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0 Most Likely Generated Sequences in n-Grams

e Related Applications: Inference in Hidden Markov Models (HMM), Viterbi Algorithm
e DP Formulation of Most Likely Sequence Selection Problem

e Rollout Algorithms and Performance Improvement

e Computational Experiments with Markov Chains

e Computational Experiments with a GPT
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Recall the n-Gram Model of Next Word Generation

Tk T4

o Current Text String | Next |  Next Text String

n Words Word n Words

@ One word added to the front and one word deleted from the back

@ The n-gram provides transition probabilities p(xx+1 | Xx) to which we have access
@ p(xk+1 | Xk) is a suggested local measure of desirability for xx1 to follow xi

@ We have freedom to select the next word according to a policy of our choice

@ Think of texting/next word suggestions; we can follow the suggested words or
choose our own

@ We focus on policies that produce highly likely sequences {x, xo, ..., Xy} starting
from a given initial state/prompt xo; a global measure of desirability
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An Optimization Problem: Most Likely Sequence Selection Policy

Tk Th+1

o Current Text String | Next | Next Text String

n Words Word | n Words

@ The most likely selection policy: Starting at xo, select the most likely sequence
{x1, X2, ..., Xn}, according to the n-gram’s suggestions.

@ This the one that maximizes
Prob(x1, X2, ..., Xn | Xo0)
or equivalently maximizes
p(x1 [ Xo) - p(Xe [ X1) - p(Xs | X2) - - - p(Xn | Xn—1)

[using the Markov property, i.e., P(Xk+1 | Xo, X1, - .., Xk) = P(Xk+1 | X«) and the
multiplication rule of conditional probability].
@ We will view this policy as optimal/most desirable.
@ lts advantage is that it plans into the future.
@ We will use DP: (max product of rewards = max of sum of the reward logarithms)
@ But DP requires intractable computation

y,
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We Will Look at Suboptimal Policies

Tk T4

o Current Text String | Next | Next Text String

n Words Word | n Words

@ The greedy selection policy: Select at each xi the next word x,.1 that maximizes
the next word transition probability p(Xx+1 | X«).

@ The rollout selection policy that uses the greedy as base policy: At xk, it selects
Xk+1 that maximizes the greedy Q-factor Q(x, Xk+1); i.e. the probability of the
sequence

Prob(xx+1, Greedy sequence starting from xi1 | Xk)

@ Variants of rollout: Multistep lookahead, truncated, simplified, and their
combinations.

@ Double rollout: Rollout using the rollout-based-on-greedy (and its variants) as
base policy.

@ Under any one of these policies, the n-gram system is deterministic.

@ As a result, we can contemplate powerful/sophisticated variants of rollout involving
multistep lookahead (see Lecture 6, and Section 2.4 of the textbook).
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Example: A 1-Gram with Vocabulary = {0, 1}

0
p>1/2 \_/ »>12

@ Startingat xo =0

@ The greedy selection policy is: {xo, X1, X2, ...} = {0,0,0,0,...}

@ The most likely selection policy is: If p? < 1 — p it selects {0,1,0,1,...} [because
p" < (1 — p)V/?]; otherwise it selects {0,0,0,...}

@ The rollout selection policy with one-step lookahead, starting from xo = 0,
compares two Q-factors corresponding to the two next states x; = 0 and x; = 1.

e If p? < 1 — pitselects x; = 1; otherwise it selects x; = 0. Thus it generates the
same sequence as the most likely selection policy.

An n-gram with its probabilities p(xx.1 | k) defines a Markov chain (prob. of

next state depends on the past-states history only through the current state):
P(Xk1 | Xo5 X1, -5 Xk) = P(Xky1 | Xk)

An n-gram with vocabulary consisting of g different words involves q” states. The state

space can be enormous!
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Inference in Hidden Markov Models: A Huge Class of Mathematically

Equivalent Problems

Transition probabilities are
“modified” by data

Replaced by p(zy41,data | i)

Find the most likely path (conditioned on the data)

Many applications: Speech recognition, language translation, computational linguistics,
coding and error correction, bioinformatics, etc

Example: Given sentence (data), e.g., “He saw a beautiful fish in the water." Label
each word as noun, pronoun, verb, adjective, adverb, determiner, etc.

@ Often solved by a specialized form of DP, the Viterbi algorithm (1960s).

@ For large state spaces exact solution is intractable and suboptimal shortest
path-type algorithms have been used.

@ Our DP-based rollout algorithms fully apply. The transition probabilities are
replaced by data-dependent/time-dependent “weights"
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DP Formulation for Markov Chains: Next State Selection Policies

A State
N-1
Pi(w,m) = p(yksip(@,m) [ @) [] p@irrwle,m) | yin(e, ™)
i=k+1
Yir1,k (2, )
T ynk(x, )
L
Yhsan(z,7) o \/.
yN—1.k(w, )
k kE+1 k+2 N-1 N Time

Given a Markov chain with transition probabilities p(xk1 | Xk)
@ A selection policy 7 is a sequence of functions {uo, . . ., un—1}, which given the
current state xx, determines the next state xx+1 as Xi+1 = puk(X«)-
@ Given 7 and a starting state x at time k, the future states are denoted
Ymk(Xx, ) = state at time m > k starting at state x and using =

@ The probability of its occurence (the reward-to-go function) is
N—1

Pe(x,m) = p(Vis1. (6 7) [ X) - ] PUie1k(,7) | vik)

i=k+1
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Most Likely and Greedy Selection Policies

@ The most likely selection policy, denoted by 7* = {ug, . - ., un_1 }, Maximizes over
all policies 7 the probabilities Px(x, ) for every initial state x and time k:

P;:(X) = Pk(X, 71'*) = m.,?X Pk(X7 7T)

@ DP-like algorithm to obtain 7#* and its probabilities Py (x):
First compute the probabilities P} (x) backwards, for all x, according to

P,f(x):m}z/axp(y\x)P,fM(y), k:N_L"'va

starting with Py (x) = 1.
Then generate sequentially the selections x7, . .., xy, of 7* forwards, according to

Xivr = WO € argmax ply | )Py (1)

starting with x; = xo.
@ ltis equivalent to the usual DP for multistage additive costs, after we take
logarithms of the multiplicative expressions defining the probabilities Pk (x, 7).
@ The greedy policy 7 = {i, &, - . ., i} produces the next state by maximization of
the corresponding transition probability over all y: 7i(x) = argmax, p(y | x«) (ties
are broken according to a fixed rule for sequential consistency).
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One-Step and Multistep Rollout Selection Policies

Next States Final States

Current State

Rollout with

One-Step Lookahead
Greedy Selection

Q-Factors
Qr (@i, y) = p(y | @) Prta(y, 7)

States at the End Final States
of the Lookahead

Greedy Selection

Greedy Selection

Current State ¥

Rollout with
Multi-Step Lookahead

Greedy Selection

Greedy Selection

o OO

Q-Factors
Qrke(@r,y1,y2) = p(yr [ 2k)p(y2 | y1) Prsz(y2, )

There are also truncated and simplified variants, etc
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The Performance Improvement Property

Induction proof of performance improvement for rollout with one-step
lookahead. (Sequential consistency holds here; the base heuristic is a policy)

@ Want to show that for the greedy policy 7 and the rollout policy 7, we have

Pr(x,7) < Pk(x,7), for all x and k

@ For k = N this holds, since we have Py(x,7) = Pn(x,7) = 1.
@ Assuming that

Piy1(x,T) < Py (x, %), for all x,
we will show that
Pr(x,7) < Pk(x,7), for all x.
@ We have
Pi(x, %) = p(fik(x) | X)Prs1(fix(x),7) (by definition) (1)
> p(fix(x) | X)P+1 (fix(x),7) (by the induction hypothesis) 2
> p(fx(x) | X)Prs1 (x(x),7) (rollout maximizes greedy Q-factor) (3)
= Px(x,7) (by definition) (4)
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Multiple Policy lterations - Double Rollout Algorithm

Greedy Q-Factor Policy
» Policy »| Evaluation » [mprovement >
T On-Line Q-Factor
Simulation Maximization

Rollout Policy 7

<
%

@ Single rollout is rollout with greedy as base policy

@ Double rollout is rollout with single rollout as base policy

@ Triple rollout is rollout with double rollout as base policy

@ k-order rollout is rollout with (k — 1)-order rollout as base policy

@ These rollout algorithms can be multistep lookahead, truncated, simplified, etc

@ For double rollout, at any encountered state xx, we run the single rollout from
every next state y and select xx;1 to maximize the Q-factor Q: «(xx, y) over y

@ Double rollout requires O(q - N) applications of single rollout (q is the number of
possible next states after simplification)

With a large enough number of policy iterations, the most likely sequence is obtained
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Computational Experiments with Markov Chains

States 1 2 e 100
1 p(111) p2l1) | --- | p(100|1)
States 1,2,...,100
2 p(112) p212) p(100]2) xth row: transition probabilities
: . : from x to all other states
100 p(1]100) | p(2|100) | --- | p(100]|100)

@ We consider N = 100 most likely sequence for a set C of Markov chains involving
100 states. For each state x, there are 5 states y such that p(y | x) > 0

@ The transition probabilities are given in a lookup table

@ The most likely sequence can be computed via DP

@ We measure the performance of rollout by the percentage recovery of optimality
loss of the greedy policy, given by

BN B \T/N
(Fo) == (Po) ™ 100 (%)
(P )N = (Po)'/N
where (Po)"/N, (Py)!/N, and (Pg)'/N are the average transition probabilities under
7, 7, and 7", respectively.
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Percentage Recovery by Rollout

100 (Py)1/100

84.18 84.37

80 1

60

40 4

Performance recovery (%)
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P..)1/100
N (Po)
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~—  Without Truncation —] |«— With m-Step Truncation —s|

@ We consider rollout with one-step and ¢-step lookahead (¢ = 2 to 5), denoted by
¢, and their m-step truncated counterparts with m = 10, denoted by 7/’
@ General observations from the experiments:

Rollout leads to substantial improvements over the greedy policy in all test cases
Longer lookahead results in improvement on average
The performance seems unaffected by the 90% truncation of the rollout horizon
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Typical Patterns of Rollout (1)

039
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03

0 2 0 e 0 100
State

For a given Markov chain, (Po(x, 7r))1/N with 7 being 7*, 7, with ¢ =1,2,3, or 7 J
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Typical Patterns of Rollout (2)

] 2 ) @ 0 100

0 2 0 e 0 100
State

For a given Markov chain, (Po(x, 7r))1/N with 7 being 7*, 7, with ¢ =1,2,3, or 7 J
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Percentage Recovery by Double Rollout

I et L L EE LR ELEE L PP (Pg)1/100

Percentage recovery (%)

P.)1/100
- A N K . . N A R N N (Po)
71 ry 7y 73 Ty LT (S S S S L

J— Without Truncation — Je—With m-Step Truncation —»|

@ We consider double rollout with one-step and ¢-step lookahead (¢ = 2 to 5),
denoted by #,, and their m-step truncated counterparts with m = 10, denoted by
#7', and their results are shown in green bars

@ General observations from the experiments:

Double rollout algorithm and its variants lead to significant performance improvement
over both the greedy policy and (single) rollout with one-step lookahead

The truncated versions of double rollout remain effective, despite large computational
savings

v
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Generative Pre-Trained Transformer - GPT

i

@ Transformer architectures improve in important ways on the earlier neural
networks by using the attention mechanism

@ Such neural networks are often Pre-Trained with a lot of general purpose data
before they are further trained (fine-tuned) with special purpose data

&

@ Owing to both the architecture and pre-training, the resulting neural networks are
Generative: being able to create new content and to perform open-ended tasks

@ Tremendous amount of applications: natural language processing, computer
vision, image/music generation (see the figure above) ...

@ We focus on text generation and view the GPT as an n-gram.
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Attention Mechanism in a GPT

1.0
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@ Consider the text string ‘Reinforcement learning is fun’ as an input
@ ltis viewed as 6 ‘words’ (called tokens) by the GPT

@ For each feasible ordered ‘word’ pair, an attention score is generated, measuring
the affinity between them: how strongly they are related

@ The ‘attention’ of the neural network is given to relations with high scores
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Training Data and Algorithms for GPT

Inputs Outputs
Inputs Labels —> GPT
Re in
Rein forcement Modify &
Re in forcement Glearning Weights
Re in forcement Glearning Gis Label
Re in forcement Glearning Gis | Gfun 8| Training | |
Algorithm

@ The text string ‘Reinforcement learning is fun’ corresponds to 5 input-label pairs
used for training

@ Using text strings for training does not require explicit data-labeling.

@ The automatic generation of labeled data from unlabeled data for training enables
the pre-training with large amount of general purpose data

@ The labeled data generation and training process are collectively known as
self-supervised learning

@ The training algorithms used for GPT are scaled versions of stochastic gradient
descent, more on this in the next lecture
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Most Likely Word Sequence from a GPT

0.23

Zo: “Beneath the
ancient oaks of

A 4

Fine-Tuned GPT

Savannah ...”

@ We generated most likely sequences, using a fine-tuned GPT, which defines an
n-gram and its associated Markov chain. We used N = 200 and n = 1024.

@ The transition probabilities are generated by the transformer

@ The number of different n-grams is 50258'%%*, enormous! Intractable via DP
@ The large vocabulary size leads to excessive Q-factor computations

@ We applied simplified rollout and its truncated counterpart

@ Rollout can take advantage of the parallel processing power of graphical
processing units (GPU)
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Performance of Simplified Rollout

—>— Rollout 7
0.35 ~—+— Truncated Rollout 7™
—&— Greedy T
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Q
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@ We applied two simplification techniques:
Computing only 10 Q-factors corresponding to top ten most likely next words: simplified
rollout with one-step lookahead
In addition, truncating the simulation after 10 steps: m-step truncated rollout
@ General observations from the experiments:
Simplified rollout has substantial improvement over the greedy policy, with modest

computation increase
The truncated counterpart still improves upon the greedy policy in all our test cases
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Next Week’s Lecture

Neural network and other approximation architectures. Off-line training and uses in RL
contexts. See Chapter 3 of the textbook. J
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