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1

Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

Agent i applies decision ui sequentially in discrete time based on info received

The major mathematical distinction between problem structures

The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by DP

The nonclassical information pattern: Agents are partially sharing information and
may be antagonistic. HARD because it is hard to treat by DP
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Starting Point: A Classical Information Pattern
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagen Sensor Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um−1
k Control um

k u3
k um−1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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At each time: Agents have exact state info; choose their controls as function of state

Model: A discrete-time (possibly stochastic) system with state x and control u

Decision/control has m components u = (u1; : : : ; um) corresponding to m “agents”

“Agents” is just a metaphor - the important math structure is u = (u1; : : : ; um)

The theoretical framework is DP. We will reformulate for faster computation
We first aim to deal with the exponential size of the search/control space
Later we will discuss how to compute the agent controls in distributed fashion (in the
process we will deal in part with nonclassical info pattern issues)
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Multiagent Path Finding Example

u

3 agents move in 4 directions with perfect vision.
They have been assigned to some targets.

Objective is to reach their respective targets in minimum time
while avoiding collision with each other.

At each time we must select one out of � 5m joint move choices

We will reduce to 5 � m (while maintaining good properties)

Idea: Break down the control into a sequence of one-agent-at-a-time moves

Scales well, up to m = 200 agents, with average computational time around 50 ms.
Can also adapt to a changing environment through recomputation. See paper
https://arxiv.org/abs/2211.08201 as well as implementation in C++
https://github.com/will-em/multi-agent-rollout
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Reformulation Ideas: Trading off Control and State Complexity
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An equivalent reformulation - “Unfolding” the control action

The control space is simplified at the expense of m � 1 additional layers of states,
and corresponding m � 1 cost functions

J1(x ; u1); J2(x ; u1; u2); : : : ; Jm(x ; u1; : : : ; um);

Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem (so it involves a Newton step)

The increase in size of the state space does not adversely affect rollout (only one
state and its successors are looked at each stage during on-lin play)

Complexity reduction: The one-step lookahead branching factor is reduced from nm

to n � m, where n is the number of possible choices for each component ui
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