E{gk (zk, ik (zr), wi) + Jet1,7 (fk(wk,ﬂk(wk),wk))

< E{gk (zhs i (zh), wi) + Jrs1r (fk(xlm fir(2k), w,)

= min E{gk(xkyukawk)+Jk+1,7r(fk(xkyuk,wk))
ug €Uk (z)

< E{gk (zh> b (Th), wi) + Jrsir (fk(xk, pi (), wie)

= Ji,r(Tk),
where:
@ The first equality is the DP equation for the rollout policy 7.
@ The first inequality holds by the induction hypothesis.
@ The second equality holds by the definition of the rollout algorithm.
@ The final equality is the DP equation for the base policy .

Bertsekas Reinforcement Learning

6/23

Implementation by Simulation (Assuming a Finite Control Space)

@ Given xix, we compute for each ux € Uk(xx) the Q-factor
Qi (Xk, Uk) = E{Qk(Xm U, Wi) + it (T (X, Uk, Wk))}

and minimize over ux (equivalently compare Q-factor differences).

@ This requires that for each ux, we generate many sample disturbance trajectories
(Wi, Wit1, . .., wy—1) and we obtain the Q-factor as their average cost.

@ In practice the number of samples is finite, so the calculated values Qj . (Xx, Uk)
are approximate and involve stochastic variance.

@ We should aim to reduce the variance of the calculated Q-factor differences

Qi (X, Uk) — Qe (X, Ug)
for control pairs (ux, uy).

@ For variance reduction purposes, it is often best to use the same sample
disturbance trajectories (W, Wi+1, - .., Wy—1) for all ux (see the class notes).

@ Example: Calculate the difference g — go by subtracting two simulation samples
St =q1+w and s, = @» + we. Var(sy — sp) decreases as correlation of wy and ws
increases (it is zero when wy = ws).

v

Bertsekas Reinforcement Learning 7/23

Stochastic Rollout with Multistep Lookahead

At State xy
DP minimization First ¢ Steps “Future”

l b k4+0—1 "
min E {gk:(zkw Ul wk:) + Z i (Tl* M'(Il) w’) + Jk7+f(xk+1{)}

Uk s Hk+15-sHk+e—1 i—lt1
i—k

Rollout Control Lookahead Minimization Base Policy Cost
Rollout Policy i,

Consider the pure case (no truncation, no terminal cost approximation)
@ Additional cost improvement is obtained with longer lookahead
@ But the necessary simulation increases rapidly with the length of the lookahead

@ The big issue: How do we save in simulation effort?

@ One possibility is to use the certainty equivalence approximation (fix
Wi1, - - -, Wy—1 to nominal values)

@ Another possibility is Monte Carlo Tree Search (MCTS)

Bertsekas Reinforcement Learning 9/23

Certainty Equivalence Approximation (Requires Much Less Simulation)

2 (Current State)

—Layer 1

upr
Ty

many trajectories of the form (wi, Wi1, ..., Wn—_1). A two-fold benefit: deterministic

Fix W1, ..., wy—1 at some nominal values W1, ..., Wy—_1, and Monte Carlo average
rather than stochastic simulation, and fewer applications of the base policy.

Bertsekas Reinforcement Learning 10/23

Monte Carlo Tree Search - A Stochastic Form of Pruning

We assumed equal effort for evaluation of Q-factors of all controls at a state xi
Drawbacks:

@ Some controls may be clearly inferior to others and may not be worth as much
sampling effort.

@ Some controls that appear to be promising may be worth exploring better through
multistep lookahead.

Monte Carlo Tree Search (MCTS) is a form of approximate multistep
lookahead minimization that tries to economize in simulation time
@ MCTS involves adaptive simulation (simulation effort adapted to the perceived
quality of different controls).
@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

@ MCTS does not directly improve performance; it just tries to save in simulation
effort. But the saving allows longer lookahead for a given computational budget.

Bertsekas Reinforcement Learning 12/23

MCTS - One-Step Approximation in Value Space

Control 1

Simulation

Current State Contro] 2

Simulation

Control 3

Simulation

Sample Q-Factors

MCTS provides an economical sampling policy to estimate the Q-factors

Qe (X, Ux) = E{Qk(Xk, Uk, Wi) + Tt (e (X, Uk, Wk))}, U € Uk(xk)

Simulation scheme: Pick a control u (in some way) and generate a single
sample of its Q-factor
@ After the nth sample we have Qy,», the empirical mean of the Q-factor of each
control u (total sample value divided by total number of samples corresponding to
u). We can view Q,,, as an exploitation index (a measure of quality of u).

@ We could use the estimates Qy,» to select the control to sample next ... but how do
we make sure that we do not overlook some less explored controls.

Bertsekas Reinforcement Learning

13/23

MCTS Based on Statistical Tests

Qin+ Rin

Simulation

Current State

Simulation
Qli,n + R&,n

Simulation

Sample Q-Factors

Main idea: To balance exploitation (sample controls that seem most promising, i.e., a
small Qu,n) and exploration (sample controls with small sample count).

@ A popular strategy: Sample next the control u that minimizes the sum Qu,» + Ru,n
where Ry, is an exploration index.

@ R, ,is based on a confidence interval formula and depends on the sample count
Sy of control u (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets R,,» = —c+/log n/ Sy, where cis a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that Q. is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.

Bertsekas Reinforcement Learning 14/23

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

PATH PLANNING
Acceleration
Constraints

Moving Obstacle

Fixed Obstacles

Must Deal with

State and Control Constraints

Linear-Quadratic Formulation is
Often Inadequate

Velocity

Constraints

Bertsekas cement Learning 16/23

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tpi1 Th4t

Current State -
Base Heuristic

(¢ — 1)-Stages
Minimization

Stage k - Stages
k+1,... k+0—1

Suppose the control space is infinite (so the number of Q-factors is infinite)
@ One possibility is discretization of Ux(xx); but the number of Q-factors is excessive.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single /-stage deterministic optimization (under favorable circumstances).

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based). Constraints can be readily accommodated.

@ Possibility of a terminal cost approximation.
@ This is the idea underlying model predictive control (MPC).

Bertsekas Reinforcement Learning 17/23

A Supply Chain Example

Production | 2 Retalil Demand
Center k y| Delay » Center |— »
G T o i

@ System: xi.y =Xt +uUf — UE, xB.q=XE+Ui_. —dk (disgiven)
@ Objective: Minimize sum of costs for production (u}), transportation (u2), and
excess/shortage inventory (|x2 — dk|) over N stages.

@ The delay requires state augmentation, so the problem is intractable by DP.

@ One possibility: Rollout with an (¢ — 1)-stages optimization heuristic that may be
solvable by nonlinear programming.

@ The optimization variables are the 2¢ states (x4, X7,) and the 2¢ controls
(uf, uf), with k =0,...,0—1.

@ This approach readily handles constraints and on-line replanning. Generalizes to
integer constraints and multiple products.

@ Bears close similarity to MPC.

@ The computations per stage are simpler than solving the original problem. Using a
different/simpler type of base heuristic and discretized DP is an alternative.

v

Bertsekas Reinforcement Learning 18/23

Rollout Based on Multistage Linear/Integer Programming

Generic resource allocation over time:
@ System: xxi11 = AkXk + Bruk, (Xxx and uk are vectors, Ax, Bx are given matrices)
@ Objective: Minimize a linear cost

N—1

on' Xy + Z(Cklxk + i’ uk)
k=0

over N stages (ck, dk are given vectors, prime denotes transpose).
@ Constraints: Linear on xx and uk (possibly some additional integer constraints).

@ For large N and/or integer constraints this is a hard problem.

@ One possibility: Rollout with an (¢ — 1)-stages linear programming-based heuristic.
@ Readily handles on-line replanning.

@ Generalizes to integer constraints, making use of integer programming software.

@ Using a different/simpler type of base heuristic and discretized DP is an
alternative, but does not exploit the linear programming structure of the problem.

Bertsekas Reinforcement Learning 19/23

Stochastic Programming - Two-Stage Case

)

Classical two-stage stochastic programming problem:

@ In the first stage we choose a vector uy € Uy with cost go(o).

@ Then an uncertain event will occur, represented by a random variable wy, which
takes one of the values w', ..., w™ with probabilities p', ..., p™.

@ Once wy occurs, we will know its value w', and then we choose a vector
i (Uo, w') € Ui (o, w') at a cost g1 (1 (o, w'), w').

@ The objective is to minimize the expected cost go(to) + 37, P'g1 (u1(to, W'), w')

@ Can be viewed as a nonlinear programming problem, whose optimization
variables are up, w1 (Uo, '), i = 1,..., m (five vectors in the figure).

Bertsekas Reinforcement Learning 21/238

Rollout for Multistage Stochastic Programming

In multistage stochastic programming, the decision uy at the kth stage is a function of
the history (uo, wo, U1, wi, . .., Uxk—1, Wk—1), the state of the kth stage.

Similar formulation to the two-stage case ... but exact solution by DP or NLP gets
rapidly out of hand as the number of stages increases.

We view this as a special case of finite horizon stochastic optimal control

@ Rollout with or without truncation applies.
@ Base heuristic could be based on two-stage stochastic programming with terminal
cost approximation.

@ Alternative base heuristics can be based on certainty equivalence approximations
(only wy is stochastic and subsequent disturbances are fixed at nominal values).

v

Bertsekas Reinforcement Learning 22/23

About the Next Lecture

@ Review of multiagent problems.
@ Multiagent rollout demos. J

Please review our discussion of multiagent problems in Lecture 4 and in Chapter 2 of
the class notes. J

Recommended videolecture at https://www.youtube.com/watch?v=eqbb6vVIN38. J

Last homework to be announced next week)

Bertsekas Reinforcement Learning 23/23

	Rollout for Stochastic Problems - One-step Lookahead
	Rollout for Stochastic Problems - Multistep Lookahead
	Monte Carlo Tree Search
	Rollout for Deterministic Infinite Spaces Problems
	Stochastic Programming

