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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Inference of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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1

Use of costly observations to estimate a parameter vector θ
The number and type of observations are subject to choice

Instead, the outcomes of the observations obtained are evaluated on-line with a
view towards stopping or modifying the observation process

This involves sequential decision making, thus bringing DP to bear

Example: Select one of two hypotheses using costly sequential observations
Given a new observation, we can accept one of the hypotheses or obtain a new
observation at cost C (cf. quality control, the sequential probability ratio test, 1940s).
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Applications of Sequential Estimation

Classical sequential experiment design problems or sequential sampling
strategies in statistics.

I Select one of multiple hypotheses.
I Design of clinical trials or tests for medical diagnosis.

Classical sequential search problems (e.g., search and rescue).

Route planning through a sensor network for sequential information collection.

Sequential decoding problems (e.g., the Mastermind and Wordle puzzles, to be
discussed later).

Surrogate and Bayesian optimization for minimizing “black box" functions (to be
discussed first).

An important distinction: Does the current choice of observation affect the
availability, the quality, or the cost of future observations?

If no, we call this a simple sequential estimation problem (we will discuss it first in
the context of Bayesian optimization).

If yes, this can be viewed as a combined estimation and control problem, and can
be viewed within the context of adaptive control.
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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Minimize approximately a function whose values at given points are obtained
only through time-consuming calculation, simulation, or experimentation

Introduce a parametric model of the cost function with parameter θ.

Observe sequentially the true cost function at a few observation points.

Construct a model of the cost function (the surrogate) by estimating θ.

Minimize the surrogate to obtain a suboptimal solution.

How to select observation points based on results of previous observations?

Exploration-exploitation tradeoff: Observing at points likely to have near-optimal
value vs observing at points in relatively unexplored areas of the search space.
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Surrogate Optimization Examples

Geostatistical interpolation (“kriging" pioneered by the South African engineers
Matheron and Krige in a goldmining context): Identify locations of high gold
distribution based on samples from a few boreholes.

Design optimization, e.g., aerodynamic design using hardware prototypes,
materials design, drug development, etc.

Hyperparameter selection of machine-learning models, including the architectural
parameters of the deep neural network of AlphaZero.

Bertsekas Reinforcement Learning 8 / 23



Bayesian Optimization of a Black Box Function f

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u y1 y2 y3 y4 Function f(u) = yu

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk  ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN ) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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Introduce a parameter vector θ = (θ1, . . . , θm) ∈ <m where θu = f (u), i.e., θ is f

Observations are of the form z = f (u) + w (important special case is w = 0)

Estimate θ with N << m noisy measurements at chosen points u1, . . . , uN

We assume that θ has a given a priori distribution b0 = (b0,1, . . . , b0,m) over <m

(values of f at “neighboring" points should be correlated)

After observations at points u1, . . . , uk of the form zui = θui + wui , we choose the
next point uk+1 at which to observe the value of f .

Update the posterior distribution bk with an estimator bk+1 = Bk (bk , uk+1, zuk+1) (bk

is essentially the surrogate cost function after the k th observation)

Gaussian case: If b0 and the noises wu are Gaussian, bk can be updated using
closed form Gaussian process regression formulas.
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Illustration of the True Cost Function f and its Surrogate
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The surrogate is specified by the posterior distribution bk (mean and standard deviation
at the different points are shown in the figure)
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Myopic Bayesian Optimization

Key Question: How to select sequentially the observation point uk+1 given the
observation results zu1 , . . . , zuk from previously selected points u1, . . . , uk

A DP view
Introduce a POMDP model: The posterior bk (given the observations up to time k )
is the belief state, uk is the control, the belief estimator bk+1 = Bk (bk , uk+1, zuk+1) is
the system. The cost function is based on the cost of the observations, and the
“quality" of the surrogate obtained at the end.

The dominant method in practice: Use a greedy/myopic policy, based on an
acquisition function.

The acquisition function Ak (bk , uk+1) is a heuristic measure of “benefit" for
selecting point uk+1 for observation when the belief state is bk .

Myopic policy: Selects the next point at which to observe, ûk+1, as

ûk+1 ∈ arg max
uk+1∈{1,...,m}

Ak (bk , uk+1)

An alternative method: Use rollout with a myopic base policy; it has been
advocated in several research works since 2016, with promising results.
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Examples of Acquisition Functions for Myopic Bayesian Optimization

The myopic policy maximizes over uk+1 the acquisition function Ak (bk , uk+1):

ûk+1 ∈ arg max
uk+1∈{1,...,m}

Ak (bk , uk+1)

A common example of acquisition function: Upper confidence bound

Ak (bk , u) = Tk (bk , u) + βRk (bk , u), β > 0 is a tunable parameter

Here Tk (bk , u) = −Mean of f (u), and Rk (bk , u) = Standard deviation of f (u)
(under the posterior distribution bk ).

Tk (bk , u) can be viewed as an exploitation index (encoding our desire to search
within parts of the space where f takes low value), while Rk (bk , u) can be viewed
as an exploration index (encoding our desire to search within parts of the space
that are relatively unexplored).

Another example of acquisition function: Expected improvement
Ak (bk , u) is the expected value of the reduction of f (u) relative to the minimal value of f
obtained up to time k (under the posterior distribution bk ).
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Maximization Example (From Wikipedia Article on BO): True Function is
Black, Surrogate Function is Purple; Observations are Noise-Free

After 6 observations
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Maximization Example II

After 7 observations
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Maximization Example III

After 8 observations
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Maximization Example IV
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DP Algorithm for POMDP Formulation of Bayesian Optimization

J∗k (bk ) = min
uk+1∈{1,...,m}

[
c(uk+1) + Ezuk+1

{
J∗k+1

(
Bk (bk , uk+1, zuk+1)

) ∣∣ bk , uk+1

}]
where c(u) is the cost of observation at u. Proceeds backwards from a terminal cost

J∗N(bN) = G(bN) (measures the quality of the surrogate obtained at the end)

Approximation in value space (replace J∗
k+1 with J̃k+1)

ũk+1 ∈ arg min
uk+1∈{1,...,m}

Qk (bk , uk+1)

where Qk (bk , uk+1) is the (approximate) Q-factor corresponding to the pair (bk , uk+1):

Qk (bk , uk+1) = c(uk+1) + Ezuk+1

{
J̃k+1

(
Bk (bk , uk+1, zuk+1)

) ∣∣ bk , uk+1

}

Rollout

Use as J̃k+1 the cost function of a myopic base heuristic based on an acquisition
function (or approximation thereof); first proposed by Lam, Wilcox, and Wolpert (2016),
and followed up by others (promising, but relatively untested at present).
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Truncated Rollout with a Myopic Base Heuristic

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation
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min
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E
w

{
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(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k
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Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree "-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′
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3 ũ1 x̃2 ũ2 x̃3
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(
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ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ
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Adaptive Control with a POMDP Formulation and Rollout
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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

System Observation Outcome Decision u on Next Observation

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk)

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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(
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=
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xk+1 = fk(xk, θ, uk)
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Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller
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(
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)
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Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
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! Cost function J̃0(i) Cost function J̃1(j)
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all chess programs
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(
F (i)
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of
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(
F1(i), . . . , Fs(i)

)
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(
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(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

Deterministic system xk+1 = f (xk , θ,uk ), θ ∈ {θ1, . . . , θm}: unknown parameter
θ has known initial distribution b0 and stays constant. It is observed indirectly
through perfect observation of xk

View θ as part of an augmented state (xk , θ) that is partially observed

Bellman equation for optimal cost function J∗k :

J∗k (Ik ) = min
uk

m∑
i=1

bk,i
(
g(xk , θ

i , uk ) + J∗k+1
(
Ik , uk , f (xk , θ

i , uk )
)

where Ik = (x0, . . . , xk , u0, . . . , uk−1) is the information state at time k , and
bk,i = P{θ = θi | Ik}, i = 1, . . . ,m, is the belief state (estimated on-line)
Approximation in value space: Use approximation J̃ i(f (xk , θ

i , uk )
)

in place of
J∗k+1

(
Ik , uk , f (xk , θ

i , uk )
)
. Minimize over uk to obtain a one-step lookahead policy

Example 1: J̃ i is the cost function of the optimal policy corresponding to θi

Example 2: J̃ i is the cost function of a known policy assuming θ = θi (this is rollout)
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Rollout for Adaptive Control with a POMDP Formulation
Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ
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1

At xk , we minimize Q̂k (xk , uk ), the average Q-factor of uk , defined by

Q̂k (xk , uk ) =
m∑

i=1

bk,iQk (xk , uk , θ
i),

where Qk (xk , uk , θ
i) is the Q-factor computed assuming that θ = θi

Qk (xk , uk , θ
i) = gk (xk , θ

i , uk ) + Jk+1,πi

(
fk (xk , θ

i , uk )
)

If πi ≡ π, cost improvement over π can be proved
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A Rollout Approach for Solving On-Line the Wordle Puzzle (Joint Work
with Siddhant Bhambri and Amrita Bhattacharjee)

Overview
There is a hidden mystery word/code word θ drawn from an initial mystery list
according to a known distribution. In the standard version of the puzzle this
distribution is uniform.

The mystery list shrinks as a result of guesses/observations.

The guesses are chosen based on feedback about the mystery word provided by
the preceding guesses.

The puzzle is solved when the mystery list shrinks to a single element.

We want to minimize the expected number of guesses to solve the puzzle.

Important fact: The belief distribution over the current mystery list remains uniform
through the solution process.

This makes possible the solution by exact DP, with days of computation (Selby
2022).

Without the uniform initial belief distribution assumption (and/or small variations in
the problem structure), the exact solution would be impossible.

Rollout can solve near optimally the puzzle (and its variations) on-line much faster.
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Online Rollout Solution for Deterministic 
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Revisiting the POMDP Model

• S, a finite set of states, which includes a cost-free and absorbing termination 
state; 
• A, a finite set of actions, and for each state sk, a constraint subset A(sk) ⊂ A from 

within which ak must be chosen when at state sk; 
• T, a deterministic transition function: T(sk,θ,ak) that gives the θ-dependent next 

state sk+1 when action ak is applied in state sk at time k; 
• C, a cost function: C(sk, θ, ak) that gives the θ- dependent cost (or negative 

rewards) incurred by the agent when action ak is applied in state sk at time k. 



The Wordle puzzle

Easy mode

Hard mode



Wordle as a POMDP

Stage 1 Stage 2 Stage 3

States (S): Subset of the initial mystery list  
of 2,315 words

Actions (A): Set of 12,972 guess words

Transitions (T): probability of going from
one mystery word list to the next.

Cost (C): cost of utilizing a guess word (=1)

Observations from the game: colored 
observations for each letter



Op9mal solu9on using Dynamic Programming

Figure adapted from Bertsimas, D. and Paskov, A., 2022. An Exact and Interpretable Solution to Wordle. Available at URL.(Accessed: 14 November 2022).
Selby A., 2022.\ ``The best strategies for Wordle (last edited on 17 March 2022)." (Accessed: 14 November 2022).

Optimal value function required to compute!

Enormous state space: 22315 ≅ 10697



Approximate the value function using Rollout

Figure: Schematic illustration of the rollout approach.



Base Heuristic for Wordle – Information Gain!

Information gain - calculating entropy 
(roughly based on how much using a word 
reduces the uncertainty about the mystery 
word)

Figure adapted from Grant’s video (3Blue1Brown on YouTube)



Solving Wordle 
using Rollout

Line 1: empty set to store 
the average Q-factors for 
each possible action at 
stage k. 



Solving Wordle 
using Rollout

Line 4-6: for all possible θi ∈ Θ, 
we perform the rollout by 
applying the next action as 
selected by our base heuristic 
cost function Jk+1 and
compute the Q-factor until we 
reach the terminating state.



Solving Wordle 
using Rollout

Line 7: find the average Q-
factor for taking an action ak
weighed by the current belief 
distribution. 



Solving Wordle 
using Rollout

Line 9-10: we select the acXon 
a ̃k that corresponds to the 
minimum average Q-factor 
and apply it to state sk.



Results for Rollout vs Op9mal Scores

Table: Results using ‘Maximum Information Gain’ (MIG) as base heuristic and with rollout. 



Advantage of rollout  (vs only base heuris9c)

Optimal Score: 3.5084

Our score: 3.5231



Limitations of Rollout

• The need for a reasonable base policy – our 
experience with Wordle has been that the 
rollout algorithm is relatively insensitive to 
the base policy (e.g., the GEP heuristic). 

• The need for a posterior distribution 
estimator - this is a limitation of most 
POMDP algorithms. 

• The number of Q-factors that need to be 
computed by the algorithm online, 
particularly for a large action space - this 
difficulty may possibly be mitigated by 
intelligently pruning the action space or by 
offline training using a neural network. 



Summary

• We introduced a DP-based online rollout strategy as a 
computaHonally efficient soluHon to determinisHc POMDPs with 
unknown parameters, whose exact soluHon is intractable. 

• We demonstrated our approach using the challenging online 
puzzle Wordle, and empirically show that our approach provides 
near-opHmal performance and impressive improvement over 
the heurisHc approaches that have been used so far. 

• Through the Wordle computaHonal demonstraHon, we idenHfied 
the key obstacles in the way of solving other challenging POMDP 
problems that involve sequenHal esHmaHon, possibly in 
conjuncHon with simultaneous adapHve control. 

Access the pre-print:
(arXiv:2211.10298)


	Sequential Estimation of a Parameter Vector
	Bayesian Optimization of Functions with Hard-to-Compute Values
	Combined Estimation and Control - Adaptive Control
	On-Line Solution of the Wordle Puzzle by Rollout

