Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University
Course CSE 691, Spring 2024
Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu, Yuchao Li yuchaoli@asu.edu March 20, 2024

Lecture 10

Rollout Algorithms for Most Likely Sequence Generation in *n*-Grams, Transformers, HMMs, and Markov Chains

Based on the paper

"Most Likely Sequence Generation for *n*-Grams, Transformers, HMMs, and Markov Chains by Using Rollout Algorithms", by Y. Li and D. Bertsekas, ArXiv, Mar. 2024

Outline

- Most Likely Generated Sequences in *n*-Grams
- Related Applications: Inference in Hidden Markov Models (HMM), Viterbi Algorithm
- 3 DP Formulation of Most Likely Sequence Selection Problem
- Rollout Algorithms and Performance Improvement
- 5 Computational Experiments with Markov Chains
- 6 Computational Experiments with a GPT

Recall the *n*-Gram Model of Next Word Generation

- One word added to the front and one word deleted from the back
- The *n*-gram provides transition probabilities $p(x_{k+1} \mid x_k)$ to which we have access
- $p(x_{k+1} \mid x_k)$ is a suggested local measure of desirability for x_{k+1} to follow x_k
- We have freedom to select the next word according to a policy of our choice
- Think of texting/next word suggestions; we can follow the suggested words or choose our own
- We focus on policies that produce highly likely sequences $\{x_1, x_2, \dots, x_N\}$ starting from a given initial state/prompt x_0 ; a global measure of desirability

An Optimization Problem: Most Likely Sequence Selection Policy

- The most likely selection policy: Starting at x_0 , select the most likely sequence $\{x_1, x_2, \dots, x_N\}$, according to the n-gram's suggestions.
- This the one that maximizes

$$\mathsf{Prob}(x_1, x_2, \dots, x_N \mid x_0)$$

or equivalently maximizes

$$p(x_1 \mid x_0) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2) \cdots p(X_N \mid x_{N-1})$$

[using the Markov property, i.e., $P(x_{k+1} \mid x_0, x_1, ..., x_k) = P(x_{k+1} \mid x_k)$ and the multiplication rule of conditional probability].

- We will view this policy as optimal/most desirable.
- Its advantage is that it plans into the future.
- We will use DP: (max product of rewards

 = max of sum of the reward logarithms)
- But DP requires intractable computation

We Will Look at Suboptimal Policies

- The greedy selection policy: Select at each x_k the next word x_{k+1} that maximizes the next word transition probability $p(x_{k+1} \mid x_k)$.
- The rollout selection policy that uses the greedy as base policy: At x_k , it selects x_{k+1} that maximizes the greedy Q-factor $Q(x_k, x_{k+1})$; i.e. the probability of the sequence

 $Prob(x_{k+1}, Greedy sequence starting from x_{k+1} \mid x_k)$

- Variants of rollout: Multistep lookahead, truncated, simplified, and their combinations.
- Double rollout: Rollout using the rollout-based-on-greedy (and its variants) as base policy.
- Under any one of these policies, the *n*-gram system is deterministic.
- As a result, we can contemplate powerful/sophisticated variants of rollout involving multistep lookahead (see Lecture 6, and Section 2.4 of the textbook).

Example: A 1-Gram with Vocabulary = $\{0, 1\}$

- Starting at $x_0 = 0$
- The greedy selection policy is: $\{x_0, x_1, x_2, ...\} = \{0, 0, 0, 0, ...\}$
- The most likely selection policy is: If $p^2 < 1 p$ it selects $\{0, 1, 0, 1, \ldots\}$ [because $p^N < (1-p)^{N/2}$]; otherwise it selects $\{0, 0, 0, \ldots\}$
- The rollout selection policy with one-step lookahead, starting from $x_0 = 0$, compares two Q-factors corresponding to the two next states $x_1 = 0$ and $x_1 = 1$.
- If $p^2 < 1 p$ it selects $x_1 = 1$; otherwise it selects $x_1 = 0$. Thus it generates the same sequence as the most likely selection policy.

An *n*-gram with its probabilities $p(x_{k+1} \mid x_k)$ defines a Markov chain (prob. of next state depends on the past-states history only through the current state):

$$p(x_{k+1} \mid x_0, x_1, \dots, x_k) = p(x_{k+1} \mid x_k)$$

An n-gram with vocabulary consisting of q different words involves q^n states. The state space can be enormous!

Inference in Hidden Markov Models: A Huge Class of Mathematically Equivalent Problems

Find the most likely path (conditioned on the data)

9/29

Many applications: Speech recognition, language translation, computational linguistics, coding and error correction, bioinformatics, etc Example: Given sentence (data), e.g., "He saw a beautiful fish in the water." Label each word as noun, pronoun, verb, adjective, adverb, determiner, etc.

- Often solved by a specialized form of DP, the Viterbi algorithm (1960s).
- For large state spaces exact solution is intractable and suboptimal shortest path-type algorithms have been used.
- Our DP-based rollout algorithms fully apply. The transition probabilities are replaced by data-dependent/time-dependent "weights"

DP Formulation for Markov Chains: Next State Selection Policies

Given a Markov chain with transition probabilities $p(x_{k+1} \mid x_k)$

- A selection policy π is a sequence of functions $\{\mu_0, \dots, \mu_{N-1}\}$, which given the current state x_k , determines the next state x_{k+1} as $x_{k+1} = \mu_k(x_k)$.
- Given π and a starting state x at time k, the future states are denoted $y_{m,k}(x,\pi) = \text{state}$ at time m > k starting at state x and using π
- The probability of its occurence (the reward-to-go function) is

$$P_k(x,\pi) = p(y_{k+1,k}(x,\pi) \mid x) \cdot \prod_{i=k+1}^{N-1} p(y_{i+1,k}(x,\pi) \mid y_{i,k})$$

Most Likely and Greedy Selection Policies

• The most likely selection policy, denoted by $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$, maximizes over all policies π the probabilities $P_k(x, \pi)$ for every initial state x and time k:

$$P_k^*(x) = P_k(x, \pi^*) = \max_{\pi} P_k(x, \pi).$$

- DP-like algorithm to obtain π^* and its probabilities $P_k^*(x)$:
 - First compute the probabilities $P_k^*(x)$ backwards, for all x, according to

$$P_k^*(x) = \max_{y} p(y \mid x) P_{k+1}^*(y), \qquad k = N-1, \dots, 0,$$

- starting with $P_N^*(x) \equiv 1$.
- Then generate sequentially the selections x_1^*, \ldots, x_N^* of π^* forwards, according to

$$x_{k+1}^* = \mu_k^*(x_k^*) \in \arg\max_y p(y \mid x_k^*) P_{k+1}^*(y),$$

starting with $x_0^* = x_0$.

- It is equivalent to the usual DP for multistage additive costs, after we take logarithms of the multiplicative expressions defining the probabilities $P_k(x,\pi)$.
- The greedy policy $\overline{\pi} = \{\overline{\mu}, \overline{\mu}, \dots, \overline{\mu}\}$ produces the next state by maximization of the corresponding transition probability over all $y : \overline{\mu}(x) = \arg\max_y p(y \mid x_k)$ (ties are broken according to a fixed rule for sequential consistency).

One-Step and Multistep Rollout Selection Policies

There are also truncated and simplified variants, etc

The Performance Improvement Property

Induction proof of performance improvement for rollout with one-step lookahead. (Sequential consistency holds here; the base heuristic is a policy)

• Want to show that for the greedy policy $\overline{\pi}$ and the rollout policy $\widetilde{\pi}$, we have

$$P_k(x, \overline{\pi}) \le P_k(x, \widetilde{\pi}),$$
 for all x and k

- For k = N this holds, since we have $P_N(x, \overline{\pi}) = P_N(x, \widetilde{\pi}) \equiv 1$.
- Assuming that

$$P_{k+1}(x,\overline{\pi}) \leq P_{k+1}(x,\widetilde{\pi}), \quad \text{for all } x,$$

we will show that

$$P_k(x,\overline{\pi}) \leq P_k(x,\widetilde{\pi}), \quad \text{for all } x.$$

We have

$$P_k(x, \tilde{\pi}) = p(\tilde{\mu}_k(x) \mid x) P_{k+1}(\tilde{\mu}_k(x), \tilde{\pi})$$
 (by definition) (1)

$$\geq p(\tilde{\mu}_k(x) \mid x) P_{k+1}(\tilde{\mu}_k(x), \overline{\pi})$$
 (by the induction hypothesis)

$$\geq p(\overline{\mu}_k(x) \mid x) P_{k+1}(\overline{\mu}_k(x), \overline{\pi})$$
 (rollout maximizes greedy Q-factor) (3)

$$=P_k(x,\overline{\pi})$$
 (by definition) (4)

(2)

Multiple Policy Iterations - Double Rollout Algorithm

- Single rollout is rollout with greedy as base policy
- Double rollout is rollout with single rollout as base policy
- Triple rollout is rollout with double rollout as base policy
- k-order rollout is rollout with (k-1)-order rollout as base policy
- These rollout algorithms can be multistep lookahead, truncated, simplified, etc
- For double rollout, at any encountered state x_k , we run the single rollout from every next state y and select x_{k+1} to maximize the Q-factor $Q_{\bar{\pi},k}(x_k, y)$ over y
- Double rollout requires $O(q \cdot N)$ applications of single rollout (q) is the number of possible next states after simplification)

With a large enough number of policy iterations, the most likely sequence is obtained

Computational Experiments with Markov Chains

States	1	2		100
1	p(1 1)	p(2 1)	• • •	p(100 1)
2	p(1 2)	p(2 2)		p(100 2)
:	:	:	٠	:
100	p(1 100)	p(2 100)		p(100 100)

States 1,2,...,100 xth row: transition probabilities from x to all other states

18 / 29

- We consider N = 100 most likely sequence for a set C of Markov chains involving 100 states. For each state x, there are 5 states y such that p(y|x) > 0
- The transition probabilities are given in a lookup table
- The most likely sequence can be computed via DP
- We measure the performance of rollout by the percentage recovery of optimality loss of the greedy policy, given by

$$\frac{(\tilde{P}_0)^{1/N} - (\overline{P}_0)^{1/N}}{(P_0^*)^{1/N} - (\overline{P}_0)^{1/N}} \times 100 \,(\%)$$

where $(\overline{P}_0)^{1/N}$, $(\tilde{P}_0)^{1/N}$, and $(P_0^*)^{1/N}$ are the average transition probabilities under $\overline{\pi}$, $\widetilde{\pi}$, and π^* , respectively.

Percentage Recovery by Rollout

- We consider rollout with one-step and ℓ -step lookahead ($\ell=2$ to 5), denoted by $\tilde{\pi}_{\ell}$, and their m-step truncated counterparts with m=10, denoted by $\tilde{\pi}_{\ell}^{m}$
- General observations from the experiments:
 - Rollout leads to substantial improvements over the greedy policy in all test cases
 - Longer lookahead results in improvement on average
 - The performance seems unaffected by the 90% truncation of the rollout horizon

Typical Patterns of Rollout (1)

For a given Markov chain, $(P_0(x,\pi))^{1/N}$ with π being π^* , $\tilde{\pi}_\ell$ with $\ell=1,2,3,$ or $\overline{\pi}$

Typical Patterns of Rollout (2)

For a given Markov chain, $\left(P_0(x,\pi)\right)^{1/N}$ with π being π^* , $\tilde{\pi}_\ell$ with $\ell=1,2,3,$ or $\overline{\pi}$

Percentage Recovery by Double Rollout

- We consider double rollout with one-step and ℓ -step lookahead ($\ell=2$ to 5), denoted by $\hat{\pi}_{\ell}$, and their *m*-step truncated counterparts with m=10, denoted by $\hat{\pi}_{\ell}^{m}$, and their results are shown in green bars
- General observations from the experiments:
 - Double rollout algorithm and its variants lead to significant performance improvement over both the greedy policy and (single) rollout with one-step lookahead
 - The truncated versions of double rollout remain effective, despite large computational savings

Generative Pre-Trained Transformer - GPT

- Transformer architectures improve in important ways on the earlier neural networks by using the attention mechanism
- Such neural networks are often Pre-Trained with a lot of general purpose data before they are further trained (fine-tuned) with special purpose data
- Owing to both the architecture and pre-training, the resulting neural networks are Generative: being able to create new content and to perform open-ended tasks
- Tremendous amount of applications: natural language processing, computer vision, image/music generation (see the figure above) ...
- We focus on text generation and view the GPT as an n-gram.

Attention Mechanism in a GPT

- Consider the text string 'Reinforcement learning is fun' as an input
- It is viewed as 6 'words' (called tokens) by the GPT
- For each feasible ordered 'word' pair, an attention score is generated, measuring the affinity between them: how strongly they are related
- The 'attention' of the neural network is given to relations with high scores

Training Data and Algorithms for GPT

- The text string 'Reinforcement learning is fun' corresponds to 5 input-label pairs used for training
- Using text strings for training does not require explicit data-labeling.
- The automatic generation of labeled data from unlabeled data for training enables the pre-training with large amount of general purpose data
- The labeled data generation and training process are collectively known as self-supervised learning
- The training algorithms used for GPT are scaled versions of stochastic gradient descent, more on this in the next lecture

Most Likely Word Sequence from a GPT

- We generated most likely sequences, using a fine-tuned GPT, which defines an n-gram and its associated Markov chain. We used N = 200 and n = 1024.
- The transition probabilities are generated by the transformer
- The number of different *n*-grams is 50258¹⁰²⁴, enormous! Intractable via DP
- The large vocabulary size leads to excessive Q-factor computations
- We applied simplified rollout and its truncated counterpart
- Rollout can take advantage of the parallel processing power of graphical processing units (GPU)

Performance of Simplified Rollout

- We applied two simplification techniques:
 - Computing only 10 Q-factors corresponding to top ten most likely next words: simplified rollout with one-step lookahead
 - ▶ In addition, truncating the simulation after 10 steps: *m*-step truncated rollout
- General observations from the experiments:
 - Simplified rollout has substantial improvement over the greedy policy, with modest computation increase
 - The truncated counterpart still improves upon the greedy policy in all our test cases

Next Week's Lecture

