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@ Rollout for Stochastic Problems - One-step Lookahead
e Rollout for Stochastic Problems - Multistep Lookahead
e Monte Carlo Tree Search

@ Rollout for Deterministic Infinite Spaces Problems

e Stochastic Programming
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Stochastic Rollout: A Special Case of Approximation in Value Space

At State z;,

min E{gk(xk, Uk, Wi) + Jhg1,x (fk(xka Uk wk))}

up €U () T
Rollout Control uy Base Policy Cost
Jx+1.-(Xk11) is the cost function of some policy = J

@ The policy 7 used for rollout is called base policy
@ The policy 7 obtained by lookahead minimization is called rollout policy
@ Cost improvement property: Jx = (Xx) < Jk,»(Xk) for all xx and k

Approximate variants: Try to approximate Jk“ﬁ(xk“)

@ Possibility of truncated rollout

@ Use limited simulation )
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Stochastic Rollout for Backgammon (Tesauro, 1996)
ULER R E
L

Possible Moves

Av. Score by Av. Score by Av. Score by  Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ States are the (board position, dice roll) pairs, controls are the different ways to
play the dice roll, stochastic disturbance is the dice roll.

@ The 1996 version of TD-Gammon uses truncated rollout with cost function
approximation provided by a neural network.

@ The neural network is trained off-line by a form of approximate policy iteration that
used a temporal differences algorithm for policy evaluation.

@ The truncated rollout program (1996) plays better than the one without rollout, and
better than any human.

@ ltis too slow for on-line play due to the excessive on-line Monte Carlo simulation.

v
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Cost Improvement Property of the Nontruncated Version of Rollout:

Ji 7 (Xk) < Jk(xk) for all x, and k

We prove this inequality by induction. Clearly it holds for kK = N, since
JIn,7 = In,» = gn. Assuming that it holds for index k + 1, we have for all x,

Iz (xr) = E{gk (zk, ik (zr), wi) + Jet1,7 (fk(wk,ﬂk(wk),wk))

< E{gk (zhs i (zh), wi) + Jrs1r (fk(xlm fir(2k ), w,)

= min E{gk(xkyukawk)+Jk+1,7r(fk(xkyuk,wk))
ug €Uk (z)

< E{gk (zh> b (Th), wi) + Jrsir (fk(xk, pi (), wie)

= Ji,r(Tk),
where:
@ The first equality is the DP equation for the rollout policy 7.
@ The first inequality holds by the induction hypothesis.
@ The second equality holds by the definition of the rollout algorithm.
@ The final equality is the DP equation for the base policy .
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Implementation by Simulation (Assuming a Finite Control Space)

@ Given xix, we compute for each ux € Uk(xx) the Q-factor
Qi (Xk, Uk) = E{Qk(Xm U, Wi) + it (T (X, Uk, Wk))}

and minimize over ux (equivalently compare Q-factor differences).

@ This requires that for each ux, we generate many sample disturbance trajectories
(Wi, Wit1, . .., wy—1) and we obtain the Q-factor as their average cost.

@ In practice the number of samples is finite, so the calculated values Qj . (Xx, Uk)
are approximate and involve stochastic variance.

@ We should aim to reduce the variance of the calculated Q-factor differences

Qi (X, Uk) — Qe (X, Ug)
for control pairs (ux, uy).

@ For variance reduction purposes, it is often best to use the same sample
disturbance trajectories (W, Wi+1, - .., Wy—1) for all ux (see the class notes).

@ Example: Calculate the difference g — go by subtracting two simulation samples
St =q1+w and s, = @» + we. Var(sy — sp) decreases as correlation of wy and ws
increases (it is zero when wy = ws).

v
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Stochastic Rollout with Multistep Lookahead

At State xy
DP minimization First ¢ Steps “Future”

l b k4+0—1 "
min E {gk:(zkw Ul wk:) + Z i (Tl* M'(Il) w’) + Jk7+f(xk+1{)}

Uk s Hk+15-sHk+e—1 i—lt1
i—k

Rollout Control Lookahead Minimization  Base Policy Cost
Rollout Policy i,

Consider the pure case (no truncation, no terminal cost approximation)
@ Additional cost improvement is obtained with longer lookahead
@ But the necessary simulation increases rapidly with the length of the lookahead

@ The big issue: How do we save in simulation effort?

@ One possibility is to use the certainty equivalence approximation (fix
Wi1, - - -, Wy—1 to nominal values)

@ Another possibility is Monte Carlo Tree Search (MCTS)
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Certainty Equivalence Approximation (Requires Much Less Simulation)

2 (Current State)

—Layer 1

upr
Ty

many trajectories of the form (wi, Wi1, ..., Wn—_1). A two-fold benefit: deterministic

Fix W1, ..., wy—1 at some nominal values W1, ..., Wy—_1, and Monte Carlo average
rather than stochastic simulation, and fewer applications of the base policy.
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Monte Carlo Tree Search - A Stochastic Form of Pruning

We assumed equal effort for evaluation of Q-factors of all controls at a state xi
Drawbacks:

@ Some controls may be clearly inferior to others and may not be worth as much
sampling effort.

@ Some controls that appear to be promising may be worth exploring better through
multistep lookahead.

Monte Carlo Tree Search (MCTS) is a form of approximate multistep
lookahead minimization that tries to economize in simulation time
@ MCTS involves adaptive simulation (simulation effort adapted to the perceived
quality of different controls).
@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

@ MCTS does not directly improve performance; it just tries to save in simulation
effort. But the saving allows longer lookahead for a given computational budget.
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MCTS - One-Step Approximation in Value Space

Control 1

Simulation

Current State Contro] 2

Simulation

Control 3

Simulation

Sample Q-Factors

MCTS provides an economical sampling policy to estimate the Q-factors

Qe (X, Ux) = E{Qk(Xk, Uk, Wi) + Tt (e (X, Uk, Wk))}, U € Uk(xk)

Simulation scheme: Pick a control u (in some way) and generate a single
sample of its Q-factor
@ After the nth sample we have Qy,», the empirical mean of the Q-factor of each
control u (total sample value divided by total number of samples corresponding to
u). We can view Q,,, as an exploitation index (a measure of quality of u).

@ We could use the estimates Qy,» to select the control to sample next ... but how do
we make sure that we do not overlook some less explored controls.
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MCTS Based on Statistical Tests

Qin+ Rin

Simulation

Current State

Simulation
Qli,n + R&,n

Simulation

Sample Q-Factors

Main idea: To balance exploitation (sample controls that seem most promising, i.e., a
small Qu,n) and exploration (sample controls with small sample count).

@ A popular strategy: Sample next the control u that minimizes the sum Qu,» + Ru,n
where Ry, is an exploration index.

@ R, ,is based on a confidence interval formula and depends on the sample count
Sy of control u (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets R,,» = —c+/log n/ Sy, where cis a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that Q. is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.
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Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

PATH PLANNING
Acceleration
Constraints

Moving Obstacle

Fixed Obstacles

Must Deal with

State and Control Constraints

Linear-Quadratic Formulation is
Often Inadequate

Velocity

Constraints
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On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tpi1 Th4t

Current State -
Base Heuristic

(¢ — 1)-Stages
Minimization

Stage k - Stages
k+1,... k+0—1

Suppose the control space is infinite (so the number of Q-factors is infinite)
@ One possibility is discretization of Ux(xx); but the number of Q-factors is excessive.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single /-stage deterministic optimization (under favorable circumstances).

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based). Constraints can be readily accommodated.

@ Possibility of a terminal cost approximation.
@ This is the idea underlying model predictive control (MPC).
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A Supply Chain Example

Production | 2 Retalil Demand
Center k y| Delay » Center |— »
G T o i

@ System:  xi.y =Xt +uUf — UE, xB.q=XE+Ui_. —dk (disgiven)
@ Objective: Minimize sum of costs for production (u}), transportation (u2), and
excess/shortage inventory (|x2 — dk|) over N stages.

@ The delay requires state augmentation, so the problem is intractable by DP.

@ One possibility: Rollout with an (¢ — 1)-stages optimization heuristic that may be
solvable by nonlinear programming.

@ The optimization variables are the 2¢ states (x4, X7,) and the 2¢ controls
(uf, uf), with k =0,...,0—1.

@ This approach readily handles constraints and on-line replanning. Generalizes to
integer constraints and multiple products.

@ Bears close similarity to MPC.

@ The computations per stage are simpler than solving the original problem. Using a
different/simpler type of base heuristic and discretized DP is an alternative.

v
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Rollout Based on Multistage Linear/Integer Programming

Generic resource allocation over time:
@ System:  xxi11 = AkXk + Bruk, (Xxx and uk are vectors, Ax, Bx are given matrices)
@ Objective: Minimize a linear cost

N—1

on' Xy + Z(Cklxk + i’ uk)
k=0

over N stages (ck, dk are given vectors, prime denotes transpose).
@ Constraints: Linear on xx and uk (possibly some additional integer constraints).

@ For large N and/or integer constraints this is a hard problem.

@ One possibility: Rollout with an (¢ — 1)-stages linear programming-based heuristic.
@ Readily handles on-line replanning.

@ Generalizes to integer constraints, making use of integer programming software.

@ Using a different/simpler type of base heuristic and discretized DP is an
alternative, but does not exploit the linear programming structure of the problem.
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Stochastic Programming - Two-Stage Case

)

Classical two-stage stochastic programming problem:

@ In the first stage we choose a vector uy € Uy with cost go(o).

@ Then an uncertain event will occur, represented by a random variable wy, which
takes one of the values w', ..., w™ with probabilities p', ..., p™.

@ Once wy occurs, we will know its value w', and then we choose a vector
i (Uo, w') € Ui (o, w') at a cost g1 (1 (o, w'), w').

@ The objective is to minimize the expected cost go(to) + 37, P'g1 (u1(to, W'), w')

@ Can be viewed as a nonlinear programming problem, whose optimization
variables are up, w1 (Uo, '), i = 1,..., m (five vectors in the figure).
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Rollout for Multistage Stochastic Programming

In multistage stochastic programming, the decision uy at the kth stage is a function of
the history (uo, wo, U1, wi, . .., Uxk—1, Wk—1), the state of the kth stage.

Similar formulation to the two-stage case ... but exact solution by DP or NLP gets
rapidly out of hand as the number of stages increases.

We view this as a special case of finite horizon stochastic optimal control

@ Rollout with or without truncation applies.
@ Base heuristic could be based on two-stage stochastic programming with terminal
cost approximation.

@ Alternative base heuristics can be based on certainty equivalence approximations
(only wy is stochastic and subsequent disturbances are fixed at nominal values).

v
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About the Next Lecture

@ Review of multiagent problems.
@ Multiagent rollout demos. J

Please review our discussion of multiagent problems in Lecture 4 and in Chapter 2 of
the class notes. J

Recommended videolecture at https://www.youtube.com/watch?v=eqbb6vVIN38. J

Last homework to be announced next week )
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