
Topics in Reinforcement Learning:
Lessons from AlphaZero for

(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2023

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 7
Rollout and Approximation in Value Space for Stochastic and Other Problems

Bertsekas Reinforcement Learning 1 / 23

Outline

1 Rollout for Stochastic Problems - One-step Lookahead

2 Rollout for Stochastic Problems - Multistep Lookahead

3 Monte Carlo Tree Search

4 Rollout for Deterministic Infinite Spaces Problems

5 Stochastic Programming

Bertsekas Reinforcement Learning 2 / 23

Stochastic Rollout: A Special Case of Approximation in Value Space

Sec. 2.7 Stochastic Rollout and Monte Carlo Tree Search 69

A special method to explicitly approximate cost function differences is dif-
ferential training, which is discussed in Section 4.3.4 of the book [Ber20a].

Unfortunately, approximating cost-to-go differences may not be ef-
fective when the cost per stage is 0 for all states, while a nonzero cost is
incurred only at termination. This type of cost structure occurs, among
others, in games such as chess and backgammon. In this case a potentially
effective remedy is to resort to longer lookahead, either through multistep
lookahead minimization, or through some form of truncated rollout, as it
is done in the AlphaZero and TD-Gammon programs.

2.7 STOCHASTIC ROLLOUT AND MONTE CARLO TREE
SEARCH

We will now discuss the extension of the rollout algorithm to stochastic DP
problems with a finite number of states. We will restrict ourselves to the
case where the base heuristic is a policy π = {µ0, . . . , µN−1}. The rollout
policy applies at state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
.

Equivalently, the rollout policy π̃ = {µ̃0, . . . , µ̃N−1} is obtained by mini-
mization over the Q-factors Qk,π(xk, uk) of the base policy:

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Qk,π(xk, uk),

where

Qk,π(xk, uk) = E
{

gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}
.

We first note that the cost improvement property that we showed for
deterministic problems under the sequential consistency condition carries
through for stochastic problems. In particular, let us denote by Jk,π(xk) the
cost corresponding to starting the base policy at state xk, and by Jk,π̃(xk)
the cost corresponding to starting the rollout algorithm at state xk. We
claim that

Jk,π̃(xk) ≤ Jk,π(xk), for all xk and k. (2.54)

We prove this inequality by induction similar to the deterministic case
[cf. Eq. (2.14)]. Clearly it holds for k = N , since

JN,π̃ = JN,π = gN .

u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk

min
uk ,µk+1,...,µk+!−1

E
{
gk(xk, uk, wk) +

k+!−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+!(xk+!)

}

Subspace S = {Φr | r ∈ "s} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

System: xk+1 = 2xk + uk Control constraint: |uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout Control ũk, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

1

System: xk+1 = 2xk + uk Control constraint: |uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

1

J̃k+1,π(xk+1) is the cost function of some policy π

The policy π used for rollout is called base policy

The policy π̃ obtained by lookahead minimization is called rollout policy

Cost improvement property: Jk,π̃(xk) ≤ Jk,π(xk) for all xk and k

Approximate variants: Try to approximate J̃k+1,π(xk+1)

Possibility of truncated rollout

Use limited simulation

Bertsekas Reinforcement Learning 4 / 23

Stochastic Rollout for Backgammon (Tesauro, 1996)

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Possible Moves

States are the (board position, dice roll) pairs, controls are the different ways to
play the dice roll, stochastic disturbance is the dice roll.

The 1996 version of TD-Gammon uses truncated rollout with cost function
approximation provided by a neural network.

The neural network is trained off-line by a form of approximate policy iteration that
used a temporal differences algorithm for policy evaluation.

The truncated rollout program (1996) plays better than the one without rollout, and
better than any human.

It is too slow for on-line play due to the excessive on-line Monte Carlo simulation.
Bertsekas Reinforcement Learning 5 / 23

Cost Improvement Property of the Nontruncated Version of Rollout:
Jk ,π̃(xk) ≤ Jk ,π(xk) for all xk and k

We prove this inequality by induction. Clearly it holds for k = N, since
JN,π̃ = JN,π = gN . Assuming that it holds for index k + 1, we have for all xk ,

70 Approximation in Value Space - Rollout Algorithms Chap. 2

Assuming that it holds for index k + 1, we have for all xk,

Jk,π̃(xk) = E

{
gk

(
xk, µ̃k(xk), wk

)
+ Jk+1,π̃

(
fk

(
xk, µ̃k(xk), wk

))}

≤ E

{
gk

(
xk, µ̃k(xk), wk

)
+ Jk+1,π

(
fk

(
xk, µ̃k(xk), wk

))}

= min
uk∈Uk(xk)

E
{
gk(xk, uk, wk) + Jk+1,π

(
fk(xk, uk, wk)

)}

≤ E

{
gk

(
xk, µk(xk), wk

)
+ Jk+1,π

(
fk

(
xk, µk(xk), wk

))}

= Jk,π(xk),

(2.55)

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The final equality is the DP equation for the policy π that corresponds
to the base policy.

The induction proof of the cost improvement property is thus complete.

Some Rollout Examples

Similar to deterministic problems, it has been observed empirically that
for stochastic problems the rollout policy not only does not deteriorate
the performance of the base policy, but also typically produces substantial
cost improvement, thanks to its underlying Newton step; see also the case
studies referenced at the end of the chapter. To emphasize this point, we
provide here an example of a nontrivial problem where the rollout policy
is actually optimal, despite the fact that the base policy is rather naive.
Such examples are of course special and nontypical.

Example 2.7.1 (Optimal Stopping and Rollout Optimality)

Optimal stopping problems are characterized by the availability, at each state,
of a control that stops the evolution of the system. We will consider a problem
with two control choices: at each stage we observe the current state of the
system and decide whether to continue or to stop the process. We formulate
this as an N-stage problem where stopping is mandatory at or before stage
N .

Consider a stationary version of the problem (state and disturbance
spaces, disturbance distribution, control constraint set, and cost per stage are
the same for all times). At each state xk and at time k, if we stop, the system
moves to a termination state at a cost C(xk) and subsequently remains there

where:

The first equality is the DP equation for the rollout policy π̃.

The first inequality holds by the induction hypothesis.

The second equality holds by the definition of the rollout algorithm.

The final equality is the DP equation for the base policy π.

Bertsekas Reinforcement Learning 6 / 23

Implementation by Simulation (Assuming a Finite Control Space)

Given xk , we compute for each uk ∈ Uk (xk) the Q-factor

Qk,π(xk , uk) = E
{

gk (xk , uk ,wk) + Jk+1,π
(
fk (xk , uk ,wk)

)}
and minimize over uk (equivalently compare Q-factor differences).

This requires that for each uk , we generate many sample disturbance trajectories
(wk ,wk+1, . . . ,wN−1) and we obtain the Q-factor as their average cost.

In practice the number of samples is finite, so the calculated values Q̂k,π(xk , uk)
are approximate and involve stochastic variance.

We should aim to reduce the variance of the calculated Q-factor differences

Q̂k,π(xk , uk)− Q̂k,π(xk , u′k)

for control pairs (uk , u′k).

For variance reduction purposes, it is often best to use the same sample
disturbance trajectories (wk ,wk+1, . . . ,wN−1) for all uk (see the class notes).

Example: Calculate the difference q1 − q2 by subtracting two simulation samples
s1 = q1 +w1 and s2 = q2 +w2. Var(s1 − s2) decreases as correlation of w1 and w2

increases (it is zero when w1 = w2).

Bertsekas Reinforcement Learning 7 / 23

Stochastic Rollout with Multistep Lookahead

min
uk,µk+1,...,µk+!−1

E

{
gk(xk, uk, wk) +

k+!−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+!(xk+!)

}

First ! Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

! Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+!: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+!−1

E

{
gk(xk, uk, wk) +

k+!−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+!(xk+!)

}

First ! Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk

min
uk ,µk+1,...,µk+!−1

E
{
gk(xk, uk, wk) +

k+!−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+!(xk+!)

}

Subspace S = {Φr | r ∈ "s} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+!−1

E
{
gk(xk, uk, wk) +

k+!−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+!(xk+!)

}

Subspace S = {Φr | r ∈ "s} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost“Future”

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

System: xk+1 = 2xk + uk Control constraint: |uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout Control ũk, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

1

System: xk+1 = 2xk + uk Control constraint: |uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

1

System: xk+1 = 2xk + uk Control constraint: |uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

1

Sample Space Event {a ≤ X ≤ b} a b x PDF fX(x) δ x x + δ

min
uk,µk+1,...,µk+!−1

E

{
gk(xk, uk, wk) +

k+!−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+!(xk+!)

}

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S! Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

1

Consider the pure case (no truncation, no terminal cost approximation)
Additional cost improvement is obtained with longer lookahead

But the necessary simulation increases rapidly with the length of the lookahead

The big issue: How do we save in simulation effort?

One possibility is to use the certainty equivalence approximation (fix
wk+1, . . . ,wN−1 to nominal values)

Another possibility is Monte Carlo Tree Search (MCTS)

Bertsekas Reinforcement Learning 9 / 23

Certainty Equivalence Approximation (Requires Much Less Simulation)

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

xk (Current State) xn xk+1 xn x′
n xk+2 xk+n xk+! Shortest Path Move Chosen

Multistep Lookahead xn Layer n xn+1 Layer n + 1 (may be the cost of a heuristic)

Base Policy !̄-Step Lookahead xn+1

Layer !̄ x!̄ Terminal node to expand

F (K)x2 = min
u∈#

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈#

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈#

{
q + rL2 + K(a + bL)2

}
x2

or Pruned States Rollout

F (K) = min
L∈#

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

1

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

xk (Current State) xn xk+1 xn x′
n xk+2 xk+n xk+! Shortest Path Move Chosen

Multistep Lookahead xn Layer n xn+1 Layer n + 1 (may be the cost of a heuristic)

Base Policy !̄-Step Lookahead xn+1

Layer !̄ x!̄ Terminal node to expand

F (K)x2 = min
u∈#

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈#

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈#

{
q + rL2 + K(a + bL)2

}
x2

or Pruned States Rollout

F (K) = min
L∈#

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1 Layer ! − 1 Layer !

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1 Layer ! − 1 Layer !

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

x0 Layer 1 Layer 2 Layer `

Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x0 x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1 x∗
1 x∗

2 x∗
n x∗

! With CE Without CE

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State J̃(x!) x!

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x0 x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1 x∗
1 x∗

2 x∗
n x∗

! With CE Without CE

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State J̃(x!) x!

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

x0 x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1 x∗
1 x∗

2 x∗
n x∗

! With CE Lookahead Length Increases Without
CE

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State J̃(x!) x!

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

x0 x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1 x∗
1 x∗

2 x∗
n x∗

! With CE Lookahead Length Increases Without
CE

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State J̃(x!) x!

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic rollout

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +
N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 u!′−1

w1 w2 Q̃k(x̃k, uk)x!′−1 x!′

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +
N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+!−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+!(xk+!)

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 u!′−1

w1 w2 Q̃k(x̃k, uk) x!′−1 x!′

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +
N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+!−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+!(xk+!)

]

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

Optimization variables: u0 Stochastic Rollout Deterministic Rollout
. . .

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 u!′−1

w1 w2 Q̃k(x̃k, uk) x!′−1 x!′

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +
N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +
N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+!−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+!(xk+!)

]

1

Fix wk+1, . . . ,wN−1 at some nominal values wk+1, . . . ,wN−1, and Monte Carlo average
many trajectories of the form (wk ,wk+1, . . . ,wN−1). A two-fold benefit: deterministic
rather than stochastic simulation, and fewer applications of the base policy.

Bertsekas Reinforcement Learning 10 / 23

Monte Carlo Tree Search - A Stochastic Form of Pruning
Motivation: Save Simulation Effort

We assumed equal effort for evaluation of Q-factors of all controls at a state xk

Drawbacks:

Some controls may be clearly inferior to others and may not be worth as much
sampling effort.

Some controls that appear to be promising may be worth exploring better through
multistep lookahead.

Monte Carlo Tree Search (MCTS) is a form of approximate multistep
lookahead minimization that tries to economize in simulation time

MCTS involves adaptive simulation (simulation effort adapted to the perceived
quality of different controls).

Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

MCTS does not directly improve performance; it just tries to save in simulation
effort. But the saving allows longer lookahead for a given computational budget.

Bertsekas Reinforcement Learning 12 / 23

MCTS - One-Step Approximation in Value Space

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

MCTS provides an economical sampling policy to estimate the Q-factors

Q̃k (xk , uk) = E
{

gk (xk , uk ,wk) + J̃k+1
(
fk (xk , uk ,wk)

)}
, uk ∈ Uk (xk)

Simulation scheme: Pick a control u (in some way) and generate a single
sample of its Q-factor

After the nth sample we have Qu,n, the empirical mean of the Q-factor of each
control u (total sample value divided by total number of samples corresponding to
u). We can view Qu,n as an exploitation index (a measure of quality of u).

We could use the estimates Qu,n to select the control to sample next ... but how do
we make sure that we do not overlook some less explored controls.

Bertsekas Reinforcement Learning 13 / 23

MCTS Based on Statistical Tests

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Main idea: To balance exploitation (sample controls that seem most promising, i.e., a
small Qu,n) and exploration (sample controls with small sample count).

A popular strategy: Sample next the control u that minimizes the sum Qu,n + Ru,n

where Ru,n is an exploration index.

Ru,n is based on a confidence interval formula and depends on the sample count
Su of control u (which comes from analysis of multiarmed bandit problems).

The UCB rule (upper confidence bound) sets Ru,n = −c
√

log n/Su , where c is a
positive constant, selected empirically (values c ≈

√
2 are suggested, assuming

that Qu,n is normalized to take values in the range [−1, 0]).

MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.

Bertsekas Reinforcement Learning 14 / 23

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score Fixed Obstacles A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score Fixed Obstacles A B

Moving Obstacle A B Velocity Constraints Acceleration Constraints

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score Fixed Obstacles A B

Moving Obstacle A B Velocity Constraints Acceleration Constraints

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score Fixed Obstacles A B

Moving Obstacle A B Velocity Constraints Acceleration Constraints

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score Fixed Obstacles A B

Moving Obstacle A B Velocity Constraints Acceleration Constraints

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

1

Termination State Constraint Set X X = X X̃ Multiagent

Current Partial Folding

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Min Q-factor choice

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Min Q-factor choice

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Min Q-factor choice

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Min Q-factor choice

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

1

Bertsekas Reinforcement Learning 16 / 23

On-Line Rollout for Deterministic Infinite-Spaces Problems

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ "m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Control uk (! − 1)-Stages Minimization

Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ #m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

Control uk (! − 1)-Stages Minimization

Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ #m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

Control uk (! − 1)-Stages Base Heuristic Minimization

Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ #m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

Control uk (! − 1)-Stages Base Heuristic Minimization

Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ #m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

x0 x1 x2 x! x!−1 Layer ! − 1 Layer ! Layer !′ − 1 Layer !′ !′ = 2! − 1

u0 u1 u!−1 x∗
1 x∗

2 x∗
n x∗

! With CE Lookahead Length Increases Without
CE

w0 w1 w!−1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State J̃(x!) x!

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

(! − 1)-Stages

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Suppose the control space is infinite (so the number of Q-factors is infinite)
One possibility is discretization of Uk (xk); but the number of Q-factors is excessive.

Another possibility is to use optimization heuristics that look (`− 1) steps ahead.

Seemlessly combine the k th stage minimization and the optimization heuristic into
a single `-stage deterministic optimization (under favorable circumstances).

Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based). Constraints can be readily accommodated.

Possibility of a terminal cost approximation.

This is the idea underlying model predictive control (MPC).
Bertsekas Reinforcement Learning 17 / 23

A Supply Chain ExampleUncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Termination State Constraint Set X X = X X̃

x1
k, u1

k u2
k x2

k dk ⌧

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃

x1
k, u1

k u2
k x2

k dk ⌧

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃

x1
k, u1

k u2
k x2

k dk ⌧

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃

x1
k, u1

k u2
k x2

k dk ⌧

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃

x1
k, u1

k u2
k x2

k dk ⌧

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

System: x1
k+1 = x1

k + u1
k − u2

k , x2
k+1 = x2

k + u2
k−τ − dk , (dk is given)

Objective: Minimize sum of costs for production (u1
k), transportation (u2

k), and
excess/shortage inventory (|x2

k − dk |) over N stages.

The delay requires state augmentation, so the problem is intractable by DP.

One possibility: Rollout with an (`− 1)-stages optimization heuristic that may be
solvable by nonlinear programming.

The optimization variables are the 2` states (x1
k+1, x

2
k+1) and the 2` controls

(u1
k , u

k
2), with k = 0, . . . , `− 1.

This approach readily handles constraints and on-line replanning. Generalizes to
integer constraints and multiple products.

Bears close similarity to MPC.

The computations per stage are simpler than solving the original problem. Using a
different/simpler type of base heuristic and discretized DP is an alternative.

Bertsekas Reinforcement Learning 18 / 23

Rollout Based on Multistage Linear/Integer Programming

Generic resource allocation over time:
System: xk+1 = Ak xk +Bk uk , (xk and uk are vectors, Ak , Bk are given matrices)

Objective: Minimize a linear cost

cN
′xN +

N−1∑
k=0

(ck
′xk + dk

′uk)

over N stages (ck , dk are given vectors, prime denotes transpose).

Constraints: Linear on xk and uk (possibly some additional integer constraints).

For large N and/or integer constraints this is a hard problem.

One possibility: Rollout with an (`− 1)-stages linear programming-based heuristic.

Readily handles on-line replanning.

Generalizes to integer constraints, making use of integer programming software.

Using a different/simpler type of base heuristic and discretized DP is an
alternative, but does not exploit the linear programming structure of the problem.

Bertsekas Reinforcement Learning 19 / 23

Stochastic Programming - Two-Stage Case

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

Truncated Rollout with Base Policy Plus Rollout Control ũk

Terminal Cost Approx imation

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

u1(u0, w1) u1(u0, w2) u1(ū0, w1) u1(ū0, w2) u1 ū1

ū1(u0, w1) ū1(u0, w2) ū1(ū0, w1) ū1(ū0, w2)

u0 ū0 u1
1 ū1

1 u2
1 ū2

1 w1 w2 Q̃k(x̃k, uk)

At trajectory ỹk = (x̃0, ũ0, . . . , ũk−1, x̃k) min(u0,...,uN−1)∈C G(u0, . . . , uN−1)

G(u0, . . . , uN−1) = min
(yik,i,k)∈H(u0,...,uN−1)

M∑

i=1

N−1∑

k=0

aikyik +

N−1∑

k=0

bkuk

H(u0, . . . , uN−1): Set of yik ≥ 0 such that
∑

k yik = di for all i,
∑

i yik ≤ ukck for all k

and can satisfy the demand and other constraints 1st Stage 2nd Stage

(e.g., public policy constraints)

H(u0, . . . , uN−1): Set of feasible demand allocations, i.e.

C : Set of (u0, . . . , uN−1) with and H(u1, . . . , uN) is nonempty

uk ∈ {0, 1} and for some yij ≥ 0,
∑

j yij = di for all i

C : Set of (u0, . . . , uN−1) such that uk ∈ {0, 1} ∑
i yij ≤ ujcj for all j

∑M
i=1

∑N
j=1 aijyij +

∑N
j=1 bjuj

∑
j yij = di for all i

∑
i yij ≤ ujcj for all j

min
uk∈Ũk(ỹk)

max
wk,...,wN−1

[
gk(x̃k, uk, wk) + J̃π,k+1

(
fk(x̃k, uk, wk), wk+1, . . . , wN−1

)]

M∑

i=1

N∑

j=1

aijxij +

N∑

j=1

bjuj

min
uk,µk+1,...,µk+!−1

max
wk ,...,wk+!−1

[
gk(xk, uk, wk) +

k+"−1∑

t=k+1

gt

(
xt, µt(xt), wt

)
+ J̃k+"(xk+")

]

Cost of Base Policy Corresponding to xk+1 = fk(x̃k, uk, wk)

and wk+1, . . . , wN−1

1

Classical two-stage stochastic programming problem:

In the first stage we choose a vector u0 ∈ U0 with cost g0(u0).

Then an uncertain event will occur, represented by a random variable w0, which
takes one of the values w1, . . . ,wm with probabilities p1, . . . , pm.

Once w0 occurs, we will know its value w i , and then we choose a vector
µ1(u0,w i) ∈ U1(u0,w i) at a cost g1

(
µ1(u0,w i),w i).

The objective is to minimize the expected cost g0(u0) +
∑m

i=1 pig1
(
µ1(u0,w i),w i)

Can be viewed as a nonlinear programming problem, whose optimization
variables are u0, µ1(u0,w i), i = 1, . . . ,m (five vectors in the figure).

Bertsekas Reinforcement Learning 21 / 23

Rollout for Multistage Stochastic Programming

In multistage stochastic programming, the decision uk at the k th stage is a function of
the history (u0,w0, u1,w1, . . . , uk−1,wk−1), the state of the k th stage.

Similar formulation to the two-stage case ... but exact solution by DP or NLP gets
rapidly out of hand as the number of stages increases.

We view this as a special case of finite horizon stochastic optimal control
Rollout with or without truncation applies.

Base heuristic could be based on two-stage stochastic programming with terminal
cost approximation.

Alternative base heuristics can be based on certainty equivalence approximations
(only w0 is stochastic and subsequent disturbances are fixed at nominal values).

Bertsekas Reinforcement Learning 22 / 23

About the Next Lecture

Review of multiagent problems.

Multiagent rollout demos.

Please review our discussion of multiagent problems in Lecture 4 and in Chapter 2 of
the class notes.

Recommended videolecture at https://www.youtube.com/watch?v=eqbb6vVlN38.

Last homework to be announced next week

Bertsekas Reinforcement Learning 23 / 23

	Rollout for Stochastic Problems - One-step Lookahead
	Rollout for Stochastic Problems - Multistep Lookahead
	Monte Carlo Tree Search
	Rollout for Deterministic Infinite Spaces Problems
	Stochastic Programming

