Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization

Arizona State University
Course CSE 691, Spring 2024
Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu, Yuchao Li yuchaoli@asu.edu
March 20, 2024

Lecture 10
Rollout Algorithms for Most Likely Sequence Generation in n-Grams, Transformers,
HMMs, and Markov Chains

Based on the paper
“Most Likely Sequence Generation for n-Grams, Transformers, HMMs, and Markov
Chains by Using Rollout Algorithms”, by Y. Li and D. Bertsekas, ArXiv, Mar. 2024

Bertsekas Reinforcement Learning March 20, 2024 1/29

0 Most Likely Generated Sequences in n-Grams

e Related Applications: Inference in Hidden Markov Models (HMM), Viterbi Algorithm
e DP Formulation of Most Likely Sequence Selection Problem

e Rollout Algorithms and Performance Improvement

e Computational Experiments with Markov Chains

e Computational Experiments with a GPT

Bertsekas Reinforcement Learning March 20, 2024 2/29

Recall the n-Gram Model of Next Word Generation

Tk T4

o Current Text String | Next | Next Text String

n Words Word n Words

@ One word added to the front and one word deleted from the back

@ The n-gram provides transition probabilities p(xx+1 | Xx) to which we have access
@ p(xk+1 | Xk) is a suggested local measure of desirability for xx1 to follow xi

@ We have freedom to select the next word according to a policy of our choice

@ Think of texting/next word suggestions; we can follow the suggested words or
choose our own

@ We focus on policies that produce highly likely sequences {x, xo, ..., Xy} starting
from a given initial state/prompt xo; a global measure of desirability

Bertsekas Reinforcement Learning March 20, 2024 4/29

An Optimization Problem: Most Likely Sequence Selection Policy

Tk Th+1

o Current Text String | Next | Next Text String

n Words Word | n Words

@ The most likely selection policy: Starting at xo, select the most likely sequence
{x1, X2, ..., Xn}, according to the n-gram’s suggestions.

@ This the one that maximizes
Prob(x1, X2, ..., Xn | Xo0)
or equivalently maximizes
p(x1 [Xo) - p(Xe [X1) - p(Xs | X2) - - - p(Xn | Xn—1)

[using the Markov property, i.e., P(Xk+1 | Xo, X1, - .., Xk) = P(Xk+1 | X«) and the
multiplication rule of conditional probability].
@ We will view this policy as optimal/most desirable.
@ lts advantage is that it plans into the future.
@ We will use DP: (max product of rewards = max of sum of the reward logarithms)
@ But DP requires intractable computation

y,
Bertsekas Reinforcement Learning March 20, 2024 5/29

We Will Look at Suboptimal Policies

Tk T4

o Current Text String | Next | Next Text String

n Words Word | n Words

@ The greedy selection policy: Select at each xi the next word x,.1 that maximizes
the next word transition probability p(Xx+1 | X«).

@ The rollout selection policy that uses the greedy as base policy: At xk, it selects
Xk+1 that maximizes the greedy Q-factor Q(x, Xk+1); i.e. the probability of the
sequence

Prob(xx+1, Greedy sequence starting from xi1 | Xk)

@ Variants of rollout: Multistep lookahead, truncated, simplified, and their
combinations.

@ Double rollout: Rollout using the rollout-based-on-greedy (and its variants) as
base policy.

@ Under any one of these policies, the n-gram system is deterministic.

@ As a result, we can contemplate powerful/sophisticated variants of rollout involving
multistep lookahead (see Lecture 6, and Section 2.4 of the textbook).

Bertsekas Reinforcement Learning March 20, 2024 6/29

Example: A 1-Gram with Vocabulary = {0, 1}

0
p>1/2 _/ »>12

@ Startingat xo =0

@ The greedy selection policy is: {xo, X1, X2, ...} = {0,0,0,0,...}

@ The most likely selection policy is: If p? < 1 — p it selects {0,1,0,1,...} [because
p" < (1 — p)V/?]; otherwise it selects {0,0,0,...}

@ The rollout selection policy with one-step lookahead, starting from xo = 0,
compares two Q-factors corresponding to the two next states x; = 0 and x; = 1.

e If p? < 1 — pitselects x; = 1; otherwise it selects x; = 0. Thus it generates the
same sequence as the most likely selection policy.

An n-gram with its probabilities p(xx.1 | k) defines a Markov chain (prob. of

next state depends on the past-states history only through the current state):
P(Xk1 | Xo5 X1, -5 Xk) = P(Xky1 | Xk)

An n-gram with vocabulary consisting of g different words involves q” states. The state

space can be enormous!

Bertsekas Reinforcement Learning March 20, 2024 7129

Inference in Hidden Markov Models: A Huge Class of Mathematically

Equivalent Problems

Transition probabilities are
“modified” by data

Replaced by p(zy41,data | i)

Find the most likely path (conditioned on the data)

Many applications: Speech recognition, language translation, computational linguistics,
coding and error correction, bioinformatics, etc

Example: Given sentence (data), e.g., “He saw a beautiful fish in the water." Label
each word as noun, pronoun, verb, adjective, adverb, determiner, etc.

@ Often solved by a specialized form of DP, the Viterbi algorithm (1960s).

@ For large state spaces exact solution is intractable and suboptimal shortest
path-type algorithms have been used.

@ Our DP-based rollout algorithms fully apply. The transition probabilities are
replaced by data-dependent/time-dependent “weights"

Bertsekas Reinforcement Learning March 20, 2024 9/29

DP Formulation for Markov Chains: Next State Selection Policies

A State
N-1
Pi(w,m) = p(yksip(@,m) [@) [] p@irrwle,m) | yin(e, ™)
i=k+1
Yir1,k (2,)
T ynk(x,)
L
Yhsan(z,7) o \/.
yN—1.k(w,)
k kE+1 k+2 N-1 N Time

Given a Markov chain with transition probabilities p(xk1 | Xk)
@ A selection policy 7 is a sequence of functions {uo, . . ., un—1}, which given the
current state xx, determines the next state xx+1 as Xi+1 = puk(X«)-
@ Given 7 and a starting state x at time k, the future states are denoted
Ymk(Xx,) = state at time m > k starting at state x and using =

@ The probability of its occurence (the reward-to-go function) is
N—1

Pe(x,m) = p(Vis1. (6 7) [X) -] PUie1k(,7) | vik)

i=k+1

Bertsekas Reinforcement Learning March 20, 2024 11/29

Most Likely and Greedy Selection Policies

@ The most likely selection policy, denoted by 7* = {ug, . - ., un_1 }, Maximizes over
all policies 7 the probabilities Px(x,) for every initial state x and time k:

P;:(X) = Pk(X, 71'*) = m.,?X Pk(X7 7T)

@ DP-like algorithm to obtain 7#* and its probabilities Py (x):
First compute the probabilities P} (x) backwards, for all x, according to

P,f(x):m}z/axp(y\x)P,fM(y), k:N_L"'va

starting with Py (x) = 1.
Then generate sequentially the selections x7, . .., xy, of 7* forwards, according to

Xivr = WO € argmax ply |)Py (1)

starting with x; = xo.
@ ltis equivalent to the usual DP for multistage additive costs, after we take
logarithms of the multiplicative expressions defining the probabilities Pk (x, 7).
@ The greedy policy 7 = {i, &, - . ., i} produces the next state by maximization of
the corresponding transition probability over all y: 7i(x) = argmax, p(y | x«) (ties
are broken according to a fixed rule for sequential consistency).

Bertsekas Reinforcement Learning March 20, 2024 12/29

One-Step and Multistep Rollout Selection Policies

Next States Final States

Current State

Rollout with

One-Step Lookahead
Greedy Selection

Q-Factors
Qr (@i, y) = p(y | @) Prta(y, 7)

States at the End Final States
of the Lookahead

Greedy Selection

Greedy Selection

Current State ¥

Rollout with
Multi-Step Lookahead

Greedy Selection

Greedy Selection

o OO

Q-Factors
Qrke(@r,y1,y2) = p(yr [2k)p(y2 | y1) Prsz(y2,)

There are also truncated and simplified variants, etc

Bertsekas

The Performance Improvement Property

Induction proof of performance improvement for rollout with one-step
lookahead. (Sequential consistency holds here; the base heuristic is a policy)

@ Want to show that for the greedy policy 7 and the rollout policy 7, we have

Pr(x,7) < Pk(x,7), for all x and k

@ For k = N this holds, since we have Py(x,7) = Pn(x,7) = 1.
@ Assuming that

Piy1(x,T) < Py (x, %), for all x,
we will show that
Pr(x,7) < Pk(x,7), for all x.
@ We have
Pi(x, %) = p(fik(x) | X)Prs1(fix(x),7) (by definition) (1)
> p(fix(x) | X)P+1 (fix(x),7) (by the induction hypothesis) 2
> p(fx(x) | X)Prs1 (x(x),7) (rollout maximizes greedy Q-factor) (3)
= Px(x,7) (by definition) (4)

Bertsekas Reinforcement Learning March 20, 2024 15/29

Multiple Policy lterations - Double Rollout Algorithm

Greedy Q-Factor Policy
» Policy »| Evaluation » [mprovement >
T On-Line Q-Factor
Simulation Maximization

Rollout Policy 7

<
%

@ Single rollout is rollout with greedy as base policy

@ Double rollout is rollout with single rollout as base policy

@ Triple rollout is rollout with double rollout as base policy

@ k-order rollout is rollout with (k — 1)-order rollout as base policy

@ These rollout algorithms can be multistep lookahead, truncated, simplified, etc

@ For double rollout, at any encountered state xx, we run the single rollout from
every next state y and select xx;1 to maximize the Q-factor Q: «(xx, y) over y

@ Double rollout requires O(q - N) applications of single rollout (q is the number of
possible next states after simplification)

With a large enough number of policy iterations, the most likely sequence is obtained

Bertsekas Reinforcement Learning March 20, 2024 16/29

Computational Experiments with Markov Chains

States 1 2 e 100
1 p(111) p2l1) | --- | p(100|1)
States 1,2,...,100
2 p(112) p212) p(100]2) xth row: transition probabilities
: . : from x to all other states
100 p(1]100) | p(2|100) | --- | p(100]|100)

@ We consider N = 100 most likely sequence for a set C of Markov chains involving
100 states. For each state x, there are 5 states y such that p(y | x) > 0

@ The transition probabilities are given in a lookup table

@ The most likely sequence can be computed via DP

@ We measure the performance of rollout by the percentage recovery of optimality
loss of the greedy policy, given by

BN B \T/N
(Fo) == (Po) ™ 100 (%)
(P)N = (Po)'/N
where (Po)"/N, (Py)!/N, and (Pg)'/N are the average transition probabilities under
7, 7, and 7", respectively.

March 20, 2024 18/29

Bertsekas Reinforcement Learning

Percentage Recovery by Rollout

100 (Py)1/100

84.18 84.37

80 1

60

40 4

Performance recovery (%)

20 1

P..)1/100
N (Po)

1 [N N T S O - N N
~— Without Truncation —] |«— With m-Step Truncation —s|

@ We consider rollout with one-step and ¢-step lookahead (¢ = 2 to 5), denoted by
¢, and their m-step truncated counterparts with m = 10, denoted by 7/’
@ General observations from the experiments:

Rollout leads to substantial improvements over the greedy policy in all test cases
Longer lookahead results in improvement on average
The performance seems unaffected by the 90% truncation of the rollout horizon

Bertsekas Reinforcement Learning March 20, 2024

Typical Patterns of Rollout (1)

039

100

0.40

03

0 2 0 e 0 100
State

For a given Markov chain, (Po(x, 7r))1/N with 7 being 7*, 7, with ¢ =1,2,3, or 7 J

Bertsekas

Reinforcement Learning

March 20, 2024 20/29

Typical Patterns of Rollout (2)

] 2) @ 0 100

0 2 0 e 0 100
State

For a given Markov chain, (Po(x, 7r))1/N with 7 being 7*, 7, with ¢ =1,2,3, or 7 J

Bertsekas Reinforcement Learning March 20, 2024 21/29

Percentage Recovery by Double Rollout

I et L L EE LR ELEE L PP (Pg)1/100

Percentage recovery (%)

P.)1/100
- A N K . . N A R N N (Po)
71 ry 7y 73 Ty LT (S S S S L

J— Without Truncation — Je—With m-Step Truncation —»|

@ We consider double rollout with one-step and ¢-step lookahead (¢ = 2 to 5),
denoted by #,, and their m-step truncated counterparts with m = 10, denoted by
#7', and their results are shown in green bars

@ General observations from the experiments:

Double rollout algorithm and its variants lead to significant performance improvement
over both the greedy policy and (single) rollout with one-step lookahead

The truncated versions of double rollout remain effective, despite large computational
savings

v

Bertsekas Reinforcement Learning March 20, 2024 22/29

Generative Pre-Trained Transformer - GPT

i

@ Transformer architectures improve in important ways on the earlier neural
networks by using the attention mechanism

@ Such neural networks are often Pre-Trained with a lot of general purpose data
before they are further trained (fine-tuned) with special purpose data

&

@ Owing to both the architecture and pre-training, the resulting neural networks are
Generative: being able to create new content and to perform open-ended tasks

@ Tremendous amount of applications: natural language processing, computer
vision, image/music generation (see the figure above) ...

@ We focus on text generation and view the GPT as an n-gram.

Bertsekas Reinforcement Learning March 20, 2024 24/29

Attention Mechanism in a GPT

1.0
Re
. 0.8
in
forcement - 0.6 N X .
l Re ‘ l in ‘ l forcement ‘ Glearning ‘ l Gis l Gfun
Gllearning - -y
Gis - l Re ’ l in ‘ forcement | | Glearning l Gis l Gfun
-0.2
Gfun -
| ' ' ' ' I =0.0
& > N S w® &
< ~ \\é‘ $ G
& >
&
A

@ Consider the text string ‘Reinforcement learning is fun’ as an input
@ ltis viewed as 6 ‘words’ (called tokens) by the GPT

@ For each feasible ordered ‘word’ pair, an attention score is generated, measuring
the affinity between them: how strongly they are related

@ The ‘attention’ of the neural network is given to relations with high scores

Bertsekas Reinforcement Learning March 20, 2024 25/29

Training Data and Algorithms for GPT

Inputs Outputs
Inputs Labels —> GPT
Re in
Rein forcement Modify &
Re in forcement Glearning Weights
Re in forcement Glearning Gis Label
Re in forcement Glearning Gis | Gfun 8| Training | |
Algorithm

@ The text string ‘Reinforcement learning is fun’ corresponds to 5 input-label pairs
used for training

@ Using text strings for training does not require explicit data-labeling.

@ The automatic generation of labeled data from unlabeled data for training enables
the pre-training with large amount of general purpose data

@ The labeled data generation and training process are collectively known as
self-supervised learning

@ The training algorithms used for GPT are scaled versions of stochastic gradient
descent, more on this in the next lecture

Bertsekas Reinforcement Learning March 20, 2024 26/29

Most Likely Word Sequence from a GPT

0.23

Zo: “Beneath the
ancient oaks of

A 4

Fine-Tuned GPT

Savannah ...”

@ We generated most likely sequences, using a fine-tuned GPT, which defines an
n-gram and its associated Markov chain. We used N = 200 and n = 1024.

@ The transition probabilities are generated by the transformer

@ The number of different n-grams is 50258'%%*, enormous! Intractable via DP
@ The large vocabulary size leads to excessive Q-factor computations

@ We applied simplified rollout and its truncated counterpart

@ Rollout can take advantage of the parallel processing power of graphical
processing units (GPU)

Bertsekas Reinforcement Learning March 20, 2024 27/29

Performance of Simplified Rollout

—>— Rollout 7
0.35 ~—+— Truncated Rollout 7™
—&— Greedy T
S 0.30 7
Q
= 0.25
£ 0.20 4
0.15 A
0.10 A

@ We applied two simplification techniques:
Computing only 10 Q-factors corresponding to top ten most likely next words: simplified
rollout with one-step lookahead
In addition, truncating the simulation after 10 steps: m-step truncated rollout
@ General observations from the experiments:
Simplified rollout has substantial improvement over the greedy policy, with modest

computation increase
The truncated counterpart still improves upon the greedy policy in all our test cases

Bertsekas Reinforcement Learning March 20, 2024 28/29

Next Week’s Lecture

Neural network and other approximation architectures. Off-line training and uses in RL
contexts. See Chapter 3 of the textbook. J

Bertsekas Reinforcement Learning March 20, 2024 29/29

	Most Likely Generated Sequences in n-Grams
	Related Applications: Inference in Hidden Markov Models (HMM), Viterbi Algorithm
	DP Formulation of Most Likely Sequence Selection Problem
	Rollout Algorithms and Performance Improvement
	Computational Experiments with Markov Chains
	Computational Experiments with a GPT

